
A Distributed Ethernet Traffic Shaping System
Bannazadeh H., Leon-Garcia A.

Electrical and Computer Engineering Department
University of Toronto, Toronto, ON, Canada

Email: hadi.bannazadeh@utoronto.ca

Abstract

We present a Distributed Ethernet Traffic Shaping
(DETS) system for regulating the flow of data when multiple
virtual machines run on one host and share a single Eth-
ernet link to send and receive traffic in a cluster or a data
center. In such settings, virtual machines can undermine
each other’s ability to receive traffic on the shared link.
In DETS, sending machines monitor and regulate their
transmission rates to conform to target rates. The DETS
system is implemented in the host system, and there is no
need to change or modify any processing or networking
hardware. We describe an implementation on a Linux-based
cluster, and through experimental performance evaluations,
we show that DETS can guarantee the access rate of virtual
machines. We also describe modifications to the Ethernet
control plane so that DETS can be natively supported in
Ethernet networks.

Keywords— Ethernet Flow Control, Ethernet Traffic Shaping,
Ethernet Congestion Management

I. Introduction

The architecture of the local area networks is facing
new challenges with the emergence of cloud computing
[1], and the deployment of massive data centers [2]. This
new computing paradigm allows users to access a virtual
network of resources in the cloud that can be called upon
to deploy applications on demand. At the same time, the
networking research community has moved toward creating
similar platforms for experimenting with new networking
concepts and architectures [3]. As in cloud computing, these
networking testbeds offer a virtual network of resources to
the researchers so that they could evaluate their networked
systems in large scale.

The creation of these research testbeds and cloud com-
puting platforms has become possible mainly due to the
advancement of virtualization techniques that have made
separation of the virtual computing resource and the un-
derlying physical resources much easier, and have allowed
operation of multiple virtual machines on one physical
resource.

Inherent in such shared resource environments is the
potential for disruptive interaction among users and hence
the need for new techniques to provide network and re-
source isolation. The Virtualized Application Networking
Infrastructure (VANI) [3], [4], developed at University of

Toronto, is an example of a networking research testbed
that allocates a virtual network of resources to researchers.
An important requirement in VANI is to guarantee network
access rates and isolation between different experiments.
In this paper, we present the Distributed Ethernet Traffic
Shaping (DETS) system and its corresponding algorithms
designed to provide a guaranteed network access rates in
VANI. The DETS system is not only applicable to VANI,
but also to the computing clusters and data centers that
virtualize and share their resources among different virtual
networks. DETS deployment in a cluster or a data center
does not require any changes in system hardware, and
can be deployed on top of normal computing blades and
Ethernet switches.

The primary role of DETS is to control and regulate
the traffic sent and received on VLANs. Especially, this is
required where more than one virtual machine is working
on a physical node, and each has to send and receive
a guaranteed rate of traffic on a dedicated VLAN on a
shared Ethernet access. Figure 1 shows a sample scenario
for DETS. In this sample system, we have five physical
nodes (PN) each having two running virtual nodes (VN).
All these PNs are connected to an Ethernet network and
the VNs running on these PNs require a guaranteed access
rate to the Ethernet network. For the sake of simplicity, we
show an Ethernet network with just one Ethernet switch,
but in general, it is possible to have many switches in
a network. In this topology, VNs running on a node are
working separately and can only communicate with their
peer VNs in other physical nodes.

If V N11, V N12, V N13, andV N14 start sending traffic
to V N15 , they can consume all the available bandwidth
on the Ethernet link that connectsPN5 to the Ethernet

Ethernet Switch

Physical

Nodes

Virtual

Nodes

Virtual

Nodes

VLAN #2

VLAN #1

VN21 VN22 VN23 VN24 VN25

VN11 VN12 VN13 VN14 VN15

PN1 PN2 PN3 PN4

PN5

Fig. 1: A system with five nodes and two virtual nodes on
each

switch. This may cause problem for traffic sent from nodes
V N21, V N22, V N23, V N24 to nodeV N25 that shares
the Ethernet link withV N15. Therefore there is a need for
a traffic shaping or rate control to limit the rate thatPN5
can receive traffic forV N15 so thatV N25 can also receive
traffic at a guaranteed rate.

