
Joint Request Mapping and Response Routing
for Geo-distributed Cloud Services

Hong Xu, Baochun Li
henryxu, bli@eecg.toronto.edu

Department of Electrical and Computer Engineering
University of Toronto

Abstract—Many cloud services are running on geographically
distributed datacenters for better reliability and performance.
We consider the emerging problem of joint request mapping
and response routing with distributed datacenters in this paper.
We formulate the problem as a general workload management
optimization. A utility function is used to capture various per-
formance goals, and the location diversity of electricity and
bandwidth costs are realistically modeled. To solve the large-scale
optimization, we develop a distributed algorithm based on the
alternating direction method of multipliers (ADMM). Following a
decomposition-coordination approach, our algorithm allows for a
parallel implementation in a datacenter where each server solves
a small sub-problem. The solutions are coordinated to find an
optimal solution to the global problem. Our algorithm converges
to near optimum within tens of iterations, and is insensitive to step
sizes. We empirically evaluate our algorithm based on real-world
workload traces and latency measurements, and demonstrate its
effectiveness compared to conventional methods.

I. INTRODUCTION

Cloud services have already become an essential part of our
life. Notable examples include online search (Google), video
streaming (Netflix), social networking (Facebook), etc. Many
cloud services are deployed on a geographically distributed
infrastructure, i.e. datacenters located in different regions as
shown in Fig. 1, for better performance and reliability.

Two problems are of particular importance to the efficient
operation of cloud services running on geographically dis-
tributed datacenters. First, client requests across the wide area
must be directed to an appropriate datacenter, which constitutes
the request mapping problem. Second, a datacenter is usually
connected through multiple ISP links to the Internet, a practice
known as multi-homing [13]. When a request is processed, the
response packets must be sent back to the client through one of
the links available, which corresponds to the response routing
problem.

Today, request mapping and response routing are managed
independently, leading to poor performance and high costs
in many cases [17], [21]. For example, too many requests
may be directed to a datacenter whose upstream links then
become congested, resulting in long queueing delays and poor
performance. The objectives of the two decisions can also be
misaligned and lead to sub-optimal equilibria.

In light of the problems, we study the joint request map-
ping and response routing problem that has started to gain
attention recently [21] with distributed datacenters. Specifically,

we formulate the problem as a general workload management
optimization, where key performance and cost issues are realis-
tically modeled. We use a utility function of the average latency
[33] to capture various performance goals providers wish to
achieve for their services. We consider both the electricity and
bandwidth costs, which exhibit significant location and provider
diversity [26], [28] and together account for the majority of the
datacenter operational expense (OPEX) [14].

Requests

Mapping
nodes

Datacenters

Clients

Fig. 1. A cloud service running on a geographically distributed infrastructure.

The workload management problem is a convex optimiza-
tion, and can be solved in a centralized way. However, it is
inherently a very large-scale problem that makes a centralized
algorithm inefficient. In a production system, the problem
typically has millions of variables and hundreds of thousands of
constraints as we shall illustrate in Sec. II-D. A centralized al-
gorithm cannot take advantage of the abundant server resources
in a datacenter to parallelize the computation for such large-
scale problems. Though solving the optimization at a central
server periodically is possible, such a design also makes the
system less responsive to handle sudden changes in request
rates (i.e. flash crowds) or network conditions (i.e. link failures).
In these situations, a solution with fast computation and modest
accuracy is more desirable.

Thus, for reasons of performance, scalability, and robustness,
we are motivated to develop a distributed solution for the
workload management problem. Our algorithm is based on the
alternating direction method of multipliers (ADMM), a simple
yet powerful algorithm that recently has found practical use in
many large-scale distributed convex optimization problems [6].
ADMM works by first separating the objective and variables
into two parts, and then alternatively optimizing one set of
variables that accounts for one part of the objective to iteratively
reach the optimum. Merits of ADMM, compared to conven-

tional methods such as subgradient methods [5], are its fast
convergence to modest accuracy, insensitivity to step sizes, and
robustness without strong assumptions such as strict convexity
of the objective function [4], [6].

Our contributions are three-fold. First, we develop a general
formulation of the joint request mapping and response routing
problem for cloud services in Sec. II. We use utility functions
to capture various performance objectives, and consider the
location diversity of the associated electricity and bandwidth
costs. Our second contribution is a novel distributed algorithm
based on ADMM to solve the large-scale optimization problem
efficiently (Sec. III). We demonstrate that after a transformation,
the problem can be decomposed into many small sub-problems,
the solutions of which are coordinated to find the global optimal
solution, and can be efficiently solved in the general case. We
further provide solutions in analytical form for the case when
the utility function is affine, and discuss issues pertaining to a
parallel implementation of the algorithm in the cloud.

Our third contribution is an empirical evaluation of the algo-
rithm using the Wikipedia workload traces [27], as well as real-
world latency measurements [19] in Sec. IV. It is demonstrated
that our algorithm offers near-optimal performance within 20
iterations. Finally, we stress that the techniques developed in
the paper to transform the problem and apply ADMM are fairly
general, and may be applicable to problems in datacenters and
other domains, where an efficient parallel algorithm is required
to solve large-scale convex optimization problems.

II. A FRAMEWORK FOR JOINT MAPPING AND ROUTING

Let us start by presenting our model and optimization frame-
work.

A. Infrastructure

We consider a provider that runs her cloud service over a
set of datacenters N in distinct geographical regions. Each
datacenter n is multi-homed to a set of ISP links Mn, each
with a fixed capacity. Let I denote the set of clients, where in
this work a client i is simply a unique IP prefix similar to [24].

