
HGrid: A Data Model for Large Geospatial Data Sets in HBase

Dan Han, Eleni Stroulia

Department of Computing Science
University of Alberta

Edmonton, Canada
{dhan3, stroulia}@ualberta.ca

Abstract—Cloud-based infrastructures enable applications
to collect and analyze massive amounts of data. Whether
these applications are newly developed or they are being
evolved from existing RDBMS-based implementations, NoSQL
databases offer an attractive platform with which to address
this challenge. However, developers find it difficult to effectively
manage data in NoSQL databases, because these platforms
do not offer much support for data organization. Since poor
data organization may abuse the features of the NoSQL
database and result in unsatisfactory performance, developing
a systematic method for NoSQL database data-schema design
is a timely and important problem.

In this paper, we focus on geospatial applications, as a
family of big-data systems with distinct data types and usage
patterns, in need of scalability. We propose the HGrid data
model for HBase, based on a hybrid index structure, combining
a quad-tree and a regular grid as primary and secondary
indices correspondingly. We have comparatively evaluated
the performance of HGrid with uniform and skewed data,
against two other data models based on quad-tree and regular-
grid indices. Our results demonstrate that HGrid scales well
and supports efficient performance for range and k-nearest
neighbor queries. Although this model does not outperform
all its competitors in terms of query response time, it is
more flexible for discontinuous and skewed space, and its
index requires less space than the corresponding quad-tree and
regular-grid indices, which makes its deployment possible with
less resources. Through this study, we also formulate a set of
guidelines on how to organize data for geospatial applications
in HBase.

Keywords-Data Model; Data Schema; Geospatial Data Set;
HBase; Coprocessor

I. INTRODUCTION

With the explosive increase of location-aware devices

(GPS-enabled smartphones and vehicles, RFIDs, tablets, etc)

and the proliferation of sensor-based systems, location-based

services that contextualize the user experience are grow-

ing. A prominent example of this phenomenon is location-

aware advertisement and recommendation, where the user is

provided with advice on real-service opportunities close to

her. Taking advantage of these location-aware services are

millions of users, who continuously register their location

updates through their wireless providers. In addition to user-

facing services, smart systems embed sensors and activators

in our environment for monitoring and management; these

systems also generate massive amounts of data updates and

rely on analyzing this data over time and across space.

The challenge with these applications is how to guaran-

tee satisfactory performance for real-time analysis, while

at the same time, supporting millions of location up-

dates per minute. To address these requirements, database-

management systems (DBMS) must scale up while main-

taining good load balancing and high up-time [1]. As most

typical queries of these applications involve the retrieval of

multi-attribute values related with some proximity function

to a given geographic location, efficient multi-dimensional

geospatial data access is also an important requirement.

Relational database-management systems (RDBMSs) sup-

port efficient spatial queries with special-purpose index

structures, such as K-d tree [2], quad-tree [3] and R-

tree [4]. However, RDBMSs are challenged by the scaling

requirements of this new breed of applications, requiring

complex hardware setup and configuration. NoSQL (Not

Only SQL) databases, endowed with availability, elasticity

and scalability through their easy deployment on cloud-

computing platforms, become a more attractive solution for

these applications [5]. However, data in NoSQL databases

is stored in an unstructured manner, based on a primary key

and attributes organized in column families. Even though

some rough guidances about schema design have been

provided by the specific NoSQL database offerings, such

as HBase [10], there is still no systematic method for how

to actually design the structure of the “NoSQL Big Tables”

for a particular application. The data organization has a great

impact on the performance of the queries implemented on

these tables, and therefore, a systematic method for NoSQL
data-schema design for geospatial applications is a timely

and important problem in this area.

This is exactly the problem we aim to address with

our work on HBase, the open-source implementation of

BigTable [6]. To that end, we have developed the HGrid data

model for organizing geospatial data sets, a hybrid two-

tier index structure, tailored to the HBase three-dimensional

storage mechanism. The primary index is a quad-tree that

divides the data space into rectangular tiles, and encodes

each tile according to a Z-ordering traversal [7]. Next, a

regular-grid index structure is used to divide each quad-

tree tile into a sequence of contiguous rectangular cells.

