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ABSTRACT
We present a study of pricing cloud resources in this posi-
tion paper. Our objective is to explore and understand the
interplay between economics and systems designs proposed
by recent research. We develop a general model that cap-
tures the resource needs of various applications and usage
pricing of cloud computing. We show that a uniform price
does not suffer any revenue loss compared to first-order price
discrimination. We then consider alternative strategies that
a provider can use to improve revenue, including resource
throttling and performance guarantees, enabled by recent
technical developments. We prove that throttling achieves
the maximum revenue at the expense of tenant surplus,
while providing performance guarantees with an extra fee
is a fairer solution for both parties. We further extend the
model to incorporate the cost aspect of the problem, and
the possibility of right-sizing capacity. We reveal another
interesting insight that in some cases, instead of focusing on
right-sizing, the provider should work on the demand and
revenue side of the equation, and pricing is a more feasible
and simpler solution. Our claims are evaluated through ex-
tensive trace-driven simulations with real-world workloads.

Keywords
Cloud computing, economics, pricing, throttling, performance
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1. INTRODUCTION
The abundant resources and flexible charging scheme of

IaaS (Infrastructure as a Service) clouds have enabled the
scalable and cost efficient deployment of numerous online
services, such as storage backup (Dropbox), content delivery
(Netflix), and application hosting (Yelp and Foursquare).
In the cloud context, pricing is an important factor to the
economics of the provider. On a related thread, many new
systems designs have been proposed recently to improve the
efficiency of operating a cloud [5, 8, 13,18,27].

The objective of this position paper is to understand the
economical impact of current Industry practices and the eco-
nomical potential of several new systems designs for the
cloud, through a preliminary exploration of pricing. We
study pricing of cloud resources for a monopoly provider
operating an IaaS cloud with a fixed capacity. Pricing can
be determined by a social welfare maximization problem in a
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competitive market with multiple providers, or by a provider
revenue maximization problem in a monopoly market. This
paper explores the latter and represents a starting point and
a benchmark to studying the effect of pricing on resource and
revenue management of an IaaS cloud.

We develop a microeconomic model similar to those used
in congestion pricing for bandwidth allocation [7, 14, 17, 25]
as the basis of our study in Sec. 2. We use canonical utility
functions with varying utility levels to capture the resource
needs of different applications for tenants. Usage pricing is
adopted to model the predominant pay-as-you-go charging
model for the provider. This is different from existing pa-
pers on bandwidth pricing that involve congestion external-
ity in the utility functions and flat fee in the pricing model.
Our model allows analyses to be tractable under a unified
framework. As a preliminary study, many aspects of cloud
resources and pricing are not captured in this model for
tractability concerns, such as multi-resource requirements of
applications [9, 10, 16], time-varying utility levels to model
time-varying demand, and complicated utility functions to
model the competition of multiple providers. We believe our
model is general to consider these extensions in future work.

Our analyses reveal interesting insights to better under-
stand common practices in the industry and assess the eco-
nomic potential of some research directions in our commu-
nity (Sec. 3). In the basic setting, we show that, a uniform
usage price surprisingly does not suffer any revenue loss com-
pared to first-order price discrimination, i.e. charging dif-
ferent tenants different prices. The provider can then safely
restrict herself to developing a single usage price, which is
the prevalent market practice today.

We then consider alternative strategies a provider can use
to improve revenue, given that first-order price discrimina-
tion does not help. Since the cloud resources are of a best-
effort nature, and the exact performance of a virtual ma-
chine is not explicitly specified, we consider resource throt-
tling and its impact on pricing, which can be diligently ex-
ploited by the provider without much penalty today. We
prove that throttling with pricing can achieve the optimal
revenue as the tenant surplus is completely extracted. The
provider thus has a significant financial incentive to throttle
the resources of tenants. This result also provides a new
perspective in explaining the severe performance degrada-
tion and variation of demanding applications in the cloud
as widely reported in measurement studies [15,22,24,31].

Continuing along the same line of thinking, the second
strategy the provider can use to improve her revenue is to
offer performance guarantees, a recent hot topic in the re-



search community [5,13,27]. We consider the revenue max-
imization problem where tenants are charged a premium in
addition to the usage price for guaranteed resource alloca-
tion. We find that, tenants are able to retain positive sur-
plus and do not suffer from performance degradation, and
the provider can earn extra revenue compared to the basic
setting. The recent efforts on providing guaranteed cloud
resources [5, 13, 27] therefore have a much wider impact on
the revenue and fairness issues of the cloud ecosystem, and
need to be thoroughly explored.