The provider deploys a number of mapping nodes as shown
in Fig. 1 to map client requests to an appropriate datacenter
based on certain criteria. This is the request mapping decision.
In practice, these mapping nodes can be authoritative DNS
servers as used by Akamai and most CDNs, or HTTP ingress
proxies as used by Google and Yahoo [24], [30]. We allow
a mapping node to arbitrarily split a client’s request traffic
among the set of datacenters. DNS servers and HTTP proxies
can achieve such flexibility in commercial products [17], [30].

When a datacenter finishes serving a request, it sends the
response packets back to the client through one of the available
ISP links. This corresponds to the response routing decision.
Today’s BGP routing picks a single egress ISP link for each
IP prefix. We relax this constraint and allow the provider
to arbitrarily split the response traffic among all ISP links,
which is commonly accepted in the literature [21], [23]. Such
fractional routing can be achieved by hash-based traffic splitting
in practice [8].

Without loss of generality, we view every possible combi-
nation of datacenter and ISP link as a virtual stub datacenter,
a concept we use to facilitate our analyses in the sequel. We
let j ∈ J ,J := N × {Mn} denote a stub datacenter, i.e. the
tuple 〈n,m〉, n ∈ N ,m ∈ Mn. Each stub datacenter then has
a finite capacity Cj determined by its corresponding ISP link’s
capacity. Here we implicitly assume that the link capacity is the
bottleneck of the service compared to the datacenter’s compu-
tational capability, which is generally the case in reality. The
request mapping and response routing decisions can then be
treated jointly as a single workload management optimization
between the clients and the stub datacenters.

The provider periodically, e.g. hourly or daily, computes the
workload management decisions to better cope with dynamic
request traffic under normal operations [12], [13], [26]. We use
αij ∈ [0, 1] to denote the proportion of requests distributed to
stub datacenter j from client i. αij is our decision variable.
We assume the provider employs statistical machine learning
techniques [23], [25] to predict the traffic demand of each client
Di before each optimization interval. Such an assumption is
commonly made in the literature [21], [30], [31].

B. Performance

Latency is arguably the most important performance metric
for most cloud services. A small increase in the user-perceived
latency can cause substantial revenue loss for the provider [16].
In this paper we focus on the end-to-end propagation latency
between users and datacenters, which largely accounts for the
user-perceived latency compared to other factors such as request
processing times at datacenters [11], [21].

The provider obtains the propagation latency Lij between
client i and stub datacenter j through active measurements
[19] or other means. A client’s performance depends on the
average propagation latency its requests receive

∑
j αijLij

through a generic utility function U . U can take various forms
depending on the performance goals the provider pursues. We
only require that U is a decreasing, differentiable, and concave
function. This utility notion allows us a considerable amount of
expressiveness. For example, it can incorporate fairness among
clients by using the canonical alpha-fair utility functions [20].

C. Costs

Two kinds of operating costs — electricity and bandwidth —
are involved in serving client requests, both of which scale with
the total volume of the workload. The electricity price exhibits
significant location diversity which has been exploited to save
costs for datacenters [18], [26], [31]. We use PEj to denote the
power price of the stub datacenter j, which is determined by the
location of the corresponding datacenter. The bandwidth price
varies across ISPs and also exhibits location diversity in practice
[28], and is denoted by PBj depending on the corresponding ISP
and location of the stub datacenter. In reality many ISPs adopt
the 95-percentile charging scheme. However we assume the
bandwidth cost is linear with the traffic volume. Optimizing a
linear cost in each interval can reduce the monthly 95-percentile
bill [32].

D. Problem Formulation

We are now in a position to formally formulate the workload
management problem as an optimization that maximizes the
total utility of serving the requests, minus the electricity and
bandwidth costs incurred.

min
α

∑
i∈I

∑
j∈J

Diαij
(
PEj + PBj

)
−
∑
i∈I

DiU
(∑
j∈J

αijLij

)
(1)

s.t.
∑
j∈J

αij = 1,∀i ∈ I, (2)∑
i∈I

αijDi ≤ Cj ,∀j ∈ J , (3)

αij ≥ 0,∀i ∈ I, j ∈ J . (4)

(1) is the objective function that poses the maximization prob-
lem in an equivalent minimization form. Note that by adding a
scalar weight factor in front of the utility function, any desired
trade-off point between performance and cost can be achieved.
For simplicity we assume the weight is 1. (2) is the workload
conservation constraint that dictates each client’s demand has
to be satisfied. (3) is the capacity constraint that prevents the
ISP link of a stub datacenter from overflow. (4) is simply the
non-negativity constraint for the variables.

Our formulation focuses on the performance-cost trade-off.
In practice a provider may also need to consider various policies
when designing the request mapping and response routing
strategies. Though we do not consider policies in this paper,
they can be modeled as additional constraints to the problem
and do not fundamentally change the formulation.

The optimization (1) is a very large-scale problem. To have a
rough understanding, the number of clients represented by the
number of unique IP addresses is O(105), and the number of
datacenters and ISP links is around O(102) in some production
clouds [17], [21]. This implies that the problem can have
O(107) variables, and O(105) constraints for a production
system.

E. Existing Approaches

As argued in Sec. I, the lack of efficiency and robustness
in centralized algorithms motivates our design of a distributed
solution amenable to parallel implementations in the cloud.
The common approach to develop distributed algorithms is
to relax the constraints and employ dual decomposition to
decompose the problem into many independent sub-problems
[9]. Subgradient methods can then be used to update the dual
variables towards the optimality of the dual problem [5].

