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ABSTRACT
For geo-distributed datacenters, lately a workload manage-
ment approach that routes user requests to locations with
cheaper and cleaner electricity has been shown promising in
reducing the energy cost. We consider two key aspects that
have not been explored before. First, the energy-gobbling
cooling systems are often modeled with a location-independent
efficiency factor. Yet, through empirical studies, we find that
their actual energy efficiency depends directly on the ambi-
ent temperature, which exhibits a significant degree of ge-
ographical diversity. Temperature diversity can be used to
reduce the overall cooling energy overhead. Second, dat-
acenters run not only interactive workloads driven by user
requests, but also delay tolerant batch workloads at the back-
end. The elastic nature of batch workloads can be exploited
to further reduce the energy consumption.

In this paper, we propose to make workload management
for geo-distributed datacenters temperature aware. We for-
mulate the problem as a joint optimization of request routing
for interactive workloads and capacity allocation for batch
workloads. We develop a distributed algorithm based on an
m-block alternating direction method of multipliers (ADMM)
algorithm that extends the classical 2-block algorithm. We
prove the convergence of our algorithm under general as-
sumptions. Through trace-driven simulations with real-world
electricity prices, historical temperature data, and an empir-
ical cooling efficiency model, we find that our approach is
consistently capable of delivering a 15%–20% cooling en-
ergy reduction, and a 5%–20% overall cost reduction for
geo-distributed clouds.

1. INTRODUCTION
Geo-distributed datacenters operated by organizations such

as Google and Amazon are the powerhouses behind many
Internet-scale services. They are deployed across the Inter-
net to provide better latency and redundancy. These datacen-
ters run hundreds of thousands of servers, consume megawatts
of power with massive carbon footprint, and incur electricity
bills of millions of dollars [17,34]. Thus, the topic of reduc-
ing their energy consumption and cost has received signifi-
cant attention [7, 11–13, 15, 17, 19, 26–29, 34, 35, 40].

Energy consumption of individual datacenters can be re-

duced with more energy efficient hardware and integrated
thermal management [7, 11, 15, 28, 40]. Recently, important
progress has been made on a new workload management ap-
proach that instead focuses on the overall energy cost of geo-
distributed datacenters. It exploits the geographical diversity
of electricity prices by optimizing the request routing algo-
rithm to route user requests to locations with cheaper and
cleaner electricity [12, 17, 18, 26, 27, 29, 34, 35].

In this paper, we consider two key aspects of geo-distributed
datacenters that have not been explored in the literature.

First, cooling systems, which consume 30% to 50% of
the total energy [33, 40], are often modeled with a constant
and location-independent energy efficiency factor in exist-
ing efforts. This tends to be an over-simplification in reality.
Through our study of a state-of-the-art production cooling
system (Sec. 2), we find that temperature has direct and pro-
found impact on cooling energy efficiency. This is especially
true with outside air cooling technology, which has seen in-
creasing adoption in mission-critical datacenters [1–3]. As
we will show, its partial PUE (power usage effectiveness),
defined as the sum of server power and cooling overhead
divided by server power, varies from 1.30 to 1.05 when tem-
perature drops from 35 ◦C (90 ◦F) to -3.9 ◦C (25 ◦F).

Through an extensive empirical analysis of daily and hourly
climate data for 13 Google datacenters, we further find that
temperature varies significantly across both time and loca-
tion, which is intuitive to understand. These observations
suggest that datacenters at different locations have distinct
and time-varying cooling energy efficiency. This establishes
a strong case for making workload management tempera-
ture aware, where such temperature diversity can be used
along with price diversity in making request routing deci-
sions to reduce the overall cooling energy overhead for geo-
distributed datacenters.

Second, energy consumption comes not only from inter-
active workloads driven by user requests, but also from delay
tolerant batch workloads, such as indexing and data mining
jobs, that run at the back-end. Existing efforts focus mainly
on request routing to minimize the energy cost of interactive
workloads, which is only a part of the entire picture. Such a
mixed nature of datacenter workloads, verified by measure-
ment studies [36], provides more opportunities to utilize the
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cost diversity of energy. The key observation is that batch
workloads are elastic to resource allocations, whereas in-
teractive workloads are highly sensitive to latency and have
more profound impact on revenue [25]. Thus at times when
one location is comparatively cost efficient (in terms of dol-
lar per unit energy), we can increase the capacity for inter-
active workloads by reducing the resources for batch jobs.
More requests can then be routed to and processed at this lo-
cation, and the cost saving can be more substantial. We thus
advocate a holistic workload management approach, where
capacity allocation between interactive and batch workloads
is dynamically optimized with request routing. Dynamic ca-
pacity allocation is also technically feasible because jobs run
on highly scalable systems such as MapReduce.

Towards temperature aware workload management, we
propose a general framework to capture the important trade-
offs involved (Sec. 3). We model both energy cost and utility
loss, which correspond to performance-related revenue re-
duction. We develop an empirical cooling efficiency model
based on a production system. The problem is formulated
as a joint optimization of request routing and capacity al-
location. The technical challenge is then to develop a dis-
tributed algorithm to solve the large-scale optimization with
tens of millions of variables for a production geo-distributed
cloud. Dual decomposition with subgradient methods are
often used to develop distributed optimization algorithms.
However they require delicate adjustments of step sizes that
make convergence difficult to achieve for large-scale prob-
lems. The method of multipliers [22] achieves fast conver-
gence, at the cost of tight coupling among variables.