We extend our framework to consider the operating cost
of a cloud, and the possibility of right-sizing the capacity
according to demand given recent developments [8, 18] in
Sec. 4. Pricing is then determined by a profit maximization
problem. We find that the optimal pricing has a threshold
structure, and when the unit cost is small, prices should be
set so that the capacity is fully utilized. This result implies
that, though right-sizing helps save costs, in some cases, the
provider should work on the demand and revenue side of
the equation, and pricing proves to be beneficial and simple
to implement for the efficient operation of the cloud. We
use real-world workload traces to empirically evaluate the
analyses in Sec. 5. We use three sets of traces from Google
[11], the RIKEN Integrated Cluster of Clusters (RICC) in
Japan [29], and the Intrepid cluster at Argonne National
Laboratory (ANL) [28]. Each trace consists of at least tens
of thousands of jobs run on thousands of nodes.

Finally, we would like to comment that, in cloud comput-
ing, pricing induces an intriguing interplay between systems
and economics. This important angle should be explored
by researchers, and we intend to touch upon several dimen-
sions of such interplay and to provoke a broader discussion
in this work as a first step. Our model and analyses are by
no means complete. We do wish, however, that the issues
brought up by our analyses, including resource throttling,
performance guarantees, and capacity right-sizing, as well
as others that we do not address, such as resource over-
provisioning, encourage more thorough investigations espe-
cially from an economics perspective.

2. MODEL
In this section, we present our theoretical model for study-

ing pricing in cloud computing.
The monopoly cloud we consider sells computational re-

sources in the form of virtual machines at a price p. It adopts
a pay-as-you-go charging model: A tenant that requires x
virtual machines incurs a cost of px per unit time. We treat
x as a real number instead of an integer for mathematical
convenience. We consider a continuum of tenants. Each
tenant attaches a certain utility function for its application
running in the cloud. Similar to existing work on congestion
pricing of bandwidth [7,14,17,25], we assume that the shape
of the utility function is the same for all tenants, while the
utility level varies across tenants. The varying utility level
corresponds to the tenant’s varying valuation for the appli-
cation. Thus a tenant’s utility function can be written as

vU(x), (1)

where v denotes the utility level. Tenants with a utility level
of v are called type-v tenants. In reality the cloud provider
does not know the utility levels of individual tenants. Thus
we assume a probabilistic model of utility levels, governed
by the density function f(v) defined over a range of [v0, v1].

A rational tenant determines her demand for resources
by solving an optimization that maximizes the difference
between its utility and cost:

max
x

vU(x)− px. (2)

Usually we adopt the canonical alpha-fair utility function
[14,20] to model applications’ need for resources:

U(x) = (1− α)−1x1−α, α ∈ (0, 1). (3)

With alpha-fair utility function, a tenant’s demand function
can be derived through the first-order condition of (2):

Dv(p) =

(
v

p

)1/α

. (4)

This is the classical iso-elastic demand function widely used
in economics [14,19,30]. The elasticity of demand is a stan-
dard measure of demand sensitivity to price changes and is
defined as −dDv·p

dp·Dv [19]. For iso-elastic demand functions,

elasticity equals 1/α, which is independent of utility level v
and price p, and inversely proportional to α.

Finally, substituting the demand function into (2), a type-
v tenant’s surplus gained by using the cloud at price p, i.e.
its optimal utility minus cost, is simply

Sv(p) = vU(Dv(p))− pDv(p) =
αp

1− α

(
v

p

)1/α

. (5)

3. PRICING FOR REVENUE MAXIMIZA-
TION

In this section and Sec. 4, we present our pricing frame-
work and analyses for cloud computing. We start by as-
suming that the operating costs are constant and pricing is
determined from a revenue maximizing perspective. This is
valid because the common practice is to leave all the servers
of the cloud on and running all the time. We extend to
consider the possibility of right-sizing the cloud capacity in
Sec. 4, where pricing is then determined from a profit max-
imizing perspective.

3.1 Basic Setting with Uniform Usage Pricing
In practice, for reasons of simplicity and feasibility, the

cloud provider usually adopts a uniform usage price for all
tenants. She then needs to set an optimal price to maximize
her revenue. The revenue obtained from a type-v tenant can
be expressed as

Rv(p) = p ·Dv(p) = v1/αp1−1/α. (6)

The revenue maximization problem with uniform pricing can
then be defined as

Basic OPT: max

∫ v1

v0

Rv(p)f(v)dv (7)

s.t.

∫ v1

v0

Dv(p)f(v)dv ≤ C, (8)

Sv(p) ≥ 0,∀v, (9)

over p. (10)

(8) corresponds to the resource capacity constraint, and C
denotes the capacity. Since we consider a continuum of ten-
ants, capacity here should be understood as capacity per



tenant. (9) is the individual rationality constraint that en-
sures tenants obtain non-negative surplus by utilizing the
cloud resources.

However in theory, assuming the provider has complete in-
formation about tenant utility, charging a user-specific price,
i.e. first-order price discrimination [19], can potentially im-
prove revenue by extracting more surplus from higher valu-
ing tenants. Though such a practice is deemed unfair by
regulatory bodies [34], and almost infeasible to implement,
it is important to characterize the potential revenue losses
of uniform pricing as a starting point of pricing analyses.