Yet, these approaches are not applicable here. First of all,
dual decomposition requires the utility function to be strictly
convex, for an affine function will make the Lagrangian un-
bounded below in α. However, for workload management in
cloud computing, an affine utility function is in fact one of the
most popular and commonly studied utility functions [21], [31].
More importantly, subgradient methods suffer from the curse of
step size. For the output to be close to the optimum, we need to
strategically pick the step size at each iteration, leading to the
well-known problems of slow convergence and performance

oscillation when the problem scale is large. Even if U were
indeed a strictly convex function, subgradient methods are not
well suited in our problem.

Summarizing the discussions, we need a scalable and practi-
cal distributed algorithm that converges fast to modest accuracy,
and is not sensitive to step sizes. In the following, we present
such an algorithm based on the alternating direction method of
multipliers (ADMM) [6].

III. ALGORITHM DESIGN

We first provide a brief primer on ADMM which is the corner
stone of our algorithm design.

A. A Primer on ADMM

ADMM, developed in the 1970s [4], has recently received
renewed interest in solving large-scale distributed convex opti-
mization in statistics, machine learning, and related areas [6].
The algorithm solves problems in the form

min f(x) + g(z) (5)
s.t. Ax+Bz = c,

x ∈ C1, z ∈ C2,

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈
Rp×m, and c ∈ Rp. f and g are convex functions, and C1, C2

are non-empty polyhedral sets. Thus, the objective function is
separable over two sets of variables, which are coupled through
an equality constraint.

We can form the augmented Lagrangian [15] by introducing
an extra L-2 norm term ‖Ax+Bz − c‖22 to the objective:

Lρ(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)
+ (ρ/2)‖Ax+Bz − c‖22. (6)

ρ > 0 is the penalty parameter (L0 is the standard Lagrangian
for the problem). The augmented Lagrangian can be viewed as
the unaugmented Lagrangian associated with the problem

min f(x) + g(z) + (ρ/2)‖Ax+Bz − c‖22
s.t. Ax+Bz = c,

x ∈ C1, z ∈ C2,

Clearly this problem is equivalent to the original problem (5),
since for any feasible x and z the penalty term added to the
objective is zero. The benefit of introducing the penalty term is
that Lρ is strictly convex even when f and g are affine, and we
can work on the dual problem without strong assumptions on f
and g. The penalty term is also called a regularization term and
helps substantially improve the convergence of the algorithm.

ADMM solves the dual problem with the iterations:

xt+1 := argmin
x∈C1

Lρ(x, z
t, λt) (7)

zt+1 := argmin
z∈C2

Lρ(x
t+1, z, λt) (8)

λt+1 := λt + ρ(Axt+1 +Bzt+1 − c). (9)

It consists of an x-minimization step (7), a z-minimization
step (8), and a dual variable update (9). Note the step size

is simply the penalty parameter ρ. Thus, x and z are updated
in an alternating or sequential fashion, which accounts for the
term alternating direction. Separating the minimization over x
and z is precisely what allows for decomposition when f or g
are separable, which will be useful in our algorithm design.

The optimality and convergence of ADMM can be guaran-
teed under very mild technical assumptions.

Theorem 1: [4] Assume that the optimal solution set of
problem (5) is non-empty, and either C1 is bounded or else
the matrix ATA is invertible. Then a sequence {xt, zt, λt}
generated by (7)–(9) is bounded, and every limit point of
{xt, zt} is an optimal solution of the problem (5).
In practice, it is often the case that ADMM converges to modest
accuracy within a few tens of iterations [6].

B. Our Algorithm
Our problem (1) cannot be readily solved using ADMM. The

constraints (2) and (3) couple all variables together, whereas in
ADMM problems the constraints are separable for each set
of variables. The coupling is especially difficult, because it
happens on two orthogonal dimensions simultaneously: The
per-client workload conservation constraint (2) couples α across
stub datacenters, and the per-stub datacenter capacity constraint
(3) couples α across clients.

To address this challenge, we introduce a new set of auxiliary
variables β = α, and re-formulate the optimization:

min
α,β

∑
i∈I

Di

(∑
j∈J

αijP
E
j − U

(∑
j∈J

αijLij

))
+
∑
j∈J

∑
i∈I

DiβijP
B
j

s.t.
∑
j∈J

αij = 1,∀i ∈ I,∑
i∈I

βijDi ≤ Cj ,∀j ∈ J ,

αij = βij ≥ 0,∀i ∈ I, j ∈ J . (10)

This problem (10) is clearly equivalent to the original problem
(1). We observe that the new formulation is in the ADMM
form (5). The objective function is now separable over two
sets of variables α and β. α controls the net utility gain of
processing the requests, i.e. utility minus electricity cost, while
β determines the bandwidth cost of transmitting the response
packets. α and β are connected through an equality constraint.
Overall, they control the provider’s total utility gain of running
the cloud service.

The use of auxiliary variables also enables the separation of
per-client and per-stub datacenter constraint sets, which is the
key step towards decomposing the problem as we demonstrate
now. The augmented Lagrangian of (10) is

Lρ(α, β, λ) =
∑
i

Di

(∑
j

αijP
E
j − U

(∑
j

αijLij

))
(11)

+
∑
j

∑
i

DiβijP
B
j

+
∑
i

∑
j

(
λij(αij − βij) + ρ/2(αij − βij)2

)
.