We rely on the alternating direction method of multipli-
ers (ADMM), a simple yet powerful algorithm that blends
the advantages of the two approaches. ADMM recently has
found practical use in many large-scale distributed convex
optimization problems in machine learning and data min-
ing [10]. It works for problems whose objective and vari-
ables can be divided into two disjoint parts. It alternatively
optimizes part of the objective with one block of variables to
iteratively reach the optimum. Our formulation has three
blocks of variables, yet little is known about the conver-
gence of m-block (m ≥ 3) ADMM algorithms, with two
exceptions [20, 23] very recently. [20] establishes the con-
vergence of m-block ADMM for strongly convex objective
functions, but not linear convergence; [23] shows the linear
convergence of m-block ADMM under the assumption that
the relation matrix is full column rank, which is, however,
not the case in our formation. This motivates us to refine the
framework in [23] so that it can be applied to our setup.

In particular, in Sec. 4 we show that by replacing the full-
rank assumption with some mild assumptions on the objec-
tive functions, we are not only able to obtain the same con-
vergence and rate of convergence result, but also to simplify
the proof of [23]. The m-block ADMM algorithm is general
and can be applied in other problem domains. For our case,
we further develop a distributed algorithm in Sec. 5, which

is amenable to a parallel implementation in datacenters.
We conduct extensive trace-driven simulations with real-

world electricity prices, historical temperature data, and an
empirical cooling efficiency model to realistically assess the
potential of our approach (Sec. 6). We find that tempera-
ture aware workload management is consistently able to de-
liver a 15%–20% cooling energy reduction and a 5%–20%
overall cost reduction for geo-distributed datacenters. The
distributed ADMM algorithm converges quickly within 70
iterations, while a dual decomposition approach with sub-
gradient methods fails to converge within 200 iterations. We
thus believe our algorithm is practical for large-scale real-
world problems.

2. BACKGROUND AND MOTIVATION
Before we make a case for temperature aware workload

management, it is necessary to introduce some background
of datacenter cooling, and empirically assess the geographi-
cal diversity of temperature.

2.1 Datacenter Cooling
Datacenter cooling is provided by the computer room air

conditioners (CRACs) placed on the raised floor of the fa-
cility. Hot air exhausted from server racks travels through a
cooling coil in the CRACs. Heat is often extracted by chilled
water in the cooling coil, and the returned hot water is cooled
through mechanical refrigeration cycles in an outside chiller
plant continuously. The compressor of a chiller consumes
a massive amount of energy, and accounts for the majority
of the overall cooling cost [40]. The result is an energy-
gobbling cooling system that typically consumes a signifi-
cant portion (⇠30%) of the total datacenter power [40].

2.2 Outside Air Cooling
To improve energy efficiency, various so-called free cool-

ing technologies that operate without mechanical chillers have
recently been adopted. In this paper, we focus on a more
economically viable technology called outside air cooling.
It uses an air-side economizer to direct cold outside air into
the datacenter to cool down servers. The hot exhaust air is
simply rejected out instead of being cooled and recirculated.
The advantage of outside air cooling can be significant: In-
tel ran a 10-month experiment using 900 blade servers, and
reported that 67% of the cooling energy can be saved with
only slightly increased hardware failure rates [24]. Compa-
nies like Google [1], Facebook [2], and HP [3] have been
operating their datacenters with up to 100% outside air cool-
ing, which brings million dollars of savings annually.

The energy efficiency of outside air cooling heavily de-
pends on ambient temperature among other factors. When
temperature is lower, less air is needed for heat exchange,
and the air handler fan speed can be reduced to save energy.
Thus, a CRAC with an air-side economizer usually operates
in three modes. When ambient temperature is high, outside
air cooling cannot be used, and the CRAC falls back to me-
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chanical cooling with chillers. When temperature falls be-
low a certain threshold, outside air cooling is utilized to pro-
vide partial or entire cooling capacity. When temperature is
too low, outside air is mixed with exhaust air to maintain a
suitable supply air temperature. In this mode, CRAC energy
efficiency cannot be further improved since fans need to op-
erate at a minimum speed to maintain airflow. Table 1 shows
the empirical COP1 and partial PUE (pPUE)2 data of a state-
of-the-art CRAC with an air-side economizer. Clearly, as the
outdoor temperature drops, the CRAC switches the operat-
ing mode to use more outside air cooling. As a result the
COP improves six-fold from 3.3 to 19.5, and the pPUE de-
creases dramatically from 1.30 to 1.05. Due to the sheer
amount of energy a datacenter draws, the numbers imply
huge monetary savings for the energy bill.

Outdoor ambient Cooling mode COP pPUE
35C(90F) Mechanical 3.3 1.30

21.1C(70F) Mechanical 4.7 1.21
15.6C(60F) Mixed 5.9 1.17
10C(50F) Outside air 10.4 1.1

-3.9C(25F) Outside air 19.5 1.05

Table 1: Efficiency of Emerson’s DSE
TM

cooling system
with an EconoPhase air-side economizer [14]. Return air
is set at 29.4◦C(85◦F).

With the increasing use of outside air cooling, this finding
motivates our proposal to make workload management tem-
perature aware. Intuitively, datacenters at colder and thus
more energy efficient locations should be better utilized to
reduce the overall energy consumption and cost simultane-
ously. Our idea also applies to datacenters using mechan-
ical cooling, because contrary to previous work’s assump-
tion [28], as shown in Table 1, the chiller energy efficiency
also depends on outside temperature, albeit milder.

2.3 An Empirical Climate Study
Our idea hinges upon a key assumption: Temperatures are

diverse and not well correlated at different locations. In this
section, we make our case concrete by supporting it with an
empirical analysis of historical climate data.

We use Google’s datacenter locations for our study, as
they represent a global production infrastructure and the lo-
cation information is publicly available [4]. Google has 6
datacenters in the U.S., 1 in South America, 3 in Europe,
and 3 in Asia. We acquire historical temperature data from
various data repositories of the National Climate Data Cen-
ter [6] for all 13 locations, covering the entire one-year pe-
riod of 2011.