With first-order price discrimination, a tenant is charged
with a price pv depending on her utility level v, and the
revenue maximization problem is

PD OPT: max

∫ v1

v0

Rv(pv)f(v)dv

s.t.

∫ v1

v0

Dv(pv)f(v)dv ≤ C,

Sv(pv) ≥ 0, ∀v,
over {pv}.

The provider has a set of prices {pv} to optimize instead of
a single price p as in Basic OPT.

We prove that, surprisingly, uniform pricing is not inferior
to price discrimination in our model.

Theorem 1. The revenue maximization problem with first-
order price discrimination PD OPT leads to the same solu-
tion as Basic OPT with uniform pricing. The optimal pric-
ing that maximizes the revenue in Basic OPT and PD OPT
is given by the following:

p∗ =

(
B

C

)α
= p∗v,∀v,

R∗ = BαC1−α,

S∗ =
α

1− αB
αC1−α,

where the constant B is defined below, and R∗ and S∗ denote
the optimal revenue and surplus, respectively.

B =

∫ v1

v0

v1/αf(v)dv. (11)

The proof is in Appendix A. Essentially, we show that the
usage price depends on the utility level distribution and the
elasticity parameter α, which are uniform across all tenants.
Thus in cloud computing with usage pricing, the compli-
cated first-order price discrimination does not offer an ad-
vantage, and a provider can safely restrict herself to using
the simple uniform pricing.

Note that our result is in contrast to some existing stud-
ies that report significant revenue loss of uniform pricing
[7, 14, 17]. The discrepancy comes from the specific model
used. These works consider bandwidth pricing, where pric-
ing strategies such as flat fees and utility functions with
congestion externality are important. These factors do not
properly model an IaaS cloud: Usage pricing is arguably the
exclusive form of pricing used in practice, and congestion on
CPU and memory resources in a cloud is local (per server)
and does not have a network effect. Our result holds when
the model considers the specifics of a cloud that involves
only usage pricing and alpha-fair utility functions without
congestion externality.

Examined more closely, Theorem 1 embraces some natu-
ral economical interpretations. First, price decreases when
the cloud expands its capacity in order to attract more de-
mand. When tenants are more sensitive to price, i.e. when
α is smaller as discussed in Sec. 2, the price reduction is
correspondingly smaller. Second, the optimal revenue in-
creases with capacity sublinearly at O(C1−α). This result
helps the cloud provider to make the optimal capacity plan-
ning decision given that the provisioning and operating cost
is typically a convex or linear function of capacity [6, 18].
More discussions on this is deferred to Sec. 4. Third, ten-
ants obtain a positive surplus by using the cloud, which also
grows sublinearly with capacity.

Observe that the tenant surplus Sv(p) in (5) is always
non-zero for all prices, from the provider’s perspective this
implies that the basic usage pricing is not efficient enough to
extract all possible revenues. Since we have shown that first-
order price discrimination does not help, in the following
sections we consider other unique aspects of cloud comput-
ing that can help the provider improve her revenue together
with intelligent pricing.

3.2 Pricing with Resource Throttling
Most cloud providers today do not have a comprehen-

sive Service Level Aggrement (SLA) guaranteeing the per-
formance and reliability of the service. Thus, although the
hardware configuration is explicit, the exact performance
of a virtual machine, such as its I/O speed, network band-
width, is not specified. For example Amazon EC2 abstracts
the CPU resource in terms of “EC2 compute unit,” with
one compute unit equivalent to a 1.0–1.2 GHz 2007 Xeon
processor [1]. The I/O performance is also vaguely defined
as “high,” “moderate,” and “low” without clear explana-
tions [32].

The best-effort nature of the current cloud offering leaves
enough room for the provider to diligently throttle the re-
sources of their virtual machines without being penalized.
Technically, CPU and I/O throttling can be done by adjust-
ing the scheduling weight of a virtual machine and limiting
the maximum amount of resources it can consume through
the hypervisor [2]. The provider can also vary the degree
of throttling over time to mask the effect. Intuitively throt-
tling slows down applications and forces tenants to buy more
resources. Indeed, many measurement studies report se-
vere computational performance degradation and variation
of public clouds for HPC applications [15, 22, 24, 31]. This
motivates us to investigate the potential impact of throttling
on revenue and pricing.

We observe that tenants understand they are using a best-
effort service, and tolerate performance degradation and
variation. Also it is difficult to measure the exact degree
of throttling due to performance variation. Thus the tenant
demand function does not change with performance throt-
tling. Throttling can be modeled by the provider offering
a fraction β ∈ (0, 1) of the required resources to tenants,
where β denotes the slowdown factor. Effectively, a ten-
ant only obtains βDv(p) resources, and her surplus function
becomes

Sv(p, β) = vU(βDv(p))− pDv(p) = p

(
v

p

)1/α(
β1−α

1− α − 1

)
(12)

When no throttling is used, i.e. β = 1, the above reduces
to the surplus function in the basic setting (5). Thus the



revenue maximization problem with throttling can be for-
mulated as

Throttling OPT: max

∫ v1

v0

Rv(p)f(v)dv (13)

s.t.