Each cell is assigned a unique identifier, constructed as the

concatenation of the cell’s row index and column index in a

2013 IEEE Sixth International Conference on Cloud Computing

978-0-7695-5028-2/13 $26.00 © 2013 Crown Copyright

DOI 10.1109/CLOUD.2013.78

910

grid. In this data model, the row key of each data point is the

concatenation of the z-value of the quad-tree tile in which

the data point belongs, and the row index of its regular-
grid cell in the second-tier regular-grid index. The column
name is constructed by concatenating the column index of
its regular-grid cell and the object id. Finally, the various

attributes of each object are stored in the third dimension.

We empirically evaluated the performance of this data

organization with two synthetic data sets, with uniform and

skewed data distribution correspondingly. Compared against

a pure quad-tree data model and a pure regular-grid data

model, we found that HGrid can be flexibly configured for

a range of cell sizes, and although it exhibits slightly poorer

performance than the regular-grid data model, its index

requires less space than the corresponding quad-tree and

regular-grid indices, which makes its deployment possible

with less resources. It is more scalable and suitable for

homogeneously covered and discontinuous spaces.

The rest of the paper is organized as follows. Section II

reviews the background of this work on geospatial data,

multi-dimensional index structures, linearization methods,

HBase and introduces related works of geospatial data

studies. By comparing with quad-tree against the regular-

grid data model, we describe the HGrid data model and

evaluate it with range query and k-nearest neighbor query

in Section III. Section IV reports the experiment result with

different data distributions under different data models and

summarizes a set of suggestions about HBase schema design

and query implementation. We conclude our contributions

and future work in Section V.

II. BACKGROUND AND RELATED WORK

The data points in geospatial data sets are typically

multi-dimensional, including their coordinates (latitude and

longitude), a timestamp, and a description (identifier and

attributes) for the domain object at the data point [1]. Range

queries (identifying the data points within a radius from a

given location) and k-nearest neighbor queries (identifying

the k data points closest to a given location) are the most

common queries on these data sets.

A. Multi-Dimensional Indices

Spatial data are typically organized using “space-driven”

or “data-driven” indices. In data-driven structures, such as

R-tree [4], the distribution of the objects to be stored

determines the partitioning of space. Since the most common

queries in geospatial applications are typically based on

locations, in our work we focus on space-driven approaches

to data organization. An example of “space-driven” orga-

nization is a grid where objects are associated with a grid

cell based on their position in the space, and an index of

grid-cell identifiers enables rapid access. In this organization,

the grid-based spatial index is created first and the data is

added incrementally without causing any change to the index

structure.

The regular grid is the simplest grid-based spatial index.

It partitions a rectangular domain using rectangular cells of

equal size [8]. An associated matrix, i.e., a two-dimensional

array, maps each grid cell to the array of data points located

within the space covered by the cell. The quad-tree recur-

sively splits the space into subspaces organized in a search

tree. Two methods are commonly used to split the given

space [1]: the trie-based approach splits the space at the

mid-point of a dimension, resulting in equal-size subspaces.

The point-based technique splits the space in subspaces with

equal number of data points [2]. Quad-tree is commonly

coupled with space-filling curves [9] to linearise the sub-

spaces. Z-ordering [7] is an easy-to-compute example of a

space-filling curve.

B. HBase Storage Model Overview

HBase uses the Hadoop File System (HDFS) as its un-

derlying data-storage platform. Unlike the two-dimensional

tables of traditional RDBMSs, HBase organizes data in a

three-dimensional cube. The basic data storage unit in HBase

is a cell, which is identified with its row key, column-family
name, column name and version[10]. Cells with multiple

versions of data can be stacked in the third dimension. For

example, the third dimension is used to stack the contents of

message IDs in the Facebook messaging system [11]. At the

physical level, each column family is stored contiguously on

disk, and the data is physically sorted by row key , column
name and version.

The HBase Coprocessor framework, inspired by Google’s

BigTable Coprocessor [6], provides a library and run-

time environment for executing user code on the HBase

region servers. Coprocessor implementations are executed

remotely at the target region(s) hosted by region servers,

and their execution results are returned to the client. This

design decreases the communication overhead involved in

transferring data from the region servers to the client, and

enables dramatic performance improvement by pushing the

computation to the server, where it can operate on the data

directly. To reap the benefits of this framework, an appropri-

ate partitioning of the data is necessary, which implies the

need for a well-designed data schema. This is the reason

why, in our work, we have focused on investigating the

impact of different HBase table schemas on the performance

of query execution using the Coprocessor framework.