It is useful to first understand the climate profiles at in-
dividual locations. Figure 1 plots the daily average temper-
atures for three select locations in North America, Europe,
1COP, coefficient of performance, is defined for a cooling device
as the ratio between cooling capacity and power.
2pPUE is defined as the sum of cooling capacity and cooling power
divided by cooling capacity. Nearly all the power delivered to
servers translates to heat, which matches the CRAC cooling ca-
pacity.

−20
0

20
40

Te
m

p.
 (C

)

 

 
The Dalles, OR

−20
0

20
40

Te
m

p.
 (C

)

 

 
Hamina, Finland

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
−20

0
20
40

Te
m

p.
 (C

)

 

 

Quilicura, Chile

Figure 1: Daily average temperature at three Google dat-
acenter locations. Data from the Global Daily Weather
Data of the National Climate Data Center (NCDC) [6].
Time is in UTC.

and South America, respectively. Geographical diversity ex-
ists despite the clear seasonal pattern shared among all lo-
cations. For example, Finland appears to be especially fa-
vorable for cooling during winter months. Diversity is more
salient for locations in different hemispheres (e.g. Chile).
We also observe a significant amount of day-to-day volatil-
ity, suggesting that the availability and capability of outside
air cooling constantly varies across regions, and there is no
single location that is always cooling efficient.

We then examine short-term temperature volatility. As
shown in Figure 2, the hourly variations are more dramatic
and highly correlated with time-of-day, which is intuitive to
understand. Further, the highs and lows do not occur at the
same time for different regions due to time differences.
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Figure 2: Hourly temperature variations at three Google
datacenter locations. Data from the Hourly Global Sur-
face Data of NCDC [6]. Time is in UTC.

Our approach would fail if hourly temperatures are well
correlated at different locations. However, we find that this
is not the case for datacenters that are usually far apart from
each other. The pairwise temperature correlation coefficients
for all 13 locations are mostly in between 0.6 and -0.6. Due
to space limit, details are omitted and can be found in Sec. 2.3
of our technical report [39].

The analysis above reveals that for globally deployed dat-
acenters, local temperature at individual locations exhibits
both time and geographical diversity. Therefore, a carefully
designed workload management scheme is critically needed,
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in order to dynamically adjust datacenter operations to the
ambient conditions, and to save the overall energy costs.

3. MODEL
In this section, we introduce our model first and then for-

mulate the temperature aware workload management prob-
lem of joint request routing and capacity allocation.

3.1 System Model
We consider a discrete time model where the length of

a time slot matches the time scale at which request routing
and capacity allocation decisions are made, e.g., hourly. The
joint optimization is periodically solved at each time slot.
We therefore focus only on a single time slot.

We consider a provider that runs a set of datacenters J
in distinct geographical regions. Each datacenter j 2 J
has a fixed capacity C

j

in terms of the number of servers.
To model datacenter operating costs, we consider both the
energy cost and utility loss of request routing and capacity
allocation, which are detailed below.

3.2 Energy Cost and Cooling Efficiency
We focus on servers and cooling system in our energy cost

model. Other energy consumers, such as network switches,
power distribution systems, etc., have constant power draw
independent of workloads [15] and are not relevant.

For servers, we adopt the empirical model from [15] that
calculates the individual server power consumption as an
affine function of CPU utilization, Pidle + (Ppeak − Pidle)u.
Pidle is the server power when idle, Ppeak is the server power
when fully utilized, and u is the CPU load. This model is
especially accurate for calculating the aggregated power of a
large number of servers [15]. Thus, assuming workloads are
perfectly dispatched and servers have a uniform utilization
as a result, the server power of datacenter j can be modeled
as C

j

Pidle + (Ppeak − Pidle)Wj

, where W denotes the total
workload in terms of the number of servers required.

For the cooling system, we take an empirical approach
based on production CRACs to model its energy consump-
tion. We choose not to rely on simplifying models for the in-
dividual components of a CRAC and their interactions [40],
because of the difficulty involved in and the inaccuracy re-
sulted from the process, especially for hybrid CRACs with
both outside air and mechanical cooling. Therefore, we study
CRACs as a black box, with outside temperature as the in-
put, and its overall energy efficiency as the output.

Specifically, we use partial PUE (pPUE) to measure the
CRAC energy efficiency. As in Sec. 2.2, pPUE is defined as

pPUE =
Server power + Cooling power

Server power
.

A smaller value indicates a more energy efficient system. We
apply regression techniques to the empirical pPUE data of
the Emerson CRAC [14] introduced in Table 1. We find that
the best fitting model describes pPUE as a quadratic function
of the outside temperature as plotted below.
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Figure 3: Model fitting of pPUE as a function of the out-
side temperature T for Emerson’s DSE

TM
CRAC [14].

Small circles denote empirical data points.

The model can be calibrated given more data from mea-
surements. For the purpose of this paper, our approach yields
a tractable model that captures the overall CRAC efficiency
for the entire spectrum of its operating modes. Our model is
also useful for future studies on datacenter cooling energy.

Given the outside temperature T

j

, the total datacenter en-
ergy as a function of the workload W

j

can be expressed as

E

j

(W
j

) = (C
j

Pidle + (Ppeak − Pidle)Wj

) · pPUE(T
j

). (1)

Here we implicitly assume that T
j

is known a priori and do
not include it as the function variable. This is valid since
short-term weather forecast is fairly accurate and accessible.

A datacenter’s electricity price is denoted as P
j

. The price
may additionally incorporate the environmental cost of gen-
erating electricity [17], which we do not consider here. In
reality, electricity can be purchased from local day-ahead or
hour-ahead forward markets at a pre-determined price [34].
Thus, we assume that P

j

is known a priori and remains fixed
for the duration of a time slot. The total energy cost, includ-
ing server and cooling power, is simply P

j

E

j

(W
j

).