This problem would become very evident and observable
if the interfering traffic (traffic forV N15) is UDP and the
underdog traffic (traffic for VN25) is TCP. The high amount
of UDP packets on the link toPN5 would virtually disable
TCP traffic toV N25 as the experimental results in figure 2
show. In the figure,V N25 receives the maximum possible
TCP rate, if no traffic is sent to nodeV N15. However, as
soon as UDP traffic is sent to nodeV N15 (around time300
in figure 1), TCP rate goes to almost zero until UDP traffic
stops (at around time1000). This experiment shows not
only the sensitivity of a TCP flow rate to a competing UDP
flow but also it shows the importance of having a traffic
shaping and rate control system to guarantee an agreed
access rate for different virtual nodes on a physical node
that share one Ethernet link. The problem of network per-
formance degradation in virtualized environments has been
also studied in [5], and the authors, through measurements
on Amazon Elastic Computing services, concluded that
virtualization techniques can cause significant throughput
instability.

200 400 600 800 1000
0

200

400

600

800

1000

1200

R
ec

ei
ve

d
T

C
P

 R
at

e
(M

bp
s)

 o
n

vl
an

 1

Time

Fig. 2: TCP rate back off due to interfering UDP traffic

Current Ethernet flow control uses PAUSE signals [6].
When multiple ports flood a port, the Ethernet switch
sends PAUSE signals back to the flooding ports so that
they stop sending for an amount of time specified in the
PAUSE message. It has been generally accepted that the
pause mechanism in Ethernet flow control is not suitable
for solving new challenges facing these networks [2]. To
address Ethernet congestion problems, two new IEEE task
forces (802.1Qua [7] and 802.1Qbb [7]) have been created.
The main approach in these task forces is to do flow control
at the level of class of service by marking frames at Ethernet
switches. In contrast to these approaches, our proposed
system operates at the edge of the Ethernet network on
the computing hosts in a cluster or a data center.

We direct interested readers to [2], [8], [9], [10] for a
survey on the recent work on Ethernet network congestion
control for data centers. The current proposed methods for
congestion management entail modifying Ethernet network
elements. Moreover, the majority of the proposed systems
are Congestion Notification based systems with no explicit
rate information [8], [9] that have been shown that have
draw backs, such as slow recovery in comparison to explicit
rate systems [9].

The salient explicit rate congestion management sys-
tem, Forward Explicit Congestion Notification (FECN) [9],
passes explicit rate from the congestion point to the source
point based on the utilization ratio of the congested link.
Our system is also an explicit rate system, but differs from
FECN in several aspects.

The DETS system is more than just an Ethernet conges-
tion management system. In particular DETS allows setting
guaranteed limits on the send and receive on each virtual
network, and shapes the traffic so that virtual networks do
not interfere with each other’s ability to send and receive
traffic. Unlike FECN, DETS does not need any change in
the current Ethernet equipments, and can be applied in
the current computing cluster systems and data centers.
Moreover, our system is capable of supporting both fair
and weighted fair bandwidth allocation mechanisms. In
addition, in allocating rates to the sending nodes, the system
considers the available sending capacity of the sending
nodes that results in higher throughput.

The DETS operation is seamless to the virtual machines
running on the host system, and virtual machines only see
the decrease and increase in send and receive traffic rate on
certain flows. However, since our system runs on the host
system its rate set and measurements periods are limited
to the system’s timer (about 55ms). DETS also does not
explicitly account for in-network congestions.

The organization of this paper is as follows: Section
2 describes our proposed system, identifies key control
and measurement points, and presents the DETS proto-
col. Section 3 presents the DETS system design and it
main internal modules. In this section, we also propose
four different algorithms developed for DETS. The DETS
system performance measurements are presented in section
4, and in section 5, we describe the modification in Eth-
ernet control plane in order to port the DETS system to
Ethernet network elements. Finally in section 6, we present
concluding remarks and our future work.

II. Distributed Ethernet Traffic Shaping
(DETS) system

The DETS system is designed to control the rate of
the traffic generated by each virtual machine according to
the total traffic rate at the destination virtual node. DETS
controls the sending rate of the traffic in the originating VN
before it enters the Ethernet network based on a target rate
imposed by the receiving virtual node.