To date, two proposals have been put forward for the

organization of geospatial data in HBase. S. Nishimura et.

al[1] built a multi-dimensional index layer on top of HBase

to perform spatial queries. Ya-Ting Hsu et. al [12] presented

a novel key-formulation schema, based on R+-tree for spatial

index in HBase. Both studies investigate how to efficiently

access the multi-dimensional data with spatial indices, which

is part of the problem that we are addressing in this paper.

Their methods demonstrate efficient performance with the

spatial indices. However, they only focus on the design

911

of the HBase row key with no or little discussion about

the column and version design. To design an appropriate

data model for geospatial datasets, which can be easily and

directly applied to geospatial applications, in addition to

the row key, one need also take into account the design

of the column name and the role of the third dimension.

Furthermore, in our work, we implemented the queries with

HBase Coprocessor to harness the parallelism benefits, while

the above studies processed the queries with HBase Scan.

III. THE HGrid DATA MODEL FOR HBASE

In this section, we first review the two data models under-

lying the design of HGrid. Next, we describe the HGrid data

model and the index-construction process. Finally, we ex-

plain the implementation of two queries commonly used in

location based service under this data model.

A. Preliminary Data Models

As we have already discussed, the HGrid data model for

HBase is inspired by two simpler data models: the quad-tree

data model and the regular-grid data model.

1) The Quad-Tree Data Model: The quad-tree data model

relies on a trie-based quad-tree index, where Z-ordering

[7] is applied to transform the two-dimensional spatial data

into a one-dimensional array. In this model, the row key,

which should be kept as short as possible, is the Z-value in

decimal encoding, i.e., “0”,“1”,“2”,“3”. The column name is

the object ID, and each cell stores one data point in JSON

format.

There are three performance concerns about this data

model. First, as the quad-tree becomes deeper, the data

points end up being organized into more rows. As a result,

queries have to scan more grid cells in order to retrieve all

data points within a range, or close to a location; at the same

time, the more rows are scanned, the more unrelated-to-the-

query data is accessed, causing performance deterioration.

Moreover, the Z-ordering linearization technique, although

appealing because of its simple computation, does not main-

tain good data locality, and subsequent grid cells are not

necessarily close to each other in space. As a result, scan-

ning more contiguous rows is even more likely to inspect

irrelevant rows (i.e., rows corresponding to grid cells not

sufficiently close to the query location), which increases the

amount of accessed data and causes performance to suffer

further. The last but not least issue is with the construction

of the quad-tree. If the index is built in real time for each

query, the construction cost dominates in small queries. If

the index is maintained in memory, the granularity of the

grid is limited by the amount of memory available, since

the memory needed to maintain the index increases as the

depth of the tree increases and the size of the grid cells

becomes smaller.

2) The Regular-Grid Data Model: In the regular-grid data

model, the row key is the row index of the cell in the grid,

the column name is the column index of the cell, and each

storage cell represents one object in JSON format holding

all other attributes and values. The third dimension holds a

stack of data points located in the same grid cell, and an

index is maintained to keep the count of objects in each cell

stack in order to support updates.

This index structure maintains data locality: data points

close in the y dimension are likely to be in the same or

neighboring rows and data points close in the x dimension

are likely to be in the same or neighboring columns. With

this data model, the data point can be determined efficiently

by both of row and column and the unrelated data can

be pruned with the Bloom filter.1 However, in densely

populated spaces, the number of objects in columns in each

row increases. Because the time to retrieve a row with n
data points more than doubles with n (when n is large) [12],

the query performance will decrease. In addition, as there

is no mechanism to filter the objects located in one column

in this data model, more objects are retrieved in a query,

which results in a higher number of false positives. A finer-

grained grid would reduce the false positives but it would

imply a larger cell-stack in-memory index, which may not be

possible due to memory limitations. Given a certain amount

of memory, this data model reaches a bottleneck when it

comes to a large space with finer-grained grid cells.