3.3 Utility Loss
Request routing. The concept of utility loss captures the

lost revenue due to the user-perceived latency for request
routing decisions. Latency is arguably the most important
performance metric for most interactive services. A small
increase in the user-perceived latency can cause substantial
revenue loss for the provider [25]. We focus on the end-to-
end propagation latency, which largely accounts for the user-
perceived latency compared to other factors such as request
processing times at datacenters [31]. The provider obtains
the propagation latency L

ij

between user i and datacenter j
through active measurements [30] or other means.

We use ↵

ij

to denote the volume of requests routed to
datacenter j from user i 2 I, and D

i

to denote the demand of
each user that can be predicted using machine learning [28,
32]. Here, a user is an aggregated group of customers from a
common geographical region, which may be identified by a
unique IP prefix. The lost revenue from user i then depends
on the average propagation latency

P
j

↵

ij

L

ij

/D

i

through
a generic delay utility loss function U

i

. U
i

can take various
forms depending on the interactive service. Our algorithm

4



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 307

and proof work for general utility loss functions as long as
U

i

is increasing, differentiable, and convex.
As a case study, here we use a quadratic function to model

user’s increased tendency to leave the service with increased
latency.

U

i

(↵
i

) = qD

i

0

@
X

j2J
↵

ij

L

ij

/D

i

1

A
2

, (2)

where q is the delay price that translates latency to monetary
terms, and ↵

i

= (↵
i1, . . . ,↵

i|J |)
T . Utility loss is clearly

zero when latency is zero between user and datacenter.
Capacity allocation. We denote the utility loss of allo-

cating β

j

servers for batch workloads as a differentiable, de-
creasing, and convex function V

j

(β
j

), since allocating more
resources increases the performance of batch jobs. Unlike
interactive services, batch jobs are delay tolerant and re-
source elastic. Utility functions such as the log function are
often used to capture such elasticity. However, utility func-
tions model the benefit of resource allocation. To model the
utility loss of resource allocation, since the loss is zero when
the capacity is fully allocated to batch jobs, an intuitive def-
inition can be of the following form:

V

j

(β
j

) = r(logC
j

− log β
j

), (3)

where r is the utility price that converts the loss to monetary
terms. (3) captures the intuition that increasing resources
results in a decreasing marginal reduction of utility loss.

3.4 Problem Formulation
We now formulate the temperature aware workload man-

agement problem. For a given request routing decision ↵,
the total cost associated with interactive workloads can be
written as

X

j2J
E

j

✓X

i2I
↵

ij

◆
P

j

+
X

i2I
U

i

(↵
i

) . (4)

For a given capacity allocation decision β, the total cost as-
sociated with batch workloads is:

X

j2J
E

j

(β
j

)P
j

+
X

j2J
V

j

(β
j

). (5)

Putting everything together, the optimization can be formu-
lated as:

minimize (4) + (5) (6)

subject to: 8i :
X

j2J
↵

ij

= D

i

, (7)

8j :
X

i2I
↵

ij

 C

j

− β

j

, (8)

↵,β ⌫ 0, (9)

variables: ↵ 2 R|I|⇥|J |
,β 2 R|J |

.

(6) is the objective function that jointly considers the cost of
request routing and capacity allocation. (7) is the workload

conservation constraint to ensure the user demand is satis-
fied. (8) is the datacenter capacity constraint, and (9) is the
nonnegativity constraint.

3.5 Transforming to the ADMM Form
Problem (6) is a large-scale convex optimization prob-

lem. The number of users, i.e., unique IP prefixes, is typ-
ically O(105)–O(106) for production systems. Hence, our
problem can have tens of millions of variables, and millions
of constraints. In such a setting, a distributed algorithm is
preferable to fully utilize the computing resources of data-
centers. Traditionally, dual decomposition with subgradient
methods [9] are often used to develop distributed optimiza-
tion algorithms. However, they suffer from the curse of step
sizes. For the final output to be close to the optimum, we
need to strategically pick the step size at each iteration, lead-
ing to well-known problems of slow convergence and per-
formance oscillation with large-scale problems.

Alternating direction method of multipliers is a simple yet
powerful algorithm that is able to overcome the drawbacks
of dual decomposition methods, and is well suited to large-
scale distributed convex optimization. Though developed in
the 1970s [8], ADMM has recently received renewed inter-
est, and found practical use in many large-scale distributed
convex optimization problems in statistics, machine learn-
ing, etc. [10]. Before illustrating our new convergence proof
and distributed algorithm that extend the classical frame-
work, we first introduce the basics of ADMM, followed by
a transformation of (6) to the ADMM form.

ADMM solves problems in the form

min f1(x1) + f2(x2) (10)
s.t. A1x1 +A2x2 = b,

x1 2 C1, x2 2 C2,

with variables x

`

2 Rn` , where A

`

2 Rp⇥n` , b 2 Rp,
f

`

’s are convex functions, and C

`

’s are non-empty polyhe-
dral sets. Thus, the objective function is separable over two
sets of variables, which are coupled through an equality con-
straint.

We can form the augmented Lagrangian [22] by introduc-
ing an extra L-2 norm term kA1x1 + A2x2 − bk22 to the
objective:

L

⇢

(x1, x2; y) = f1(x1)+f2(x2)+y

T (A1x1+A2x2−b)

+ (⇢/2)kA1x1 +A2x2 − bk22.

Here, ⇢ > 0 is the penalty parameter (L0 is the standard
Lagrangian for the problem). The benefits of introducing
the penalty term are improved numerical stability and faster
convergence in practice [10].

Our formulation (6) has a separable objective function due
to the joint nature of the workload management problem.
However, the request routing decision ↵ and capacity alloca-
tion decision β are coupled by an inequality constraint rather
than an equality constraint as in ADMM problems. Thus we
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introduce a slack variable γ 2 R|J |, and transform (6) to the
following

minimize (4) + (5) + IR|J |
+

(γ) (11)

subject to: (7), (9),

8j :
X

i

↵

ij

+ β

j

+ γ

j

= C

j

, (12)

variables: ↵ 2 R|I|⇥|J |
,β 2 R|J |

, γ 2 R|J |
.