The dual problem is solved by updating α and β sequentially.
At the (t + 1)-th iteration, the α-minimization step involves
solving the following problem according to (7):

min
α

∑
i

(∑
j

αij

(
DiP

E
j + λtij +

ρ

2

(
αij − 2βtij

))
−DiU(αi)

)
s.t.

∑
j

αij = 1, U(αi) = U
(∑

j

αijLij

)
, αi ≥ 0,∀i, (12)

where αi is the vector of αij for client i, and U(αi) is a
shorthand for i’s utility function. This problem is decomposable
over clients, since the objective function and constraints are
separable over i. Effectively, each client needs to independently
solve the following sub-problem:

min
αi

∑
j

αij

(
DiP

E
j + λtij +

ρ

2

(
αij − 2βtij

))
−DiU(αi)

s.t.
∑
j

αij = 1, U(αi) = U
(∑

j

αijLij

)
, αi ≥ 0. (13)

The per-client sub-problem is of a much smaller scale, with
|J | variables and |J | + 1 constraints, and can be efficiently
solved by a standard optimization solver. As discussed in Sec. I,
in reality the number of stub datacenters |J | = O(102) and is
much smaller than the number of clients |I|. Depending on the
exact shape of the utility function, in some cases we can even
provide analytical solution as we shall see in Sec. III-D.

We have solved the α-minimization step distributively across
all clients by decomposing the problem (12) into |I| per-client
sub-problems (13). After obtaining αt+1, the β-minimization
step can also be similarly attacked as we show now.

According to (8), the β-minimization step consists of solving
the following:

min
β

∑
j

∑
i

βij

(
DiP

B
j − λtij +

ρ

2

(
βij − 2αt+1

ij

))
s.t.

∑
i

βijDi ≤ Cj ,∀j, βij ≥ 0,∀i, j. (14)

This problem is also decomposable over the set of stub datacen-
ters J into |J | sub-problems. Specifically, each stub datacenter
needs to solve

min
β1j ,β2j ,...

∑
i

βij

(
DiP

B
j − λtij +

ρ

2

(
βij − 2αt+1

ij

))
s.t.

∑
i

βijDi ≤ Cj , βij ≥ 0,∀j. (15)

The per-stub datacenter problem is a quadratic program, whose
solutions can be provided in analytical form as follows.

Lemma 1: At the (t+1)-th iteration, for all i ∈ I such that
λtij − DiP

B
j + ραt+1

ij ≤ 0, βt+1
ij = 0. Denote the remaining

set {i ∈ I|λtij −DiP
B
j + ραt+1

ij > 0} as It+1
j . Then βt+1

ij for
i ∈ It+1

j is: If
∑
i∈It+1

j
(λtij −DiP

B
j + ραt+1

ij)Di ≤ ρCj ,

βt+1
ij =

λtij −DiP
B
j

ρ
+ αt+1

ij ,

otherwise,

βt+1
ij = max

{
λtij −Di(P

B
j + νt+1

j)

ρ
+ αt+1

ij , 0

}
,

where νt+1
j ≥ 0 is determined by the following∑

i∈It+1
j

βt+1
ij Di = Cj .

The proof can be found in Appendix A.
Having obtained the optimal αt+1 and βt+1, the final step

is to perform the dual variable update:

λt+1
ij = λtij + ρ(αt+1

ij − β
t+1
ij). (16)

The entire procedure is summarized in Algorithm 1. Since the
constraint set C1 for α is clearly bounded in our problem (10),
according to Theorem 1 the algorithm converges to the optimal
solution.

Lemma 2: Our algorithm based on ADMM converges to
the optimal solution α∗ and β∗ of (10) and equivalently (1).

Algorithm 1 Optimal Distributed Solution for (1)
1. Each stub datacenter j initializes β0

ij = 0, λ0ij = 0, and
broadcasts its electricity price PEj to each client.

2. Given βti = [βti1, β
t
i2, . . .] and λti = [λti1, λ

t
i2, . . .], each

client i solves the per-client sub-problem (13), and sends
the optimal solution αt+1

ij to the corresponding stub data-
center j.

3. Given αt+1
j = [αt+1

1j , αt+1
2j , . . .], each stub datacenter solves

the sub-problem (15) as in Lemma 1 with local information
PBj and λtj = [λt1j , λ

t
2j , . . .].

4. Each stub datacenter j updates the dual variables λtj =
[λt1j , λ

t
2j , . . .] as in (16). It then sends the optimal solution

βt+1
ij and updated dual variable λt+1

ij to the corresponding
client i.

5. Return to step 2 until convergence.

Intuitively, the working of our algorithm follows a divide-
and-conquer paradigm. Recall that α controls the net utility gain
of processing the requests, while β determines the bandwidth
cost of transmitting the response packets. Our algorithm first
optimizes α for the mapping aspect of the problem given
the response routing solution βt. It then optimizes β for the
response routing aspect of the problem given the previously
computed mapping solution αt+1. The dual update ensures
the two sets of solutions converge to the same workload
management solution, which is also optimal.

C. A Parallel Implementation in the Cloud

The distributed nature of Algorithm 1 allows for an efficient
parallel implementation in the cloud that has abundant server
resources. Here we discuss several issues pertaining to such an
implementation in reality.

First, at each iteration, each client solves the per-client sub-
problem in step 2. This can be readily implemented in a parallel

fashion on each server of one of the datacenters the provider
owns, which we call the designated datacenter. A production
datacenter typically has O(104)–O(105) servers [14]. Thus
each server only needs to solve O(10)–O(1) per-client sub-
problems at each iteration. Since the per-client sub-problem
(13) is a small-scale convex optimization, the computational
complexity is low. A multi-threaded implementation can further
speed up the algorithm on multi-core hardware. The penalty
parameter ρ and utility function U can be configured across all
servers before the algorithm starts off.