∫ v1

v0

βDv(p)f(v)dv ≤ C,

Sv(p, β) ≥ 0, ∀v,
over p, β.

Compared to Basic OPT, now the provider can adjust both
the slowdown factor β and the price to optimize revenue.

Observe from (12) that when the surplus is positive, we
can always decrease the slowdown factor β to increase the
effective capacity of the cloud. Price will be reduced with
capacity expansion, and revenue can be improved as Rv(p)
is decreasing in p. Therefore the maximum must be achieved
when the individual rationality constraint is satisfied at equal-
ity, and we can prove the following:

Theorem 2. The optimal pricing that maximizes the rev-
enue in Throttling OPT is given by the following:

β∗ = (1− α)1/1−α < 1,

p∗t = (1− α)α/1−α
(
B

C

)α
,

R∗
t =

BαC1−α

1− α ,

S∗
t = 0,

and compared with the basic results in Theorem 1, the price
reduction and revenue improvement are:

p∗t
p∗

= (1− α)α/1−α,

R∗
t

R∗ =
1

1− α.

Thus, the use of throttling actually enables the provider
to achieve the maximum revenue theoretically possible, be-
cause all of the tenant surplus is extracted. Price can be
reduced by a factor of (β∗)−α to encourage more demand to
utilize the additional capacity saved by throttling. Revenue
can be increased by a factor of 1/1−α, and the total surplus
is drained to zero. The advantages of throttling comes from
the concavity of the utility functions, i.e. α > 0. Concavity
is in general satisfied in practice because the marginal utility
gain of receiving more resources is diminishing for tenants.
Thus, in general, the cloud provider has a strong financial
incentive to exploit the best-effort nature of cloud offering
and throttle the performance of virtual machines in order to
increase her own revenue, at the expense of tenants.

Notice that throttling is not easy to achieve for ISPs sell-
ing Internet bandwidth, which also has a best-effort nature.
There is only one kind of resources involved with explicit
specification (maximum downlink/uplink speed), and the
amount of bandwidth can be easily measured. The mature
market with numerous ISPs also imposes significant penalty
of using throttling. The cloud market does not possess these
qualities.

3.3 Pricing with Performance Guarantees
A best-effort cloud makes tenants vulnerable to exploita-

tion of the provider as we have already seen. Moreover, some

tenants may run mission-critical jobs and require strict per-
formance guarantees, and important applications such as
distributed large-scale Mapreduce and Hadoop jobs do not
perform well with best-effort resources. As a result, recently
a large amount of efforts have been made to technically en-
able a cloud to provide guaranteed services [5, 13,27].

Unlike throttling that gives the provider an unfair advan-
tage to exploit tenants, performance guarantees can be mu-
tually beneficial. On one hand tenants enjoy consistent and
predictable performance. On the other hand the provider
can also earn extra revenue by charging a premium for the
guaranteed service. Here we study this new pricing problem
to understand the exact tradeoff achieved between tenant
surplus and provider revenue.

In this case, the provider explicitly guarantees the re-
sources allocated to a tenant (i.e., no throttling) at all times,
and charges an additional usage independent premium q for
the SLA. The automation of monitoring and technical sup-
port largely explains the resource independent nature of the
SLA charge. Thus the demand function does not change
with the SLA charge q. The surplus function has an addi-
tional component of −q:

Sv(p, q) = vU(Dv(p))− pDv(p)− q =
αp

1− α

(
v

p

)1/α

− q,

(14)
and the revenue function becomes

Rv(p, q) = p ·Dv(p) + q = v1/αp1−1/α + q. (15)

The revenue maximization problem with the SLA charge
can be formulated:

SLA OPT: max

∫ v1

v0

Rv(p, q)f(v)dv (16)

s.t.

∫ v1

v0

Dv(p)f(v)dv ≤ C,

Sv(p, q) ≥ 0, ∀v,
over p, q.

Now the provider can adjust both the SLA charge q and the
usage price p to maximize revenue.

Theorem 3. The optimal pricing that maximizes the rev-
enue in SLA OPT is given by the following:

q∗ =
αv

1/α
0

1− α

(
B

C

)α−1

,

p∗s =

(
B

C

)α
= p∗,

R∗
s = BαC1−α

(
1 +

αv
1/α
0

(1− α)B

)
,

S∗
s =

α

1− αB
αC1−α

(
1− v

1/α
0

B

)
,

and compared with the basic results in Theorem 1, the rev-
enue improvement and surplus reduction are:

R∗
s

R∗ = 1 +
αv

1/α
0

(1− α)B
,

S∗
s

S∗ = 1− v
1/α
0

B
.