Here, IR|J |
+

(γ) is an indicator function defined as

IR|J |
+

(γ) =

⇢
0, γ ⌫ 0,

+1, otherwise. (13)

The new formulation (11) is equivalent to (6), since for
any feasible ↵ and β, γ ⌫ 0 holds, and the indicator func-
tion in the objective values to zero. Clearly, it is in the
ADMM form, with a key difference that it has three sets
of variables in the objective function and equality constraint
(12). The convergence of the generalized m-block ADMM,
where m ≥ 3, has long remained an open question. Though
it seems natural to directly extend the classical 2-block al-
gorithm to the m-block case, such an algorithm may not
converge unless some additional back-substitution step is
taken [21]. Recently, some progresses have been made by
[20, 23] that prove the convergence of m-block ADMM for
strongly convex objective functions and the linear conver-
gence of m-block ADMM under a full-column-rank relation
matrix. However, the relation matrix in our setup is not full
column rank. Thus, we need a new proof for the linear con-
vergence under a general relation matrix, together with a dis-
tributed algorithm inspired by the proof.

4. THEORY
This section first introduces a generalized m-block ADMM

algorithm inspired by [20, 23]. Then a new convergence
proof is presented, which replaces the full column rank as-
sumption with some mild assumptions on the objective func-
tion, and further simplifies the proof in [23]. The notations
and discussions in this section are made intentionally inde-
pendent of the other parts of the paper in order to present the
proof in a mathematically general way.

4.1 Algorithm
We consider a convex optimization problem in the form

min

mX

i=1

f

i

(x
i

) (14)

s.t.
mX

i=1

A

i

x

i

= b

with variables x
i

2 Rni (i = 1, . . . ,m), where f

i

: Rni !
R (i = 1, . . . ,m) are closed proper convex functions; A

i

2
Rl⇥ni (i = 1, . . . ,m) are given matrices; and b 2 Rl is a
given vector.

We form the augmented Lagrangian

L

⇢

(x1, . . . , xm

; y) =

mX

i=1

f

i

(x
i

) + y

T (

mX

i=1

A

i

x

i

− b)

+ (⇢/2)k
mX

i=1

A

i

x

i

− bk22. (15)

As in [23], a generalized ADMM algorithm has the follow-
ing:

x

k+1
i

= argmin
xi

L

⇢

(xk+1
1 , . . . , x

k+1
i−1 , xi

, x

k

i+1, . . . , x
k

m

; yk),

i = 1, . . . ,m,

y

k+1 = y

k + %(

mX

i=1

A

i

x

k+1
i

− b),

where % > 0 is the step size for the dual update. Note that
when m = 2 and the step size % equals to the penalty pa-
rameter ⇢, the above algorithm is reduced to the standard
ADMM algorithm presented in [8].

4.2 Assumptions
We present two assumptions on the objective functions,

based on which we are able to show the convergence of the
generalized m-block ADMM algorithm.

ASSUMPTION 1. The objective functions f
i

(i = 1, . . . ,m)
are strongly convex.

Note that strong convexity is quite reasonable in engineer-
ing practice. This is because a convex function f(x) can
be always well-approximated by a strongly convex function
f̄(x). For instance, if we choose f̄(x) = f(x) + ✏kxk22 for
some sufficiently small ✏ > 0, then f̄(x) is strongly convex.

ASSUMPTION 2. The gradients rf

i

(i = 1, . . . ,m) are
Lipschitz continuous.

Assumption 2 says that, for each i, there exists some con-
stant 

i

> 0 such that for all x1, x2 2 Rni ,

krf

i

(x1)−rf

i

(x2)k2  

i

kx1 − x2k2,

which is again reasonable in practice, since 

i

can be made
sufficiently large.

4.3 Convergence
In this section, we outline the proof for the convergence

of the generalized ADMM algorithm. The detailed proof can
be found in Sec. 4.3 of our technical report [39].

For convenience, we write

x =

0

B@
x1

...
x

m

1

CA , f(x) =
mX

i=1

f

i

(x
i

), and A = [A1 . . . A

m

].

Then the problem (14) can be rewritten as

min f(x)

s.t. Ax = b

6
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with the optimal value p⇤ = inf{f(x) | Ax = b}. Similarly,
the augmented Lagrangian can be rewritten as

L

⇢

(x; y) = f(x) + y

T (Ax− b) + (⇢/2)kAx− bk22,

with the associated dual function defined by

d(y) = inf
x

L

⇢

(x; y)

and the optimal value d

⇤ = sup{d(y)}.
Now define the primal and dual optimality gaps as

k

p

= L

⇢

(xk+1; yk)− d(yk),

k

d

= d

⇤ − d(yk),

respectively. Clearly, we have k

p

≥ 0 and k

d

≥ 0. Define

V

k = k

p

+k

d

.

We will see that V k is a Lyapunov function for the algorithm,
i.e., a nonnegative quantity that decreases in each iteration.

Our proof relies on three technical lemmas.

LEMMA 1. There exists a constant # > 0 such that

V

k  V

k−1 − %kAx̄

k+1 − bk22 − #kxk+1 − x

kk22, (16)

in each iteration, where x̄

k+1 = argmin
x

L

⇢

(x; yk).

PROOF. See Appendix C in the technical report [39].

LEMMA 2. For any given δ > 0, there exists a constant
⌧ > 0 (depending on δ) such that for any (x, y) satisfying
kxk+ kyk  2δ, the following inequality holds

kx− x̄(y)k  ⌧kr
x

L

⇢

(x; y)k, (17)

where x̄(y) = argmin
x

L

⇢

(x; y).

PROOF. See Appendix B in the technical report [39].