Summarizing the relative advantages and disadvantages

of the quad-tree and regular-grid data models, we note that

the quad-tree data model is not efficient when it comes to

large queries, as more irrelevant data must be scanned. The

regular-grid data model is preferable in that respect because

it has better localization and can provide very good pruning

of the unrelated data. Query processing becomes inefficient

in the regular-grid data model when it comes to large high-

density spaces, as the amount of objects grouped in one

row increases rapidly. Both the quad-tree data model and

the regular grid data model are constrained by the size of

available memory, in terms of how fine-grained the grid cell

may become.

Considering the advantages and disadvantages of these

two data models, we designed the HGrid data model. Using

a two-level index structure, the HGrid data model avoids the

regular-grid drawback by splitting large geographic spaces

in tiles using a quad-tree index, and takes advantage of the

localization feature of the regular-grid data model in the

second-level index.

B. The HGrid Data Model Representation

Figure 1 diagrammatically depicts the HGrid data model.

First, the space is divided into equally sized rectangular tiles

1The Bloom filter is a space-efficient probabilistic data structure to be
used to check whether an element is a member of a set [13]. It is supported
in HBase to reduce the disk lookups for unrelated rows or columns.

912

Figure 1. HGrid Data Model Figure 2. An example of HGrid Index

T, encoded with their Z-value. Next, the data points are or-

ganized in a regular grid of continuous uniform fine-grained

cells. In this model, each data point is uniquely identified

in terms of its row key and column name. The row key is

the concatenation of the quad-tree Z-value and the regular-

grid row index. The column name is the concatenation of

the regular-grid column index and the object id of the data

point. The attributes of the data points are stored in the third

dimension.

Figure 2 illustrates with an example how the HGrid index

is constructed. Given a specification of the overall space

within which the geospatial data set is to be contained,

the minimum boundary rectangle (MBR) of the space, i.e.,

the smallest rectangle that completely contains the space, is

computed. The depth of the quad-tree is determined by the

user-specified size of the tile. Each tile is associated with

an index that corresponds to its rank according to the Z-

ordering linearization. Each quad-tree tile contains all the

data points whose coordinates belong in the space covered

by the tile. Clearly, many data points may belong in the

same tile and share the same tile code; there also may be

empty tiles, with no data points at all. For the empty tiles,

there are no relevant records stored in HBase.

Next, given the desired regular-grid resolution, the quad-

tree tiles are decomposed into equally sized rectangular cells.

Each cell is coded with the row and column index of the

regular grid; this cell code becomes the secondary index for

every data point in the cell.

There are two challenges in the configuration of this

index-construction process: deciding (a) the appropriate

granularity for tessellating the original space in quad-tree

tiles, and (b) the appropriate granularity of the regular grid

in the second stage. Based on our experience, we have found

that the best resolution depends on the data distribution and

the likely queries. The finer the quad-tree tile granularity,

the more irrelevant rows will have to be pruned from the

return set of Scan queries due to poor locality of Z-ordering.

Alternatively, if direct Get access operations are used, more

sub-queries will be required. Therefore, there is a trade-off

between the size of tiles in the first stage and the size of cells

in the second stage. Much experimentation with different

levels of quad-tree and granularity of regular grid is needed

in order to optimize the performance for a specific data set.

C. Query Processing

There are two ways for processing queries in HBase.

Using a Scan operation, a number of rows corresponding

to a range of row keys are retrieved and the response set

is computed at the client-side. Using Coprocessor, partial

response sets are computed in each region and are then

aggregated at the client side.

Range queries are commonly used in location-based ap-

plications. Given the coordinates of a location and a radius,

a vector of data points, located within a distance less than

or equal to the radius from the input location, is returned.

Relying on the HGrid data model and using Coprocessor,

answering this query involves the following steps.

(1) Given the query input location and the range, the mini-

mum bounding square that completely includes the implied

circle around the input location is computed.

(2) Next, the quad-tree tiles that overlap with the computed

bounding square are identified. The Z-codes of these tiles

provide the primary index of the HBase rows of interest.

(3) Next, the overlap between the bounding square and

each intersecting quad-tree tile is computed to identify

the regular-grid cells involved. Based on these cells, the

secondary index of the rows to be examined and the cor-

responding column indices become available.