Moreover, we can show the following:

Lemma 1. R∗
s < R∗

t , S
∗
s > S∗

t . The optimal revenue
with a SLA charge is less than that with throttling, while the
optimal surplus is more than that with throttling.

The proofs can be found in Appendix B. Thus, the ten-
ants are better off using the guaranteed service with an extra
charge, because throttling will drain the surplus to zero for
the best-effort service. The provider cannot improve her
revenue as much as she could with throttling. The rev-
enue improvement depends on the spread of utility levels

as capture by the term v
1/α
0 B. If the probability mass is

concentrated around the lowest utility levels v0, the rev-
enue improvement ratio is large. If the probability is spread

out across a large range of values, v
1/α
0 B becomes a small

number, and the revenue improvement ratio is also small.
However, with the scale of a cloud, even a small percentage
of revenue improvement translates to significant monetary
returns as we shall demonstrate in Sec. 5.4. Overall, offer-
ing performance guarantees with an extra charge is a more
viable and fairer solution for both parties.

The reason for the performance discrepancy is that throt-
tling, with the slowdown factor β, has a multiplicative effect
on tenant utility, independent of the utility level v, and by
optimizing β the provider can extract all the tenant sur-
plus. The optimization (13) is solved when Sv(p, β) = 0
for all utility levels v. The SLA charge q only has an ad-
ditive effect on tenant utility, which also depends on the
utility level. A uniform SLA charge helps reduce the ten-
ant surplus and improve revenue, but not to the extent that
tenants have zero surplus. The optimization (16) is solved
when Sv(p, q) = 0 for only tenants with the lowest utility
level v0.

4. PRICING FOR PROFIT MAXIMIZATION:
OPERATING COST AND CAPACITY RIGHT-
SIZING

So far we have considered the scenario when the cloud
capacity is pre-determined and always available, and opti-
mized pricing for revenue maximization. While this corre-
sponds to the current industry practice that always leaves
servers on [12], a large body of work has been devoted to
right-sizing the capacity of the cloud, i.e., turning down
abundant servers (c.f. [8, 18] and references therein) and
switches [26]. In this section, we extend our model to con-
sider right-sizing and the cost aspect of running the cloud,
and study its effect on the pricing decision.

With right-sizing, the capacity can be tuned by the provider
(up to C) according to the demand. The operating costs of
the cloud then can be modeled as a convex function of the
demand. The convexity assumption is general and captures
many common server models. One example is to say that
the energy cost of servers and switches constitutes a major-
ity of the operating costs [12], which is often modeled using
an affine function [6, 18]:

E(x) = e0 + e1x. (17)

x is the total demand. e0 models the fixed energy costs
independent of workload, and e1 is the variable energy cost
per unit of resources. In practice, we expect that c(·) will
be empirically measured by observing the system over time.

Substitute x = Dv(p) into E(x), we obtain the cost func-
tion with respect to p for a type-v tenant:

Ev(p) = e0 + e1v
1/αp−1/α (18)

Cost OPT: max

∫ v1

v0

(Rv(p)− Ev(p))f(v)dv (19)

s.t.

∫ v1

v0

Dv(p)f(v)dv ≤ C,

Sv(p) ≥ 0, ∀v,
over p.

The optimal pricing can be derived from the KKT conditions
shown in Appendix C:

Theorem 4. The optimal pricing that maximizes the profit
in Cost OPT is given by the following.

When e1 > (1− α)BαC−α,

p∗c =
e1

1− α,

D∗ = B

(
e1

1− α

)−1/α

< C,

P ∗ = αB

(
e1

1− α

)1−1/α

− e0,

when e1 ≤ (1− α)BαC−α,

p∗c =

(
B

C

)α
= p∗,

D∗ = C,

P ∗ = BαC1−α − e1C − e0,

where D∗ denotes the optimal demand at price p∗c , and P ∗

is the maximum profit.

The implications of Theorem 4 are interesting and very
important. The benefit of right-sizing, given that the price is
set optimally, critically depends on the unit cost of running
the cloud. When the unit cost e1 is high, the provider should
set the price so that the demand is smaller than capacity,
and use right-sizing to maximize profit. If the unit cost is
low, the price should be set so demand equals capacity. In
this case the provider is better off leaving all the servers on,
and adjusting the price to maximize capacity utilization and
revenue.

We do not imply that the literature on right-sizing data-
centers is ill-directed. Note that we consider the static case
here, while for the dynamic case where demand changes over
time, right-sizing surely helps the provider saving unneces-
sary costs. Nevertheless, our result still offers valuable in-
sights in this case. In fact the insights of Theorem 4 can be
better understood in the dynamic setting. Demand dynam-
ics can be interpreted as a result of time-varying utility level
v. During demand valley periods, v is low and B is small.
When the unit cost is high, pricing does not help since the
optimal price p∗c does not change with v. Right-sizing should
be adopted to maximize profit, and the end result is that the
total demand and profit are lower.