LEMMA 3. There exists a constant ⌘ > 0 such that

kr
x

L

⇢

(xk; yk)k2  ⌘kxk − x

k+1k2. (18)

PROOF. See Appendix A in the technical report [39].

By Lemma 1, we have
1X

k=0

�
%kAx̄k+1 − bk22 + #kxk+1 − x

kk22
�
 V

0
.

Hence, kAx̄

k+1 − bk22 ! 0 and kxk+1 − x

kk22 ! 0, as k !
1. Suppose that the level set of

p

+
d

is bounded. Then
by the Bolzano-Weierstrass theorem, the sequence {xk

, y

k}
has a convergent subsequence, i.e.,

lim
k2R,k!1

(xk

, y

k) = (x̃, ỹ),

for some subsequence R, where (x̃, ỹ) denotes the limit point.
By using Lemma 2 and Lemma 3, we can show that the limit
point (x̃, ỹ) is an optimal primal-dual solution. Hence,

lim
k2R,k!1

V

k = lim
k2R,k!1

k

p

+k

d

= 0.

Since V

k decreases in each iteration, the convergence of a
subsequence of V k implies the convergence of V k, and we
have

lim
k!1

k

p

+k

d

= 0.

This further implies that both k

p

and k

d

converge to 0.
To sum up, we have the following convergence theorem

for our generalized ADMM algorithm.

THEOREM 1. Suppose that Assumptions 1 and 2 hold and
that the level set of

p

+
d

is bounded. Then both the pri-
mal gap k

p

and the dual gap k

d

converge to 0.

Due to space limit, the rate of convergence is omitted and
can be found in Sec. 4.3 of [39].

5. A DISTRIBUTED ALGORITHM
We now develop a distributed solution algorithm based on

the generalized ADMM algorithm in Sec. 4.1. Directly ap-
plying the algorithm to our problem (11) will lead to a cen-
tralized algorithm. The reason is that when the augmented
Lagrangian is minimized over ↵, the penalty term

P
j

⇣P
i

↵

ij

+

β

j

+ γ

j

− C

j

⌘2

couples ↵

ij

’s across i, and the utility loss
P

i

U

i

(↵
i

) couples ↵
ij

’s across j. The joint optimization of
utility loss and the quadratic penalty is particularly difficult
to solve, especially when the number of users is large, since
U

i

(↵
i

) can take any general form. If they can be separated,
then we will have a distributed algorithm where each U

i

(↵
i

)
is optimized in parallel, and the quadratic penalty term is
optimized efficiently with existing methods.

Towards this end, we introduce a new set of auxiliary vari-
ables a

ij

= ↵

ij

, and re-formulate the problem (11):

minimize
X

j

E

j

(
X

i

a

ij

)P
j

+
X

i

U

i

(↵
i

) + (5) + IR|J |
+

(γ)

subject to: (7), (9),

8j :
X

i

a

ij

+ β

j

+ γ

j

= C

j

,

8i, j : a
ij

= ↵

ij

,

variables: a,↵ 2 R|I|⇥|J |
,β, γ 2 R|J |

. (19)

This is a 4-block ADMM problem, where a

ij

replaces ↵

ij

in the objective function and constraint (12) when the cou-
pling happens across users i. This is the key step that enables
the decomposition of the ↵-minimization problem. The aug-
mented Lagrangian can then be readily obtained from (15).
By omitting the irrelevant terms, we can see that at each it-
eration k + 1, the ↵-minimization problem is

min
X

i

U

i

(↵
i

)−
X

j

X

i

⇣
'

ij

↵

ij

− ⇢

2
(↵2

ij

− 2↵
ij

a

k

ij

)
⌘

s.t. 8i :
X

j

↵

ij

= D

i

,↵

i

⌫ 0, (20)
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where '

ij

is the dual variable for the equality constraint
a

ij

= ↵

ij

. This is clearly decomposable over i into |I|
per-user sub-problems since the objective function and con-
straint are separable over i. The per-user sub-problem is of a
much smaller scale with only |J | variables and |J |+1 con-
straints, and is easy to solve even though it is a non-linear
problem for a general U

i

.
Some may now wonder if the auxiliary variable a is hard

to solve for. As it turns out, the a-minimization problem is
decomposable over j into |J | per-datacenter sub-problems.
Moreover, each per-datacenter sub-problem is a quadratic
program. Though it is large-scale, it can be transformed into
a second-order cone program and solved efficiently. More
details can be found in Sec. 5 in the technical report [39].
β- and γ-minimization steps are clearly decomposable over

j. The entire procedure is summarized below.
Distributed 4-block ADMM. Initialize a,↵,β, γ,λ,' to

0. For k = 0, 1, . . . , repeat

1. ↵-minimization: Each user solves the following sub-
problem for ↵k+1

i

:

min U

i

(↵
i

)−
X

j

⇣
'

ij

↵

ij

− ⇢

2
(↵2

ij

− 2↵
ij

a

k

ij

)
⌘

s.t.
X

j

↵

ij

= D

i

,↵

i

⌫ 0. (21)

2. a-minimization: Each datacenter solves the following
sub-problem for ak+1

j

= (ak+1
1j , . . . , a

k+1
|I|j )

T :

min E

j

⇣X

i

a

ij

⌘
P

j

+
X

i

a

ij

(λk

j

+ '

k

ij

) +
⇢

2
(
X

i

a

ij

)2

+ ⇢

⇣X

i

a

ij

(βk

j

+ γ

k

j

− C

j

+ 0.5a
ij

− ↵

k+1
ij

)
⌘

s.t. a
j

⌫ 0. (22)

3. β-minimization: Each datacenter solves the following
sub-problem for βk+1

j

:

min E

j

(β
j

)P
j

+ V

j

(β
j

) + λ

k

j

β

j

+
⇢

2

⇣X

i

a

k+1
ij

+ β

j

+ γ

k

j

− C

j

⌘2

s.t. β

j

≥ 0.