Similarly, step 3 of Algorithm 1, which solves the per-stub
datacenter sub-problem, also has a parallel implementation in
the designated datacenter. Only |J | servers are required, each
responsible for solving one instance of (15) according to the
solution in Lemma 1. It can even be implemented on the same
servers that implement step 2 for the per-client sub-problems.
The parallel implementation of our algorithm thus makes it well
suited in the cloud environment.

Second, our algorithm can be terminated before convergence
is reached. ADMM is not sensitive to step size ρ, and usually
finds a solution with modest accuracy within tens of iterations
[6]. As argued in Sec. I, a solution with modest accuracy is
sufficient in situations of flash crowds of requests and failure
recovery. A provider can apply an early-braking mechanism in
these scenarios to terminate the algorithm after several tens of
iterations without worrying about performance issues.

We finally comment that the message passing overhead of
our algorithm is also low. As a prerequisite, the electricity
and bandwidth prices of each datacenter and ISP needs to
be gathered at the designated datacenter. The final output of
the algorithm αij needs to be disseminated to the mapping
nodes and datacenters (recall Fig. 1). All the other message
passing, for exchanging α, β, and λ amongst servers, happens
in the internal network of the designated datacenter, which in
many cases is specifically designed to handle the broadcast
and shuffle transmission patterns of HPC applications such as
MapReduce [3]. Note that the amount of intermediate data our
algorithm produces is much smaller than the bulky data of HPC
applications [29]. Thus the message passing overhead incurred
in the datacenter network is low.

D. Case Study: Affine Utility Functions

Before concluding this section, we provide a case study of the
workload management problem with an affine utility function.
Affine utility functions are the de facto utility function widely
used in the literature [21], though some studies have argued for
more complicated utility functions with fairness considerations
[31].

An affine utility function has the following form:

U
(∑

j

αijLij

)
= −a

∑
j

αijLij , (17)

where a > 0 is a conversion factor that translates user-
perceived latency into utility (e.g., revenue). With an affine
utility function, the per-client sub-problem (13) becomes a

quadratic program in the following form:

min
αi

∑
j

αij

(
Di

(
aLij + PEj

)
+ λtij +

ρ

2

(
αij − 2βtij

))
s.t.

∑
j

αij = 1, αi ≥ 0. (18)

Optimal solutions can then be derived in an analytical form
through the KKT conditions.

Lemma 3: At the (t+1)-th iteration, the optimal solution of
the per-client sub-problem (18) with an affine utility function
for a given client i is as follows.

αt+1
ij = max

{
βtij −

Di(aLij + PEj) + λtij + µt+1
i

ρ
, 0

}
,

where µt+1
i 6= 0 is determined by the following∑

j∈J
αt+1
ij = 1.

The proof can be found in Appendix B. Essentially, this is a
system of |J | + 1 equations with |J | + 1 variables, whose
solution can be efficiently computed.

Thus, in the case of an affine utility function, the per-client
sub-problem reduces to a quadratic program and is particularly
easy to solve.

IV. EVALUATION

To realistically evaluate the performance of our algorithm,
we conduct trace-driven simulations in this section.

A. Setup

0 5 10 15 20

0.8

1

1.2

1.4

Hour

R
eq

ue
st

 tr
af

fi
c

(1
07)

Fig. 2. Total request traffic of the Wikipedia traces [27].

We use the Wikipedia request traces [27] to represent the
request traffic of a cloud service. The dataset we use con-
tains, among other things, 10% of all user requests issued to
Wikipedia from 3:56PM, January 1, 2008 GMT to 4:57PM,
January 2, 2008 GMT. The prediction of workload can be done
accurately as demonstrated by previous work [22], [23], and in
the simulation we simply adopt the measured request traffic as
the total demand. We assume the optimization is done hourly,
and Fig. 2 plots the hourly request traffic of the traces for 24
hours of the measurement period.

Fig. 3. The U.S. electricity market and our datacenter map. Source: [10].

We simulate a cloud that deploys ten datacenters across the
continental U.S. According to the Federal Energy Regulatory
Commission (FERC), the U.S. electricity market is consisted of
multiple regional markets as shown in Fig. 3 [10]. Each regional
market has several hubs with their own pricing. Thus for the
ease of exploration, we assume that one datacenter is deployed
in a randomly chosen hub in each of the ten regional markets
as shown in Fig. 3. We use the 2011 annual average day-ahead
on peak price as the electricity price for each datacenter, i.e.
PE , as summarized in Table I. In the simulations we calculate
the cost by assuming that one request consumes 10W of energy
on average, including the server, network, and cooling energy
consumption.

TABLE I
2011 ANNUAL AVERAGE DAY AHEAD ON PEAK PRICE ($/MWH) IN

DIFFERENT REGIONAL MARKETS. SOURCE: [10].