However, when the unit cost is low, Theorem 4 says the
optimal price p∗c depends on B and v and is lower when v
is smaller. In this scenario, the provider should work on the
revenue side of the problem and lower the price at valley
periods to use up her capacity and maximize profit, instead



Trace Nodes Jobs Duration Ave. & Max. CPU per job
Google ≈ 11K 1 million+ 29 days 53.7947, 800
RICC 1024 447794 5 months 6.4714, 2048
ANL 40960 68936 5 months 41.8673, 7950

Table 1: Statistics of three traces used.

50 100 200 300 400 500
0.02

0.04

0.06

0.08

0.1

Capacity

Pr
ic

e 
($

U
SD

)

 

 
Google
RICC
ANL

Figure 1: Optimal price p∗ of Ba-
sic OPT.
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Figure 3: Optimal surplus S∗ of Ba-
sic OPT.

of working on the cost side and using right-sizing. This key
message is resonant with the conclusion of [12] to leave all
servers on and improve their utilization for a better profit.
Pricing is more beneficial and easier to implement for the
efficient operation of a cloud in this case, given the wear-and-
tear costs of right-sizing and the technical difficulty involved
[18].

Our discussion above also leads to dynamic pricing where
prices may be adjusted over time when the tenant utility
level changes. This serves as an interesting direction of our
future work, and is beyond the scope of this paper. Also
note that pricing with resource throttling and performance
guarantees studied in Sec. 3 can be similarly analyzed in this
profit maximization framework, which we omit due to space
constraints.

5. EVALUATION
We present our evaluation results in this section.

5.1 Setup
One significant hurdle of conducting pricing and other

studies in cloud computing is the lack of empirical data from
real-world providers. We resolve this issue here by relying
on empirical traces of workloads from large-scale computer
clusters. Specifically, we use three traces from Google [11],
RIKEN Integrated Cluster of Clusters (RICC) in Japan [29],
and the Intrepid cluster at Argonne National Laboratory
(ANL) [28]. The Google cluster mainly runs production jobs
while the RICC and ANL clusters run scientific and engi-
neering computing jobs. The statistics of the three traces
are presented in Table 1. Though these traces are from pri-
vate clusters instead of a production cloud, we believe the
nature and scale of the workloads faithfully reflect those of
applications running in a cloud, and the first-order estima-
tion of cloud workloads is appropriate here.

The workload traces are used to calculate the empirical
distribution of the utility level f(v). The procedure is as
follows. We process the traces to obtain the amount of

resources (number of CPU cores) each job requires1. As-
suming the workloads run in a cloud, and one CPU core
is equivalent to one small linux instance in Amazon EC2
and Microsoft Azure, we then have the demand information
Dv(p) at the market price of $0.08/hour for a small linux in-
stance in June 2012. Given the heated competition between
public clouds, the elasticity parameter is set to 1/α = 3, i.e.
α = 0.33 to model the price sensitive nature of cloud re-
sources. From (4), we can readily calculate the utility level
v for individual jobs, and obtain the distributions of util-
ity levels f(v) from all three traces. For example, Figure 7
shows the utility level distribution from the Google trace.
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Figure 7: Utility level distribution f(v) from the
Google trace.

Most public clouds bill on an hourly basis. Thus in our
evaluation the time unit is one hour, which is consistent
with the procedure above using the market hourly price. All
the metrics such as price and revenue shall be interpreted
on a per hour per tenant basis in the following figures and
paragraphs.

5.2 Baseline
1Since Google normalizes the trace, we scale the values by
assuming the smallest CPU requested is equal to 1 core.
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We first solve the Basic OPT with the three traces to
evaluate the performance of usage pricing as the baseline
of other pricing schemes. We vary the capacity per tenant
C from 50 to 500. Figure 1 shows the optimal usage price
p∗. The price ranges from $0.1 to $0.017, and is slowly
decreasing with capacity. Figure 2 and 3 show the optimal
revenue R∗ and surplus and S∗, respectively. The sublinear
growth rate is clearly demonstrated as proved in Theorem 1.
Note that the optimal price, revenue and surplus obtained
from the ANL trace is significantly larger than other two
traces, because the ANL jobs are much larger due to their
scientific computing nature.

We wish to point out the significant revenue potential of
cloud computing. At an average capacity of 100 virtual ma-
chines for a tenant, the revenue is around $5 per hour per
tenant. If the cloud had 1000 tenants, the total revenue
will be $5000 per hour, or $0.12 million per day. Though
these numbers are only rough estimates and our model re-
mains theoretical, the revenue potential partly explains the
burgeoning of public cloud offerings today [3].

