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ABSTRACT

Datacenters consume an enormous amount of energy with signif-

icant financial and environmental costs. For geo-distributed dat-

acenters, a workload management approach that routes user re-

quests to locations with cheaper and cleaner electricity has been

shown to be promising lately. We consider two key aspects that

have not been explored in this approach. First, through empirical

studies, we find that the energy efficiency of the cooling system

depends directly on the ambient temperature, which exhibits a sig-

nificant degree of geographical diversity. Temperature diversity can

be used by workload management to reduce the overall cooling en-

ergy overhead. Second, energy consumption comes from not only

interactive workloads driven by user requests, but also delay toler-

ant batch workloads that run at the back-end. The elastic nature of

batch workloads can be exploited to further reduce the energy cost.

In this work, we propose to make workload management for

geo-distributed datacenters temperature aware. We formulate the

problem as a joint optimization of request routing for interactive

workloads and capacity allocation for batch workloads. We de-

velop a distributed algorithm based on an m-block alternating di-

rection method of multipliers (ADMM) algorithm that extends the

classical 2-block algorithm. We prove the convergence and rate of

convergence results under general assumptions. Trace-driven sim-

ulations demonstrate that our approach is able to provide 5%–20%

overall cost savings for geo-distributed datacenters.
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1. INTRODUCTION
Geo-distributed datacenters operated by organizations such as

Google and Amazon are the powerhouses behind many Internet-

scale services. They are deployed across the globe to provide bet-

ter latency and redundancy. These datacenters run hundreds of

thousands of servers, consume megawatts of power with massive

carbon footprint, and incur electricity bills of millions of dollars

[2, 6]. Recently, important progress has been made on a new work-

load management approach that focuses on the energy aspect of
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geo-distributed datacenters. It exploits the geographical diversity

of electricity prices by optimizing the request routing algorithm to

route user requests to locations with cheaper and cleaner electricity

[2, 5–7].

In this work, we consider two key aspects of geo-distributed dat-

acenters that have not been explored in the existing literature.

First, cooling systems, which consume 30% to 50% of the total

energy, are often modeled with a constant and location-independent

energy efficiency factor in existing efforts. This tends to be an over-

simplification in reality. Through our study of a state-of-the-art

production cooling system, we find that temperature has direct and

profound impact on cooling energy efficiency. This is especially

true with outside air cooling technology, which has seen increasing

adoption in mission-critical datacenters [8]. As shown in Table 1,

the partial PUE (power usage effectiveness), defined as the sum of

server power and cooling overhead divided by server power, varies

significantly from 1.30 to 1.05 when temperature drops from 35
◦C(90 ◦F) to -3.9 ◦C(25 ◦F). The reason is that when the ambi-

ent temperature is low, we can directly use the cold outside air to

cool down servers without running the energy-gobbling mechanical

chillers, which greatly improves the energy efficiency.

Outdoor ambient Cooling mode pPUE

35◦C(90◦F) Mechanical 1.30

21.1◦C(70◦F) Mechanical 1.21

15.6◦C(60◦F) Mixed 1.17

10◦C(50◦F) Outside air 1.1

-3.9◦C(25◦F) Outside air 1.05

Table 1: Efficiency of Emerson’s DSE
TM

cooling system with

an EconoPhase air-side economizer [8]. Return air is set at

29.4◦C(85◦F).

Through an extensive empirical analysis of daily and hourly cli-

mate data for 13 Google datacenters [8], we further find that tem-

perature varies significantly across both time and location, which

is intuitive to understand. The short-term volatilities are not well

correlated across locations. These observations suggest that data-

centers at different locations have distinct and time-varying cooling

energy efficiency. This establishes a strong case for making work-

load management temperature aware, where such temperature di-

versity can be used along with price diversity in making request

routing decisions to reduce the overall cooling energy overhead.