4. γ-minimization: Each datacenter solves:

γ

k+1
j

= max

(
0, C

j

− λ

j

⇢

−
X

i

a

k+1
ij

− β

k+1
j

)
, 8j.

5. Dual update: Each datacenter updates λ

j

for the ca-
pacity constraint (8):

λ

k+1
j

= λ

k

j

+ %

⇣X

i

a

k+1
ij

+ β

k+1
j

+ γ

k+1
j

− C

j

⌘
.

Each user updates '
ij

for the equality constraint a
ij

=
↵

ij

:

'

k+1
ij

= '

k

ij

+ %(ak+1
ij

− ↵

k+1
ij

), 8j.

The distributed nature of our algorithm allows for an ef-
ficient parallel implementation in datacenters with a large
number of servers. The per-user sub-problem (21) can be
solved in parallel on each server. Since (21) is a small-scale
convex optimization as discussed above, the complexity is
low. A multi-threaded implementation can further speed up
the algorithm with multi-core hardware. The penalty param-
eter ⇢ and utility loss function U

i

can be configured at each
server before the algorithm runs. Step 2 and 3 involve solv-
ing |J | per-datacenter sub-problems respectively, which can
also be implemented in parallel with only |J | servers.

6. EVALUATION
We perform trace-driven simulations to realistically assess

the potential of temperature aware workload management.

6.1 Setup
We rely on the Wikipedia request traces [38] to represent

the interactive workloads of a cloud service. The dataset we
use contains, among other things, 10% of all user requests is-
sued to Wikipedia from the 24-hour period between January
1, 2008 UTC to January 2, 2008 UTC. The workloads are
normalized to a number of servers, assuming that each re-
quest requires 10% of a server’s CPU. The traces reflect the
diurnal pattern of real-world interactive workloads. The pre-
diction of workloads can be done accurately as demonstrated
by previous work [28, 32], and we do not consider the effect
of prediction error here. The optimization is solved hourly.

We consider Google’s infrastructure [4] to represent a geo-
distributed cloud as discussed in Sec. 2.3. Each datacenter’s
capacity C

j

is uniformly distributed between [1, 2] ⇥ 105

servers. The empirical CRAC efficiency model developed in
Sec. 3.2 is used to derive the total energy consumption of all
13 locations under different temperatures. We use the 2011
annual average day-ahead on peak prices [16] at the local
markets as the power prices P

j

for the 6 U.S. locations3. For
non-U.S. locations, the power price is calculated based on
the retail industrial power price available on the local utility
company websites with a 50% wholesale discount, which is
usually the case in reality [37]. The power prices at each
location are shown in Table 2 in the technical report [39].
The servers have peak power Ppeak = 200 W, and consume
50% power at idle. These numbers represent state-of-the-art
datacenter hardware [15, 34].

To calculate the utility loss of interactive workloads, we
obtain the latency matrix L from iPlane [30], a system that
collects wide-area network statistics from Planetlab vantage
points. Since the Wikipedia traces do not contain client side
information, we emulate the geographical diversity of user
requests by splitting the total interactive workloads among
users following a normal distribution. We set the number of
3The U.S. electricity market is consisted of multiple regional mar-
kets. Each regional market has several hubs with their own pricing.
We thus use the price of the specific hub that each U.S. datacenter
locates in.
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(c) Batch workloads.
Figure 4: Cooling energy cost savings. Time is in UTC.
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(b) Interactive workloads.
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(c) Batch workloads.
Figure 5: Utility loss reductions. Time is in UTC.

users |I| = 105, and choose 105 IP prefixes from a Route-
Views [5] dump. Note that in our context, each user, i.e.
IP prefix, represents many customers accessing the service.
We then extract the corresponding round trip times from
iPlane logs, which contain traceroutes made to IP addresses
from Planetlab nodes. We only use latency measurements
from Planetlab nodes that are close to our datacenter loca-
tions to resemble the user-datacenter latency. We use util-
ity loss functions defined in (2) and (3). The delay price
q = 4 ⇥ 10−6, and the utility loss price for batch jobs
r = 500.

We investigate the performance of temperature aware work-
load management. We benchmark our ADMM algorithm,
referred to as Joint opt, against three baseline strategies, which
use different amounts of information in managing workloads.

The first benchmark, called Baseline, is a temperature ag-
nostic strategy that separately considers capacity allocation
and request routing of the workload management problem. It
first allocates capacity to batch jobs by minimizing the back-
end total cost with (5) as the objective. The remaining ca-
pacity is used to solve the request routing optimization with
(4) as the objective. Only the electricity price diversity is
used, and cooling energy is calculated with a constant pPUE
of 1.2 that corresponds to an ambient temperature of 20◦C
for the two cost minimization problems. Though naive, such
an approach is widely used in current Internet-scale cloud
services. It also allows an implicit comparison with prior
work [17, 27, 29, 34, 35].

The second benchmark, called Capacity Optimized, im-
proves upon Baseline by jointly solving capacity allocation
and request routing, but still ignores the cooling energy ef-
ficiency diversity. This demonstrates the impact of capacity
allocation in datacenter workload management.

The third benchmark, called Cooling Optimized, improves
upon Baseline by exploiting the temperature and cooling ef-
ficiency diversity in minimizing cost, but does not adopt
joint management of the interactive and batch workloads.
This demonstrates the impact of being temperature aware.

We run the four benchmarks above with our 24-hour traces
at each day of January 2011, using the empirical hourly tem-
perature data we collected in Sec. 2.3. The distributed ADMM
algorithm is used to solve them until convergence is achieved.
The figures show the average results over 31 runs.

6.2 Cooling energy savings
The central thesis of this paper is to save datacenter cost

through temperature aware workload management that ex-
ploits the cooling efficiency diversity with capacity alloca-
tion. We examine the effectiveness of our approach by com-
paring the cooling energy consumption first. Figure 4 shows
the results.