Region Hub Price
California NP15 $35.83
Midwest Michigan Hub $42.73

New England Mass Hub $52.64
New York NY Zone J $62.71
Northwest California-Oregon Border (COB) $32.57

PJM PJM West $51.99
Southeast VACAR $44.44
Southwest Four Corners $36.36

SPP SPP North $36.41
Texas ERCOT North $61.55

TABLE II
TIERED BANDWIDTH PRICES. SOURCE: AMAZON EC2

Link capacity (requests/hour) Pricing ($/request)
< 1.4× 105 0.0012

1.4× 105–5.6× 105 0.0009
5.6× 105–1.4× 106 0.0007

> 1.4× 106 0.0005

Each datacenter has 3 ISP links. Thus the number of stub
datacenters |J | = 30. The prices of the ISP links are esti-
mated in two steps. First, the capacity of each ISP link is
randomly set such that the total capacity across the 30 links
is 1.2×107 requests per hour. Then, the price of an ISP link is
determined from a tiered structure based on the link capacity,
where a link with larger capacity has a lower cost. We assume
a request’s response packets contain 1 MB of data on average,
and use Amazon EC2 bandwidth prices in the U.S. east region
to determine the exact price per request presented in Table II.

0 5 10 15 20
40

50

60

70

80

90

Hour

U
til

ity
 g

ai
n

($
0.

00
01

)

ADMM
ADMM−20

Fig. 4. Optimal average utility gain.

0 5 10 15 20
40

60

80

100

120

Hour

La
te

nc
y

(m
s)

ADMM
ADMM−20

Fig. 5. Optimal average latency performance.

0 5 10 15 20
10

15

20

25

Hour

C
os

ts
 (

$0
.0

00
1)

ADMM
ADMM−20

Fig. 6. Optimal average costs per request.

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Latency (ms)

C
D

F

ADMM−20

Fig. 7. CDF of per request latency.

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Costs ($0.0001/request)

C
D

F

ADMM−20

Fig. 8. CDF of per request costs.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of stub datacenters

C
D

F

ADMM−20

Fig. 9. CDF of number of stub datacenters per client.

This setup resembles the volume discount strategy commonly
used in the industry.

We rely on iPlane [19], a system that collects wide-area
network statistics from Planetlab vantage points, to obtain the
latency information. We set the number of clients |I| = 105,
and choose 105 IP prefixes from a RouteViews [1] dump. We
then extract the corresponding round trip latency information
from the iPlane logs, which contain traceroutes made to a
large number of IP addresses from Planetlab nodes. We only
use latency measurements from Planetlab nodes that are close
to our datacenter locations. Therefore the propagation latency
depends on the datacenter location but not on the specific ISP
link used. We believe this is a reasonable approximation when
the geographical distance instead of link condition dominates
the propagation delay.

Now since the Wikipedia traces do not contain any client in-
formation, to emulate the geographical distribution of requests,
we split the total request traffic among the clients following
a normal distribution. The utility function is the simple affine
function as in (17) with a = 10−4. That is, a request with
100 ms latency translates to $0.01 revenue for the provider.
Finally, the penalty parameter ρ is set to 1 in all our simulations.

B. Performance

We evaluate two variants of our algorithm in the simulations.
The first variant, referred to as ADMM in the figures, runs
Algorithm 1 until convergence is reached. The second variant,
referred to as ADMM-20, applies an early-braking method and
runs Algorithm 1 for only 20 iterations. Fig. 4 plots the average
utility gain per request for the two variants. Throughout the
day, we observe that ADMM-20 with 20 iterations can achieve

utility gains close to optimum within $0.0008 difference, while
the regular ADMM converges within 56 iterations in all the
cases (more on convergence in Sec. IV-C). The average value
of |αij − βij | after 20 iterations is merely 2.7133 × 10−5.
Therefore, our algorithm converges quickly to near optimum.

Fig. 5–6 further plot the average latency and serving costs per
request. Observe that the average client latency stands below
80 ms most of the time, and never exceeds 120 ms. The average
serving costs is approximately $0.0015 per request throughout
the day. Both metrics fluctuate closely with the total traffic as
shown in Fig. 2.

To understand the performance of our algorithm on a mi-
croscopic level, we plot the CDF of the request latency and
serving costs across all clients and all hours for the ADMM-20
variant in Fig. 7 and 8. Most of the requests, more than 90%, are
served with latency less than 100 ms. The CDF of costs is more
skewed, implying that the per-request costs vary significantly
across clients. This is because the (bandwidth) cost difference
amongst the ISP links of the same datacenter is clearly larger
than the latency difference, which is assumed to be zero.

One may wonder at this point that, our algorithm may direct
requests only to the best stub datacenter for a client, which is
not preferable for diversity and resilience purposes. However,
Fig. 9 shows that this is not the case. We plot the CDF of the
number of stub datacenters a client’s requests are directed to
(for hour 0 data and the ADMM-20 variant). The figure shows
that for more than 80% of the clients, the requests are directed
to 2-5 stub datacenters. On average, each client has 3.6 stub
datacenters to serve its requests. This leads us to believe that
our algorithm distributes the workload in a balanced way.

C. Convergence

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of iterations

C
D

F

ADMM
Subgradient

Fig. 10. CDF of the number of iterations to achieve convergence for our
ADMM algorithm and the subgradient method.

We now investigate the convergence and running time of
our algorithm. For comparison, we use the subgradient method
[5] to solve the dual problem of the transformed optimization
(10) with the augmented Lagrangian (11). Specifically, the
primal variables α and β are jointly optimized instead of
sequentially updated as in our ADMM algorithm to speed up
the convergence, and the dual variables λ are updated by the
subgradient method. The step size has to be carefully chosen,
since a too large value will make the final output far away
from the real optimum, and a too small value will slow down
the convergence. We choose the step sizes according to the
diminishing step size rule [5].