In the VANI system, a virtual LAN is created for the
virtual nodes that are in one group, and ”over the top” rate

VN11

VN21

PN1

VN12

VN22

PN2

VN13

VN23

PN3

VN14

VN24

PN4

VN15

VN25

PN5

Ethernet SwitchMeasure and

Rate Control Point

Measure Point

and Rate Allocator

Rate Measurement

Reports

Rate Control Commands

Fig. 3: DETS measurement and rate control points

controller software is run in each of the physical nodes.
This software is able to control the rate at which each
virtual machine sends traffic to any other virtual machine
in that virtual network. The module is also able to measure
received traffic to each virtual node, and detect if the
received rate limit is violated. If the received rate limit
is violated, the receiving node is declared the congested
node. The controller then monitors the sent traffic to the
congested node and controls its rate at the sending node.
This system is depicted in figure 3 which shows the control
and measurement points.

Each agent in DETS has two separate modules; a send
rate controller, and a receive rate allocator. The send rate
controller monitors the sending traffic rate to any other
virtual machine that is facing congestion, and reports it to
the rate allocator in the congested node (nodePN5 in ex-
ample scenario, called the receiving node in the remainder
of this document). The rate allocator at the receiving node
(PN5) allocates a rate to each sending node and sends set-
rate commands to the corresponding send rate controller
modules in the sending nodes. The send rate controllers
apply the received set rate commands (at the set rate control
points shown in figure 3) and subsequently the traffic sent
to the congested node (PN5) will be shaped accordingly.

The DETS system can be implemented in any cluster
with any operating system that is able to control the egress
Ethernet traffic rate. In the next section, we focus on a
cluster of Linux-based computing nodes, and we describe
the system design and protocol for deploying DETS in such
a cluster.

A. DETS Protocol

The DETS protocol has five types of messages:

• Traffic Report message, sent from a sending to a receiv-
ing node and includes measured rate, current rate limit,
and available rate.

• Initialize Traffic Control message, sent from a receiving
to a sending node to initialize the traffic controller to
the receiving node.

• Set Rate message, sent from a receiving to a sending
node and includes the allocated rate that the sending
node has been granted.

• Keep Alive message, sent from a receiving to a sending

Send Rate

Control

Subsystem

Receive Rate

Allocator

Rate

Allocator

Sending Node

Communication

Send Rate

Measurement

& Control

Receive Rate

Measurement

Linux Traffic Measurement and Shaping

DETS System

Fig. 4: DETS System Internal Modules

node when the traffic control on the receiving node is
active.

• Deactivate Traffic Control message, sent from a receiv-
ing to a sending node to deactivate traffic control to that
receiving node.

B. DETS for Linux OS

In Linux, traffic shaping can be done on egress and
ingress traffic. The main command for performing traffic
shaping is ’tc’ command [11]. This command can operate
on a virtual interface (serving a VLAN), and can be also
used for measuring the send and receive rates. The shaping
in our system is done in the Linux hosts, and it is seamless
to the virtual machines running on them.

III. DETS System Design

Figure 4 shows the design of DETS. In the send rate
control module, there is one state machine for each re-
ceiving node. Also, there are two internal sub modules
in the receiving rate allocator module. The first module is
responsible for communicating with the sending nodes, and
the second module allocates the rates to the sending nodes.

A. Rate Allocator Module

The core part of the DETS system is the rate allocator
module that allocates the sending rate to each sending
node. The rate allocator module utilizes a Rate Allocation
Algorithm (RAA) to determine the rate at which each
sending node can send traffic to the receiving node.

In RAA design, we need to consider that the measure-
ments in the send rate control modules are capped by the
rate set by RAA. To better explain this limitation and
its implication on algorithm design we use an example
scenario. Assume that in figure 3, the system in a steady
state with four virtual nodes (V N11 to V N14) sending
traffic to VN15 with rates (80, 80, 20, 20)Mbps respectively.
At this point, if VN11 stops sending traffic to VN15 the
rate allocator algorithm may reallocate the vacant rate to
other nodes. However, since there are no measurements
for sending rate above the rate limits, the RAA needs a
mechanism to probeV N12 to V N14 to see if the sending
nodes need to send more traffic or not. Without a probing
mechanism, RAA would allocate rates to a node that might

input : Active nodes list and their requested rate and
send capacity

output: Calculates granted rate to each node

1) Inflate requested rate of the nodes that fully use
their allocated rate by 10%;

2) Calculate the total requested rate;

3) Calculate the ratio of increase and decrease the
requested rate based on the available rate;
ratio← totalReqRate/totalAvailableRate;

4) while There are unallocated rate and nodes with
sending capacitydo

grantRate[i]←
min(reqRate[i] ∗ ratio,maxRate[i]);
if reqRate[i] ∗ ratio > maxRate[i] then

fairly distribute extra rate among other nodes;
end

end

Algorithm 1: RAASlowProbe

not need the extra allocated rate and the available bandwidth
would be wasted.