5.3 Throttling
We evaluate the pricing and revenue impact of throttling

now. Based on Theorem 2, the slowdown factor β∗ and per-
formance improvements depend only on the elasticity pa-
rameters. Thus we plot the numerical values in Figure 4
with varying α. Be reminded that results of other sections
are obtained when α is set to 0.33 as explained in Sec. 5.1.

Observe that β∗ decreases with inverse elasticity α. When
α = 0.33, β∗ = 0.5501, suggesting that the provider will
throttle the VMs so tenants only obtain 55% of the achiev-
able performance. The result may sound surprising. How-
ever, measurements report that the sustained computational
performance of EC2 suffers more than 50% degradation com-
pared to equivalent hardware [15, 31]. On the other hand,
as the price elasticity of cloud resources becomes smaller (α
becomes larger), more severe throttling is required to obtain
the maximum revenue, which may not be feasible to imple-
ment in reality. In this case, the provider needs to consider
the negative impact of throttling on demand in order to de-
termine the optimal strategy.

The usage price reduction
p∗t
p∗ ranges from around 1 to

around 0.2. The inverse of revenue improvement R∗
R∗
t

ranges

from 0.8 to 0.4, meaning that the revenue improvement is

Trace R∗
s/R

∗ R∗ when C = 100 revenue improv.
Google 1.0190 $5.1282 $2338.5
RICC 1.0278 $4.5205 $3016.1
ANL 1.0195 $7.9848 $3641.1

Table 2: Optimal daily revenue improvement of
SLA OPT with 1000 tenants and C = 100.

from 25% to 150%. Again we stress that the numbers only
serve as rough estimates. The key message is that throttling
is a viable and financially attractive strategy that providers
can use to improve revenue at the expense of tenants of a
best-effort cloud.

5.4 SLA Charge
Next we evaluate the performance of the SLA charge to-

gether with usage pricing. In Figure 5, we plot the optimal
SLA charge q∗ with the usage price p∗s , which is equal to
p∗ in the baseline case as shown in Theorem 3. For clarity
of presentation we only present the results from the RICC
trace. The SLA charge is increasing with capacity to ex-
tract the increasing tenant surplus, while the usage price
is decreasing to attract demand and maximize capacity uti-
lization. The resource usage independent SLA charge is also
larger than the usage price in general.

Figure 6 shows the revenue and surplus ratio
R∗
s

R∗ and
S∗
s
S∗

compared to the baseline. A quick observation is that both
depends heavily on the distribution of utility levels. When
the distribution is geared towards small values, the ratio

B/v
1/α
0 is small, and revenue improvement is significant.

When the distribution concentrates around large values, the
revenue improvement becomes marginal. Thus the revenue
impact of the SLA charge is not as significant as throttling.

However, recall that the revenue in dollar terms is quite
significant for a large-scale cloud. Thus even a single digit
percentage improvement amounts to sizable financial returns.
This point is illustrated in Table 5.4 that shows the abso-
lute value of revenue improvement by SLA charge for a cloud
with 1000 tenants and 100 virtual machines per tenant (i.e.
C = 100). A daily revenue improvement of thousands of
dollars can be expected.

5.5 Operating Cost
We finally evaluate the impact of the operating cost to
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the pricing problem. We solve the Cost OPT for the three
traces with the per unit cost e1 varying from $0.01 to $0.07.
The fixed cost e0 is set to $0.05, and the capacity is fixed at
100 here. Figure 8 and 9 show the optimal price p∗c and de-
mandD∗ against e1. Observe that the threshold structure as
proved in Theorem 4 is clearly demonstrated. When the unit
cost e1 is small, p∗c is set to maximize the capacity utiliza-
tion, and does not change with cost. D∗ is always equal to
the capacity 100. Again, since different traces have different
utility level distributions and thus different B, their optimal
p∗c is different. When the unit cost is high, prices should be
set according to the cost to maintain a profit margin, and
thus does not vary across traces. Demand then becomes less
than the capacity and depends on the trace-specific term B.
The overall effect as shown in Figure 10 is that the optimal
profit P ∗ decreases when cost increases, which is intuitive
to understand.

6. RELATED WORK
An extensive literature exists on pricing in communica-

tion networks and the Internet. The most related works
are [7, 14, 17, 25]. [7, 17, 25] study the benefits of first-order
price differentiation. Hande et al. [14] characterize the eco-
nomic loss due to the ISP’s inability or unwillingness to price
broadband access based on time of day. The similarities
and differences between these work and ours are discussed
in Sec. 3.1. Other related works on bandwidth pricing in-
clude [30] that studies second-order price discrimination, i.e.
tiered pricing based on usage volume and traffic destina-
tions, to achieve service differentiation and congestion con-
trol. Tiered pricing based on volume is an interesting future
direction to extend our general framework to.