(4) Having now computed the range of rows and columns

involved in the query, a sub-query is issued for each selected

tile or the parent tile of selected continuous tiles of the quad-

tree and processed by user-level Coprocessor on the HBase

regions; the results of the sub-queries are accumulated at the

client-side.

k-Nearest Neighbor (kNN) queries identify a number (k)

of data points near to an input location. The process for

computing kNN queries on the HGrid data model, using a

Scan-based implementation, is as follows.

(1) First, we apply the density-based range estimation

method introduced by Liu et.al [14] to estimate the search

range.

(2) Given the search-range estimate, the queried indices of

rows and columns are computed as described in steps 2 and

3 of Range Query above.

(3) Next, a Scan query is issued to retrieve the relevant data

points.

(4) If fewer than k data points are returned, the search-range

estimation is expanded and the above steps are repeated.

(5) Finally, a sorting step orders the return set in increasing

distance from the input location.

IV. EXPERIMENTAL RESULTS

Our experiments were performed on a four-node cluster,

running on four virtual machines on an Openstack Cloud.

The virtual machines run 64bit Ubuntu 11.10 and have 2

cores, 4GB of RAM, and a 200 GB disk. We used Hadoop

version 1.0.2, and HBase version 0.94. Hadoop and HBase

were each given 2GB of Heap size in every running node.

913

HDFS was configured with a replication factor of 2. HBase

was managing its own Zookeeper instance running on the

same machine as the HMaster.

In the experiment, gzip compression was configured on

the table to reduce the data-transmission time. Next, the

ROWCOL filter 2 was applied on each table for narrowing

the queried range. The scan cache size was set to 5000 and

the block cache was set to true, for the query processing.

Finally, minor and major compaction were manually done

to avoid the ultra size of store files after the data uploading.

For all test cases, we ran the experiment 5 times and we

report the mean of the last three. We implemented the Range

Query processing with the Coprocessor framework and kNN

Query with Scan, considering the relatively small queried

range in kNN Query.

A. The Data Set

For our experiments, we used two synthetic data sets

because (a) we needed a “big” data set, with a sufficiently

large number of data points, and (b) we needed to control

the data distribution and its impact on the performance

of the three different data organizations. The synthetic

data set was generated based on the Bixi data set [15],

which includes minute-by-minute readings from 404 bike

stations around the city of Montreal. Each reading consists

of the following attributes: timestamp, station id, latitude,

longitude, station name, terminal name, number of docks,

and number of bikes. With the same format of station

object in Bixi data set, the synthetic data set augments the

number of stations from 404 to one hundred million, locating

them in random coordinates, following a uniform and Zipf

distribution, using commons-math3-3.0.jar. The factor of

Zipf distribution is 1.0, which represents moderately skewed

data. The simulated space area is 100km*100km. This data

set basically represents one hundred million objects at a

certain timestamp. The size of data set is about 70GB.

B. Index Configuration

The granularity of the cells in terms of which the space

is tessellated is a very important variable that substantially

affects the query-processing performance. This is why, be-

fore we compare the three data models against each other,

we have explored the “best” cell configuration for each

model. In this first round of experiment, we varied the size

of the cell to observe how different cell sizes affect the

performance of each data model. We set the size of the cell

at 0.1km, 1km, and 10km. Consequently, in the regular-grid

index, the 10,000km2 space is divided into 1, 000 ∗ 1, 000,

100 ∗ 100, and 10 ∗ 10; in the quad-tree index, as the space

is split at the mid-point of a dimension each time, the size

of the cell is less or equal to the configured value above.
2This is a type of Bloom Filter. When applied, the hash of the row

key,column family, column family qualifier is added to the bloom on each
key insert. It can help prune the data from both row and columns sides.

1) The Quad-Tree and Regular-Grid Data Models: For

our uniform-distribution data set of 100 million data points,

configuring the individual cell to cover a 1km*1km space

results in 100*100 square cells with an average number of

10,000 data points in each cell. As a row corresponds to

a cell in the quad-tree data model, there are approximately

10,000 rows in total, and in each row, there are about 10,000

columns (one for each data point) with a depth of one. In the

regular-grid data model, row keys correspond to the indices

of the grid rows and the column names correspond to the

column indices; as a result there are at most 100 rows and

100 columns. In each cell, there may be a stack of about

10,000 data points. Given the same amount of data and the

same grid granularity, the quad-tree data model results in

a wide, shallow, and long table, while the regular-grid data

model results in a narrow, deep, and short table. With a

fixed cell size, as the amount of data increases, the quad-

tree data model expands in the column dimension (i.e., the

table becomes wider), and the regular-grid data model results

in a deeper table as more data points get stacked on top of

each other in the third dimension.