The probing mechanism allows us to provide fairness in
rate allocation to virtual nodes. Assume that in the above
example, all nodes have similar importance, and have equal
amount of traffic to send to VN15, so the above allocated
rate is not fair since two of the virtual nodes have been
allocated rates (80 Mbps to each) that are much more than
the rates allocated to the other two nodes. IfV N13 and
V N14 had more traffic to send this rate allocation is unfair.
In this case, the probing mechanism in RAA starts probing
nodes with lower allocated rates to see if they have more
traffic to send, and whether they need more allocated rate.

The probing mechanism in RAA is done through gradual
increase and decrease in rate allocations to different nodes
and monitoring the increase and decrease in rate measure-
ments. The probing mechanism may reduce bandwidth uti-
lization, but this might be acceptable in order to overcome
the above mentioned problem.

Another important factor in RAA design is to consider
the available traffic sending capacity in the sending nodes in
rate allocation. Assume that in figure 3,V N14 is sending 20
Mbps toV N15, and 80 Mbps toV N12, and its total send
limit is 100 Mbps. Therefore,V N14 cannot send any more
traffic to V N15. Therefore, the rate allocator algorithm in
PN5 should consider the available sending capacity of the
sending nodes in its rate allocation.

There are a number of possible allocation algorithms that
can be used in this system. Next, we propose four of these
rate allocation algorithms: Fair Share algorithm (RAA-FS);
Slow Probe algorithm (RAA-SP); Fast Probe algorithm
(RAA-FP), and Forward Explicit algorithm (RAA-FE).

The fair share algorithm (RAA-FS) calculates a fair
rate by dividing the receiving rate limit by the number
of sending nodes that have traffic to send, and allocates
that fair share to each of the active sending nodes. This
algorithm is suitable for the cases where the sending nodes

input : Active nodes list and their requested rate and
send capacity

output: Calculates granted rate to each node

1) Execute Slow Probe algorithm;
grantRate← RAASlowProbe();

2) Sort all nodes that fully utilized their allocated rate
according to their granted rate, and calculate the
mean of the granted rate to them;

3) while pick a node with highest rate above mean
rate(upper) do

while pick a node with lowest rate below mean
rate(lower) do

Multiply the rate of lower node byd and
deduce the increase from higher node,
considering lower node send capacity;

if upper node new rate goes below meanthen
average lower and upper rate and assign
avg rate to both;

end
end

end

Algorithm 2: RAAFastProbe

need to be treated similarly in the rate allocation process,
independent of the amount of required traffic.

In this rate allocation mechanism, if the calculated fair
rate is more than the sending capacity of a sending node, the
extra rate is fairly distributed among other sending nodes
with available sending capacity. This algorithm is oblivious
to the difference in rate requested by each active node, and
does not perform any probing to see if the nodes have more
traffic to send or not. Although RAA-FS is fair but it might
result to bandwidth underutilization, since some sending
nodes might not need all of the allocated rate.

The second algorithm, slow probe algorithm (RAA-
SP), allocates rates to the sending nodes based on the
rate measurement reports received from their send rate
control modules. The algorithm identifies the nodes that
are fully utilizing their allocated rate, and inflates their
rate request by a percentage (for example 10%) to give
them an opportunity to increase their rate realtive to other
sending nodes that are not using their allocated rate. RAA-
SP then calculates the total requested rates and allocates
a portion of the available bandwidth to each node. This
portion is calculated based on the inflated request rate and
the receive rate limit as presented in this algorithm’s pseudo
code (Algorithm 1).

RAA-SP gradually probes the sending nodes that are
fully utilizing their allocated rate, and gives them a better
chance of getting more allocated rate. RAA-SP, however,
does not address the fairness problem, since it does not
reallocate the rate from the high rate allocated nodes to the
low rate nodes.