Fig. 10 plots the CDF of the number of iterations the two
algorithms take to achieve convergence for the 24 runs on the
traces. We can clearly see that our ADMM algorithm converges
much faster than the subgradient method. Our algorithm takes
at most 56 iterations to converge, while the subgradient method
takes at least 72 iterations. For 80% of the time our algorithm
converges within 40 iterations, while the subgradient method
takes 110 iterations. This demonstrates the fast convergence of
our algorithm compared to conventional methods.

We finally study the running time of our algorithm. Note that
since we do not have enough hardware resources to experiment
with a parallel implementation, our algorithm is implemented
on a single server machine where each per-client and per-stub
datacenter sub-problem is sequentially solved. We observe that
one iteration takes on average 1500.6447 seconds on a Dual
Dual-Core Intel Xeon 3.0 Ghz (64-bit) server. Since |I| = 105

and |J | = 30, solving each sub-problem takes around 0.015
second. Thus, a parallel implementation on 1000 servers will
take less than a second to run one iteration, which demonstrates
the efficiency of our algorithm for large-scale problems.

V. RELATED WORK

The topics of request mapping and response routing for
a geo-distributed infrastructure are usually treated separately
in the literature. On the former, [26] introduced the idea of
utilizing the location diversity of electricity price to intelligently
direct requests to datacenters with lower prices. [30] developed

a decentralized request mapping algorithm with configurable
policies. [12], [18] considered the effect of request mapping on
providing environmental gains by using green energy. [31] the
performance fairness issue in request mapping. On the latter,
[13] developed routing algorithms to optimize performance and
cost for a multi-homing ISP. [32] proposed to optimize traffic
engineering across all upstream ISPs, assuming requests are
simply mapped to the closest ingress point.

The joint study of mapping and routing has started to gain
attention recently. [2] studied the data placement problem in a
geo-distributed cloud, considering the data locality, bandwidth
costs, and storage capacity. We assume the content is replicated
on all datacenters. [21] considered the joint problem with
bandwidth costs, and the resulting linear program was solved by
standard methods. We consider both bandwidth and electricity
costs, and develop a new distributed algorithm to solve the
convex optimization problem.

VI. CONCLUDING REMARKS

We studied the joint request mapping and response routing
problem for geographically distributed datacenters. We formu-
lated the problem as a general convex optimization, where the
location diversity of performance and costs are modeled. We
developed an efficient distributed algorithm based on ADMM
to decompose the large-scale global problem into many sub-
problems, each of which can be quickly solved. We discussed
a parallel implementation of the algorithm that is well suited
in a cloud environment with abundant server resources. Trace-
driven simulations are conducted to evaluate the algorithm’s
performance. As future work, we plan to more thoroughly study
its impact on existing wide-area traffic engineering schemes.

REFERENCES

[1] http://www.routeviews.org.
[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan.

Volley: Automated data placement for geo-distributed cloud services. In
Proc. USENIX NSDI, 2010.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proc. ACM SIGCOMM, 2008.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[5] S. Boyd and A. Mutapcic. Subgradient methods. Lecture notes of
EE364b, Stanford University, Winter Quarter 2006-2007. http://www.
stanford.edu/class/ee364b/notes/subgrad method notes.pdf.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122,
2010.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[8] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based schemes
for Internet load balancing. In Proc. IEEE INFOCOM, 2000.

[9] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as
optimization decomposition: A mathematical theory of network architec-
tures. Proc. IEEE, 95(1):255–312, January 2007.

[10] Federal Energy Regulatory Commission. U.S. electric power markets.
http://www.ferc.gov/market-oversight/mkt-electric/overview.asp, 2011.

[11] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. Diot. Packet-level traffic measurements from the Sprint
IP backbone. IEEE Netw., 17(6):6–16, November 2003.

[12] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav. It’s not easy being
green. In Proc. ACM SIGCOMM, 2012.

http://www.routeviews.org
http://www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf
http://www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf
http://www.ferc.gov/market-oversight/mkt-electric/overview.asp

[13] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang. Optimizing
cost and performance for multihoming. In Proc. ACM SIGCOMM, 2004.

[14] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The Cost of a
Cloud: Research Problems in Data Center Networks. SIGCOMM Comput.
Commun. Rev., 39(1):68–73, 2009.

[15] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization
Theory and Applications, 4(5):303–320, 1969.

[16] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: Listen to your customers not to the
hippo. In Proc. ACM SIGKDD, 2007.

[17] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao. Moving beyond end-to-end path information to
optimize CDN performance. In Proc. ACM IMC, 2009.

[18] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew. Greening
geographical load balancing. In Proc. ACM Sigmetrics, 2011.

[19] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane: An information plane for
distributed services. In Proc. USENIX OSDI, 2006.

[20] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Trans. Netw., 8(5):556–567, October 2000.

[21] S. Narayana, J. W. Jiang, J. Rexford, and M. Chiang. To coordinate or not
to coordinate? Wide-Area traffic management for data centers. Technical
report, Princeton University, 2012.

[22] D. Niu, H. Xu, B. Li, and S. Zhao. Risk management for video-on-
demand servers leveraging demand forecast. In Proc. ACM Multimedia,
2011.

[23] D. Niu, H. Xu, B. Li, and S. Zhao. Quality-assured cloud bandwidth auto-
scaling for video-on-demand applications. In Proc. IEEE INFOCOM,
2012.

[24] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: A platform
for high-performance Internet applications. SIGOPS Oper. Syst. Rev.,
44(3):2–19, August 2010.

[25] K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot. Long-term fore-
casting of Internet backbone traffic: Observations and initial models. In
Proc. IEEE INFOCOM, 2003.