Second, energy consumption comes not only from interactive

workloads driven by user requests, but also from delay tolerant

batch workloads, such as indexing and data mining jobs, that run

at the back-end. Existing efforts focus mainly on request routing to

minimize the energy cost of interactive workloads, which is only a

part of the entire picture. Such a mixed nature of datacenter work-

loads provides more opportunities to utilize the cost diversity of



energy. The key observation is that batch workloads are elastic to

resource allocations, whereas interactive workloads are highly sen-

sitive to latency and have more profound impact on revenue. Thus

at times when one location is comparatively cost efficient, we can

increase the capacity for interactive workloads by reducing the re-

sources reserved for batch jobs. More requests can then be routed

to and processed at this location, and the cost saving can be more

substantial. We are thus motivated to advocate a holistic workload

management approach, where capacity allocation between inter-

active and batch workloads is dynamically optimized with request

routing.

2. CONTRIBUTIONS
Towards temperature aware workload management, we propose

a general framework to capture the important trade-offs involved

[8]. We model both energy cost and utility loss, which corresponds

to performance-related revenue reduction. We develop an empir-

ical cooling efficiency model based on the production system in

Table 1 with both outside air and mechanical cooling capabilities.

The problem is formulated as a joint optimization of request rout-

ing and capacity allocation. The technical challenge is then to de-

velop a distributed algorithm to solve the large-scale optimization

with tens of millions of variables for a production geo-distributed

cloud. Dual decomposition with subgradient methods is often used

to develop distributed optimization algorithms. However it requires

delicate adjustment of step sizes that makes convergence difficult

to achieve for large-scale problems. The method of multipliers

achieves fast convergence, at the cost of introducing tight coupling

among variables.

We rely on the alternating direction method of multipliers (ADMM),

a simple yet powerful algorithm that blends the advantages of the

two approaches. ADMM recently has found practical use in many

large-scale distributed convex optimization problems [1]. It works

for problems whose objective and variables can be divided into two

disjoint parts. It alternatively optimizes part of the objective with

one block of variables to iteratively reach the optimum. Our for-

mulation has three blocks of variables, yet little is known about the

convergence of m-block (m ≥ 3) ADMM algorithms, with two

exceptions [3, 4] very recently. [3] establishes the convergence of

m-block ADMM for strongly convex objective functions, but not

linear convergence; [4] shows the linear convergence of m-block

ADMM under the assumption that the relation matrix is full col-

umn rank, which is, however, not the case in our formation. This

motivates us to refine the framework in [4] so that it can be ap-

plied to our setup. In particular, we show that by replacing the

full-rank assumption with some mild assumptions on the objective

functions, we are not only able to obtain the same convergence and

rate of convergence results, but also to simplify the proof of [4] in

[8]. The m-block ADMM algorithm is general and can be applied

in other problem domains. For our case, we further develop a dis-

tributed algorithm, which is amenable to a parallel implementation

in datacenters.

3. EVALUATION
We conduct extensive trace-driven simulations with Wikipedia

request traffic traces, real-world electricity prices and historical tem-

perature data at Google datacenter locations to realistically assess

the potential of our approach [8]. We benchmark our ADMM algo-

rithm against the state-of-the-art approach, which is a temperature

agnostic strategy that separately considers capacity allocation and

request routing of the workload management problem. It first allo-

cates capacity to batch jobs by minimizing the back-end total cost

as the objective. The remaining capacity is used to solve the re-

quest routing optimization. Only the electricity price diversity is

used, and cooling energy is calculated with a constant pPUE of 1.2

for the two cost minimization problems. Though naive, such an

approach is widely used in current Internet-scale cloud services. It

also allows for an implicit comparison with prior work [2, 5–7]. We

run the algorithms with our 24-hour traces at each day of January,

May, and August 2011 [8]. The results are thus averaged over 31

runs.
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Figure 1: Overall cost savings of our approach compared to

state-of-the-art workload management.

Figure 1 shows the average overall cost savings, including en-

ergy cost savings and utility loss reductions. We observe that the

cost savings range from 5% to 20%. This shows that our approach

is able to provide substantial cost savings for geo-distributed data-

centers, using temperature-aware request routing and dynamic ca-

pacity allocation. The savings are also consistent and insensitive to

seasonal changes. The reason is that our approach depends on: 1)

the geographical diversity of temperature and cooling efficiency;

2) the mixed nature of datacenter workloads, both of which exist

at all times of the year no matter which cooling method is used.

Temperature aware workload management is thus expected to offer

consistent and promising cost benefits.
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