In particular, Figure 4a shows that overall, Joint opt saves
15%–20% cooling energy compared to Baseline. A break-
down of the saving shown in the same figure reveals that
dynamic capacity allocation provides 10%–15% saving, and
cooling efficiency diversity provides 5%–10% saving, re-
spectively. Note that the cost saving is achieved with cutting-
edge CRACs whose efficiency is already substantially im-
proved with outside air cooling capability. The results con-
firm that our temperature aware workload management is
able to further optimize the cooling efficiency and cost of
geo-distributed datacenters.

Figure 4b and 4c show a detailed breakdown of cooling
energy cost. Cooling cost attributed to interactive work-
loads, as in Figure 4b, exhibits a diurnal pattern and peaks
between 2:00 and 8:00 UTC (21:00 to 3:00 EST, 18:00 to
0:00 PST), implying that most of the Wikipedia traffic origi-

9
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nates from the U.S. The four strategies perform fairly closely,
while Baseline and Capacity optimized consistently incur
more cooling energy cost due to their cooling agnostic na-
ture that underestimates the overall energy cost.

Cooling cost attributed to batch workloads is shown in
Figure 4c. Baseline incurs the highest cost since it under-
estimates the energy cost, and runs more batch workloads
than necessary. Cooling optimized improves Baseline by
taking into account cooling efficiency diversity and reduc-
ing batch workloads as a result. Both strategies fail to ex-
ploit the trade-off with interactive workloads. Thus their
cooling cost closely follows the daily temperature trend in
that it gradually decreases from 0:00 to 12:00 UTC (19:00
to 7:00 EST) and then slowly increases from 12:00 to 20:00
UTC (7:00 to 15:00 EST). Capacity optimized adjusts capac-
ity allocation with request routing, and further reduces batch
workloads in order to allocate more resources for interactive
workloads. Joint opt combines temperature aware cooling
optimization with holistic workload management, and has
the lowest cooling cost with least batch workloads. Though
this increases the back-end utility loss, the overall effect is a
net reduction of total cost since interactive workloads enjoy
lower latency as will be observed soon.

6.3 Utility loss reductions
The other component of datacenter cost is utility loss. From

Figure 5a, the relative reduction follows the interactive work-
loads and also has a visible diurnal pattern. Joint opt and
Capacity optimized provide the most significant utility loss
reductions from 5% to 25%, while Cooling optimized pro-
vides a modest 5% reduction compared to Baseline. To study
the reasons for the varying degrees of reductions, Figure 5b
and 5c show the respective utility loss of interactive and
batch workloads. We observe that interactive workloads in-
cur most of the utility loss, reflecting its importance com-
pared to batch workloads. Baseline and Cooling optimized
have much larger utility loss from interactive workloads as
shown in Figure 5b, because of the separate management
of two workloads. The average latency performances under
these two strategies are also worse as can be seen in Figure 7
of our technical report [39].

On the other hand, Capacity optimized and Joint opt out-
perform the two by allocating more capacity to interactive
workloads at cost-efficient locations while reducing batch
workloads (recall Figure 4c). This is especially effective dur-
ing peak hours as shown in Figure 5b. Capacity optimized
and Joint opt do have larger utility loss from batch workloads
as seen in Figure 5c. However since interactive workloads
attribute to the majority of the provider’s utility and revenue,
the overall effect of joint workload management is positive.

6.4 Sensitivity to seasonal changes
One natural question is, since the results above are ob-

tained in winter times (January), would the benefits be less
significant during summer times when cooling is more ex-

pensive? In other words, are the benefits sensitive to the
seasonal changes? We thus run our Joint opt with Base-
line at each day of May, which represents typical Spring/Fall
weather, and August, which represents typical Summer weather,
respectively. Figure 6 shows the average overall cost sav-
ings achieved in different seasons. We observe that the cost
savings, ranging from 5% to 20%, are consistent and insen-
sitive to seasonal changes. The reason is that our approach
depends on: 1) the geographical diversity of temperature and
cooling efficiency; 2) the mixed nature of datacenter work-
loads, both of which exist at all times of the year no matter
which cooling method is used. Temperature aware workload
management is thus able to offer consistent cost benefits.

0:00 4:00 8:00 12:00 16:00 20:00
0

0.05

0.1

0.15

0.2

0.25

 

 
January
May
August

Figure 6: Overall cost saving is insensitive to seasonal
changes of the climate.

We also compare the convergence speed of our the dis-
tributed ADMM algorithm with the conventional subgradi-
ent method. We have found that our algorithm converges
within around 60 iterations, while the subgradient method
does not converge even after 200 iterations. Our distributed
ADMM algorithm is thus better suited to large-scale con-
vex optimization problems. More details can be found in
Sec. 6.3 in the technical report [39].

7. CONCLUSION
We propose temperature aware workload management, which

explores two key aspects of geo-distributed datacenters that
have not been well understood in the past. First, as we show
empirically, energy efficiency of cooling systems, especially
outside air cooling, varies widely with outside temperature.
The geographical diversity of temperature is utilized to re-
duce cooling energy consumption. Second, the elastic na-
ture of batch workloads is further capitalized by dynamically
adjusting capacity allocation along with the widely studied
request routing for interactive workloads. We formulate the
joint optimization under a general framework with an empir-
ical cooling efficiency model. To solve large-scale problems
for production systems, we rely on the ADMM algorithm.
We provide a new convergence proof for a generalized m-
block ADMM algorithm. We further develop a novel dis-
tributed ADMM algorithm for our problem. Extensive sim-
ulations highlight that temperature aware workload manage-
ment saves 15%–20% cooling energy and 5%–20% overall
energy cost and the distributed ADMM algorithm is prac-
tical to solve large-scale workload management problems
with only tens of iterations.
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