[26] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting
the electricity bill for Internet-scale systems. In Proc. ACM SIGCOMM,
2009.

[27] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis
for decentralized hosting. Elsevier Computer Networks, 53(11):1830–
1845, July 2009.

[28] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, and V. V. Vazirani.
How many tiers? Pricing in the Internet transit market. In Proc. ACM
SIGCOMM, 2011.

[29] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained
TCP retransmissions for datacenter communication. In Proc. ACM
SIGCOMM, 2009.

[30] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR: De-
centralized server selection for cloud services. In Proc. ACM SIGCOMM,
2010.

[31] H. Xu and B. Li. A general and practical datacenter selection framework
for cloud services. In Proc. IEEE CLOUD, 2012.

[32] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and
B. Christian. Optimizing cost and performance in online service provider
networks. In Proc. USENIX NSDI, 2010.

[33] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and S. Srinivasan. LatLong:
Diagnosing wide-area latency changes for CDNs. IEEE Trans. Netw.
Service Manag., to appear, 2012.

APPENDIX A
PROOF OF LEMMA 1

The KKT conditions [7] of the per-stub datacenter problem
(15) constitute the following system of equations.

ρ(βt+1
ij − α

t+1
ij) +Di(P

B
j + νt+1

j)− λtij − τ t+1
ij = 0,∀i, (19)

νt+1
j

(
Cj −

∑
i

βt+1
ij Di

)
= 0, βt+1

ij τ t+1
ij = 0,∀i (20)

Cj −
∑
i

βt+1
ij Di ≥ 0, νj ≥ 0, βt+1

ij ≥ 0, τ t+1
ij ≥ 0,∀i. (21)

βt+1
ij is the optimal solution, and νt+1

j is the KKT multiplier.
(19) is the first-order optimality conditions, (20) is the comple-
mentary slackness condition, and (21) are the primal and dual
feasibility conditions.

For all i ∈ I that satisfy λtij −DiP
B
j + ραt+1

ij ≤ 0, assume
βt+1
ij > 0. Then according to the complementary slackness

condition (20) τ t+1
ij = 0. The left hand side (LHS) of (19)

is always positive, which contradicts the optimality condition.
Thus βt+1

ij = 0.
As in Lemma 1, denote the rest of stub datacenters as the

set It+1
j . λtij − DiP

B
j + ραt+1

ij > 0 holds for all i ∈ It+1
j .

If
∑
i∈It+1

j
(λtij − DiP

B
j + ραt+1

ij)Di ≤ ρCj , then according

to (20) νt+1
j = 0. This is so because for those i ∈ It+1

j such
that βt+1

ij > 0, ρβt+1
ij ≤ λtij −DiP

B
j + ραt+1

ij since νt+1
j ≥ 0

in (19). Thus
∑
i∈It+1

j
βt+1
ij Di ≤ Cj , and νt+1

j = 0. Then,

τ t+1
ij = 0 must hold for all i ∈ It+1

j , for otherwise βt+1
ij = 0

and the LHS of (20) is always negative. Substituting νt+1
j = 0

and τ t+1
ij = 0 into (19) yields βt+1

ij =
λt
ij−DiP

B
j

ρ + αt+1
ij .

If
∑
i∈It+1

j
(λtij − DiP

B
j + ραt+1

ij)Di > ρCj , note that the

objective of (15) is minimized at
λt
ij−Di(P

B
j +νt+1

j)

ρ +αt+1
ij > 0

when the capacity constraint is absent, we must have βt+1
ij <

λt
ij−Di(P

B
j +νt+1

j)

ρ +αt+1
ij to conform to the capacity constraint.

Since the objective function of (15) is convex in βij , for βij ∈[
0,

λt
ij−Di(P

B
j +νt+1

j)

ρ +αt+1
ij

]
it is increasing. Thus the optimal

βt+1
ij must satisfy the capacity constraint at equality, and equal

to max

{
λt
ij−Di(P

B
j +νt+1

j)

ρ + αt+1
ij , 0

}
.

APPENDIX B
PROOF OF LEMMA 3

The KKT conditions for the per-client sub-problem with an
affine utility function (18) are

ρ(αt+1
ij − β

t
ij) +Di(aLij + PEj) + λtij

+µt+1
i − σt+1

ij = 0,∀j, (22)∑
j

αt+1
ij − 1 = 0, (23)

µt+1
i 6= 0, σt+1

ij αt+1
ij = 0, αt+1

ij ≥ 0, σt+1
ij ≥ 0,∀j, (24)

where αt+1
ij is the optimal solution as in (7), and µt+1

i

and σt+1
ij are the KKT multiplier for the equality and in-

equality constraints of (18), respectively. (22) corresponds to
the first-order optimality condition, (23) is one of the pri-
mal feasibility conditions, and (24) captures the other pri-
mal feasibility condition, the dual feasibility, and the com-
plementary slackness conditions. Essentially, since αt+1

ij and
σt+1
ij never appear at the same time in (22), αt+1

ij =

max
{
βtij −

(
Di

(
aLij + PEj

)
+ λtij + µt+1

i

)
/ρ, 0

}
, and must

satisfy (23). Thus the proof.

	Introduction
	A Framework for Joint Mapping and Routing
	Infrastructure
	Performance
	Costs
	Problem Formulation
	Existing Approaches

	Algorithm Design
	A Primer on ADMM
	Our Algorithm
	A Parallel Implementation in the Cloud
	Case Study: Affine Utility Functions

	Evaluation
	Setup
	Performance
	Convergence

	Related Work
	Concluding Remarks
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 3