The third algorithm, fast probe RAA (RAA-FP), extends
the slow probe algorithm by reallocating the sending rates
from the higher rate allocated nodes to the lower rate

allocated nodes. In contrast to the two previous algorithms,
RAA-FP addresses both fairness and bandwidth utilization
concerns. This algorithm sorts the nodes that fully utilize
their allocated rate and calculate the mean allocated rate
to these nodes (shown in the pseudo code presented in
Algorithm 2). RAA-FP then picks the nodes with the
highest allocated rate, and the lowest allocated rate. RAA-
FP multiplies the rate allocated to the lowest rate allocated
node by a parameter (d > 1) and deducts that extra allocated
rate from the node with highest allocated rate if the resulting
deducted rate does not go below the mean allocated rate.
Otherwise, it takes an average between the highest and
lowest rate allocated nodes, and allocates this average rate
to both of them. This change in the allocated rate is done
considering the free sending capacity of the node with lower
allocated rate. This operation is repeated on the next two
nodes with the next highest and lowest allocated rates until
all allocated rates to the fully utilizing nodes get revised.

Our performance evaluations show that the fast probe
rate allocation algorithm (RAA-FP) is able to achieve
probing algorithm goals rather quickly, since it gives more
opportunity to nodes that are fully utilizing their allocated
rate to send more traffic. Moreover, it achieves better
fairness in rate allocation since it reduces the gap between
the nodes with high allocated rates and nodes with low
allocated rates. The choice of parameterd controls the trade
off between the fairness and bandwidth utilization. A small
d value results in more bandwidth utilization but lowers
fairness in rate allocations. On the other hand, A choice of
large d results in lower bandwidth utilization in exchange
of higher fairness in rate allocation.

The fourth algorithm is inspired by the FERA algorithm
introduced in [9] for FECN-based Ethernet congestion man-
agement. This algorithm is designed to enable comparison
between a DETS-based rate allocation system and a FECN-
based system. The essence of FERA is to control the queue
length of an outgoing Ethernet switch port by assigning
a fair share rate to flows passing through that port. This
algorithm uses a linear (or a hyperbolic) control function
to adjust the allocated (fair) rate to achieve a target level
on queue length (Qeq).

We modified this algorithm to arrive at a target receiving
rate at the receiving node. This algorithm (called RAA-FE)
calculates a fair rate (ri+1) at (i + 1)th interval, based on
the ri value atith interval, and a control functionf(r) =
1 − k ∗ r−Rt

Rt

in which k is a constant,r is the measured
receiving rate, andRt is the target rate.

DETS sends back the calculated rates to the sending
nodes, and the sending nodes apply the rates to their rate
controller modules. Compared to the previous algorithms,
this algorithm does not require the rate measurements at
the sending nodes, and does not support weighted fair
allocation.

In the original FERA, intervals are as low as 1 ms, but
in DETS intervals are about 55 ms. Therefore, the rate reg-
ulations are done every 55 ms that makes rate convergence
a challenge for this algorithm. Although the linear control
function leads to a faster convergence time compared to the

200 400 600 800 1000
0

200

400

600

Time

200 400 600 800 1000
0

500

1000

TCP Rate (Mbps)
VLAN 1

UDP Rate
(Mbps)
VLAN 2

Fig. 5: DETS performance evaluations for system shown in
Figure 1

hyperbolic function, but as our experiments show, RAA-FE
takes about 40 intervals (> 2s) to converge to the fair rate.
The analytical results show this slow convergence as well
[9]. This is mainly because this algorithm does not include
the sending rate measurements.

IV. Performance Evaluations

In this section, we first show that DETS can achieve
isolation between virtual LANs. We implemented the DETS
system in C++ and deployed it on 11 nodes with 1GE
Ethernet connections in a computing cluster, and we cre-
ated two VLANs on the Ethernet switches. As in our
VANI processing virtualization service [4], we used Linux
vServer technology for virtualization and deployed two
virtual nodes on each physical server. One virtual node in a
physical node is connected to VLAN 1, and the other one
is connected to VLAN 2. This setting is similar to the one
depicted in figure 1, except that we used eleven physical
nodes instead of five nodes.

We set the send and receive limit rate for all virtual nodes
in the first VLAN to 400 Mbps, and in the second VLAN
to 500 Mbps, and we used the fast probe rate allocation
algorithm on both VLANs with parameterd = 2. We started
sending TCP traffic from 10 nodes to one node. We expect
that DETS control the rate that the receiving node receives
traffic, and limit it to 400 Mpbs. We also expect that if the
nodes in the second VLAN start sending UDP traffic to
the receiving node, the TCP flows destined to that machine
don’t get overwhelmed with the interfering UDP traffic.