There have been some recent studies on pricing of cloud
resources. [33] argues for the importance of pricing in cloud
computing for distributed systems design. From a user’s
perspective, [23] envisions a flat fee scheme for clouds and
solves the optimal resource auto-scaling problem. From a
provider’s perspective, [4] studies the revenue impact of fixed
and spot pricing in cloud computing, and [21] studies a pric-
ing strategy specifically designed for bandwidth resources of
a cloud based VoD system. Our work does not focus on
designing a better pricing scheme. Instead, through pricing
analyses, it tries to explore the economical impact of several
unique systems aspects of the cloud, including best-effort
nature, performance guarantees, and capacity right-sizing,
which have not been discussed before.

7. CONCLUDING REMARKS
In this paper, we presented a systematic pricing study for

cloud resources. We developed a preliminary framework to
model the essential aspects of cloud computing. We then
conducted pricing analyses on several unique issues of cloud
systems, including resource throttling, performance guaran-
tees, and capacity right-sizing. The results revealed inter-
esting insights to better understand some common industry
practices and research directions pertaining to the cloud.
As future work, we plan to extend our framework to con-
sider the pricing problem with resource over-provisioning
and multiple resources.
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APPENDIX
A. PROOF OF THEOREM 1

To solve PD OPT, first note that Sv(p) > 0 for all v and
p, and can be ignored. Since it is a convex optimization
problem, by using Langrange multiplier technique, we can
get the first-order necessary and sufficient condition with
respect to pv:

f(v)
(
v1/α(1− 1/α)p−1/α

v + λv1/α(1/α)p−1/α−1
v

)
= 0

⇒ pv =
λ

1− α.

λ is the Lagrange multiplier corresponding to the capacity
constraint. We observe that pv does not depend on the
utility level of individual tenant v, and thus the optimal pv
is uniform across all tenants. PD OPT and Basic OPT lead
to the same solution, and it suffices to consider Basic OPT
with uniform pricing.

To solve λ, note that the capacity constraint must hold
with equality, since the revenue function Rv(p) is strictly
decreasing with p. Thus plugging p = λ/(1−α) into (8), we
can obtain the optimal λ∗:∫ v1

v0

(
v(1− α)

λ∗

)1/α

f(v)dv = C

The optimal price p∗ then follows, and Theorem 1 is imme-
diate.

B. PROOF OF THEOREM 3 AND LEMMA 1
Notice from (15) that revenue increases with q. Thus for

the individual rationality constraint to hold for all tenants,

Sv0(p∗s , q
∗) = 0, i.e. q∗ =

αv
1/α
0

1−α p1−1/α. Substitute into (15),

we can see revenue increases when p∗s decreases. Thus the
optimal price can be found when the capacity constraint in
SLA OPT is satisfied at equality. This argument is essen-
tially the same as the Lagrange multiplier argument above.
The optimal surplus S∗

s and revenue R∗
s can then be readily

derived from (14) and (15), respectively.
S∗
s > S∗

t = 0 is obvious. To show R∗
s < R∗

t , from Theo-
rem 3 and 2,

R∗
s

R∗ = 1 +
αv

1/α
0

(1− α)B
< 1 +

α

1− α =
R∗
t

R∗

for B =
∫ v1
v0
v1/αf(v)dv > v

1/α
0 .
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C. PROOF OF THEOREM 4
Using the Lagrange multiplier technique, the KKT condi-

tions of Cost OPT can be written as:

α− 1 +
e1 + λ

p∗
= 0,

λ(C −B(p∗)−1/α) = 0,

C −B(p∗)−1/α ≥ 0.

λ ≥ 0 is the Lagrange multiplier to the capacity constraint.
Directly setting the first-order derivative of the profitRv(p)−

Ev(p) to zero we otain

pc =
e1

1− α.

At pc, the total demand Dc equals B( e1
1−α )−1/α. If Dc <

C, i.e. e1 > (1 − α)BαC−α, pc constitutes a solution that
satisfies all the KKT conditions with λ = 0.

If Dc ≥ C, i.e. e1 ≤ (1 − α)BαC−α, pc is not a feasible
solution. Thus the optimal price must be larger than pc.
The profit function Rv(p)− Ev(p) can be shown to be con-
cave in p, and thus decreases with p in the interval [pc,+∞).
Therefore, p∗ = BαC−α, i.e. the optimal price is the small-
est feasible price at which demand equals capacity.


	Introduction
	Model
	Pricing for Revenue Maximization
	Basic Setting with Uniform Usage Pricing
	Pricing with Resource Throttling
	Pricing with Performance Guarantees

	Pricing for Profit Maximization: Operating Cost and Capacity Right-sizing
	Evaluation
	Setup
	Baseline
	Throttling
	SLA Charge
	Operating Cost

	Related Work
	Concluding Remarks
	References
	Proof of Theorem 1
	Proof of Theorem 3 and Lemma 1
	Proof of Theorem 4