Our results (presented in figure 5) show that DETS is
able to achieve both goals. In this figure, the rate measure-
ments are shown in every time unit (every 55 ms). As can be
seen, when all nodes in the second VLAN simultaneously
start sending UDP traffic to the receiving node (around time
unit 320 in figure 5), momentarily TCP traffic on the first
VLAN gets disrupted, and it takes two time units for the
control algorithm to receive the measurements and make the
decision and apply the limits on the sending nodes. After

500 1000 1500
100

200

300

400

500

600

700

800
R

ec
ei

ve
d

ra
te

 (
M

bp
s)

a1) RAA−SP

500 1000 1500
0

100

200

300

400
a2)

R
at

e
(M

bp
s)

Mean
StdDev

500 1000 1500
100

200

300

400

500

600

700

800
b1) RAA−FP

500 1000 1500
0

100

200

300

400
b2)

Time

Mean
StdDev

500 1000 1500
100

200

300

400

500

600

700

800
c1) RAA−FS

500 1000 1500
0

100

200

300

400
c2)

Time

Mean

500 1000 1500
100

200

300

400

500

600

700

800
d1) RAA−FE

500 1000 1500
0

100

200

300

400
d2)

Mean

Fig. 6: Performance evaluation of the four rate allocation algorithms a) RAA-SlowProbe b) RAA-FastProbe c) RAA-
FairShare d) RAA-ForwardExplicit

this short transient period, TCP traffic is able to bounce
back quickly, and continue sending information at the limit
rate which is 400 Mbps.

We also evaluated and compared the performance of the
four allocation algorithms. To do so, we set up a VLAN
with 10 virtual nodes sending a mix of UDP and TCP traffic
to one virtual node, and we monitored the received traffic
on the receiving node. We also limited the peak rate of
three of the sending nodes to a low limit (to 20Mbps). This
helps us better compare the performance of the proposed
algorithms.

We developed an on/off burst traffic generator that is able
to generate a burst of UDP or TCP traffic for a random
period between0 and T , and stops sending traffic for
another random period between0 andT . We used various
values forT ranging from0.5s to 10s on different nodes.
This traffic generator enables DETS performance evaluation
under time varying and bursty UDP and TCP traffic.

Figures 6(a1, b1, c1, d1) show the received rate measure-
ments on the receiving node for all algorithms for the period
of 82 seconds (1500 time units). Figures 6(a2, b2) show the
measured mean and standard deviation of the allocated rate
to the nodes by the slow probe and fast probe (d = 2)
algorithms, respectively. Figures 6(c2, d2) show the mean
value of the allocated rate by RAA-FS, and RAA-FE. The
fluctuations in the received rate measurements are due to
the on-off nature of the generated traffic.

It can be seen that the fast probe and the slow probe algo-
rithms achieve better utilization of the received bandwidth
compared to the fair share algorithm, especially since some
of the nodes have less sending capacity compared to the
other nodes. As it was expected, the slow probe algorithm
outperforms the fast probe algorithm in term of its receiving

bandwidth utilization. However, the fast probe algorithm is
able to achieve a low standard deviation between different
flows coming from different virtual nodes compared to the
slow probe algorithm.

The RAA-FE algorithm performs poorly compared to
the other algorithms and has a slow convergence rate, and
it has difficulty stabilizing. This is mainly because of the
fluctuations in the generated traffic. RAA-FE also does not
consider the sending rate measurements, and does not have
a probing mechanism.

In general, the fast probe algorithm is better than other
algorithms if weighted fairness is required, but if a user
needs fairness in rate allocation the fair allocation schema
can be picked. The slow probe algorithm is for the cases
where the user wants to increase the bandwidth utilization in
expense of fairness, and does not want a sudden change of
a traffic flow rate and prefers a slow change. In DETS, it is
possible to have different rate allocation algorithms running
on different virtual networks, as long as algorithms satisfy
the network isolation requirement. This allows users to pick
an algorithm that suits their needs.

V. Modifications to Ethernet Control Plane

Here we discuss inclusion of DETS protocol in the
Ethernet control plane so that Ethernet switching equip-
ments can perform DETS operations even without (or with
minimum) help from hosts attached to the Ethernet network.

We propose that in an Ethernet network, the distributed
modules in the DETS system be embedded in Ethernet
switches, and DETS messages be added to the Ethernet
control messages. To do so, controlling traffic to a receiving

DETS DETS

DETS

DETS Control Messages

Sending Node
Receiving Node

Ethernet Switch

SW1

SW2

SW3

8 5

Fig. 7: DETS in Ethernet control plane

node has to be done on ingress ports by the edge Ethernet
switches. These messages could be added to the MAC
Control type of Ethernet frames (EtherType = 0x8808)
as specified in IEEE 802.3 family of specifications [6].
The only message currently defined in this type of frame
is the PAUSE message (opcode = 0x0001). The DETS
messages can use other free opcodes in this frame type.
These messages have to be in VLAN-tagged frames, since
DETS is designed to control the rate on VLANs.

Figure 7 shows an Ethernet network equipped with
DETS. The rate allocator module operates on the receiving
port of an edge Ethernet switch (SW3,port number 5) and
the send rate control module and the traffic shaper operates
on the sending port of originating edge Ethernet switch
(SW1,port number 8). The set rate messages are sent from
the receiving port to the sending port. The sending port
applies the allocated rate to the sent traffic, and can forward
the rate control messages to the sending host in case it (or
its NIC) is able to do the traffic shaping.

VI. Conclusion and Future Work

We presented a distributed system for traffic shaping in
Ethernet networks. The DETS system is required where
there is a host node connected to several virtual local
area networks, and the sending and receiving traffic rate
on each of these virtual networks has to be guaranteed
and controlled. Without this control, an excess of received
traffic on one of these virtual networks could disturb other
virtual networks ability to receive traffic in a guaranteed
rate. We presented a design and a protocol for the DETS
system. Moreover, we proposed four different algorithms
for rate allocation in DETS, and through experimental
performance evaluations showed DETS effectiveness in an
example network.

We also proposed modifications to the Ethernet control
plane so that DETS can be natively supported by Eth-
ernet networking elements. We intend to further explore
these modifications and develop proof of concept Ethernet
switches with this capability using the hardware resources
developed for VANI.

References

[1] Cloud Computing Definition, National Institute of Standards
and Technology, Version 15, 2006. Available at http://csrc.
nist.gov/groups/SNS/cloud-computing/index.html.

[2] Data center evolution: A tutorial on state of the art, issues,
and challenges.Computer Networks, 53(17):2939 – 2965,
December 2009.

[3] Bannazadeh H., Leon-Garcia A., and et. al. Virtualized
Application Networking Infrastructure. InProc. of the 6th
International Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communities,
to appear, Berlin, Germany, May 2010.

[4] Redmond K., Bannazadeh H., Leon-Garcia A., and Chow
P. Development of a Virtualized Application Networking
Infrastructure Node. InProc. of the 3rd IEEE Workshop
on Enabling the Future Service-Oriented Internet, Honolulu,
Hawaii, December 2009.

[5] Guohui Wang and T. S. Eugene Ng. The impact of virtual-
ization on network performance of amazon ec2 data center.
In Proceedings of the 29th IEEE Conference on Computer
Communications, INFOCOM 2010, San Diego, CA, March
2010.

[6] IEEE 802.3x-1997, Local and Metropolitan Area Networks:
Specification for 802.3 Full Duplex Operation, 1997. Avail-
able at http://standards.ieee.org.

[7] IEEE 802.1au, Virtual Bridged Local Area Networks
Amendment Congestion Notification. Available at www.
ieee802.org/1/pages/802.1au.html.

[8] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
Rong Pan, B. Prabhakar, and M. Seaman. Data center
transport mechanisms: Congestion control theory and ieee
standardization. InCommunication, Control, and Computing,
2008 46th Annual Allerton Conference on, pages 1270–1277,
Sept. 2008.

[9] Jinjing Jiang, R. Jain, and Chakchai So-In. An explicit rate
control framework for lossless ethernet operation. InCom-
munications, 2008. ICC ’08. IEEE International Conference
on, pages 5914–5918, May 2008.

[10] Gary McAlpine, Manoj Wadekar, Tanmay Gupta, Alan
Crouch, and Don Newell. An architecture for congestion
management in ethernet clusters. InIPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed
Processing Symposium - Workshop 9, page 211.1, 2005.

[11] Linux Advanced Routing and Traffic Control. Available at
http://lartc.org/.