Table I reports the response time for range queries issued

to the data set organized under the quad-tree and regular-

grid data models. The label “≈0.1” in “QT” column refers

to an experiment where the configured size of each cell is

0.1km, and the actual cell size is around 0.097km, with the

quad-tree depth being 11. The grid is divided into 210 ∗ 210
square cells. A range query is issued with the same reference

location and a number of different radiuses, ranging from

0.01km to 12km. The Target Objects column reports the

number of data points returned by that query. The column FP
(i.e., False Positive) represents the percentage of data points

returned to the client without actually belonging to the query

return set. The higher this percentage, the more undesirable

the situation since it implies that many irrelevant rows have

been scanned, and have been transferred through the network

to the client and have to be inspected and rejected by the

client in the post-processing phase.

From Table I we can see that for the quad-tree data model,

as the size of the cell decreases from 10km to 0.1km, the

performance improves substantially for the small queries,

while for the large queries, the result cannot be returned

before the timeout. This is because, for smaller queries,

only a small number of false positives rows is included in

the data returned to the client. On the other hand, for the

larger queries, many irrelevant rows have to be scanned,

since the Z-value for cell ordering does not preserve a good

locality (i.e., the neighboring relation) among subspaces.

Even though the HBase Coprocessor framework parallelizes

the query processing, at the core of the query processing

lies a Scan operation; therefore, better pruning of unrelated

data and fewer false positives remain the key of performance

improvement. The same principle also applies to the regular-

grid data model. The “RG” with the size of cell of 0.1km

914

Table I
EXECUTION TIME OF RANGE QUERY WITH VARIOUS SIZES OF CELL OF THREE DATA MODELS(S)

Radius Target QT (km) RG (km) HG (km)
(km) Objects ≈0.1 ≈1 ≈10 0.1 1 10 50:0.1 ≈10:0.1 ≈1:0.1 ≈:10:0.01 ≈10:0.001

0.01 1 0.112 0.252 7.710 0.131 0.208 6.196 0.208 0.185 0.211 0.188 0.177
0.05 72 0.145 0.249 7.743 0.135 0.221 6.242 0.222 0.231 0.178 0.202 0.241
0.1 315 0.141 0.240 7.731 0.147 0.213 6.257 0.246 0.238 0.175 0.225 0.292
0.5 7,868 0.539 0.692 7.644 0.285 0.478 6.277 0.504 0.509 0.454 0.556 0.906
1 31,411 0.846 0.767 8.252 0.572 0.870 6.232 0.914 0.926 0.803 1.052 1.166
4 502,587 8.787 7.655 9.589 4.544 5.763 7.711 6.224 6.410 7.426 7.243 7.619
8 2,012,583 NA NA NA 10.693 16.782 34.468 83.920 42.372 40.542 51.637 51.918
12 4,524,996 NA NA NA 27.545 34.576 39.570 NA 85.014 93.343 105.635 110.967

Table II
FALSE POSITIVE IN RANGE QUERY WITH VARIOUS SIZES OF CELL OF THREE DATA MODELS (%)

Radius Target QT (km) RG (km) HG (km)
(km) Objects ≈0.1 ≈1 ≈10 0.1 1 10 50:0.1 ≈10:0.1 ≈1:0.1 ≈:10:0.01 ≈10:0.001

0.01 1 99.91 99.99 99.99 99.00 99.99 99.99 99.00 99.00 99.53 80.00 50.00
0.05 72 95.29 99.70 99.99 82.48 99.28 99.99 82.48 82.48 82.65 35.71 28.00
0.1 315 79.41 98.71 99.98 65.42 96.86 99.97 65.42 65.42 65.03 30.62 23.17
0.5 7,868 86.07 91.93 99.50 36.21 80.19 99.21 34.71 34.71 30.12 22.89 21.67
1 31,411 63.68 67.77 97.99 28.92 65.03 96.86 28.92 28.92 26.25 22.48 21.79
4 502,587 59.72 60.45 67.87 23.40 37.96 49.74 23.39 23.40 23.65 21.66 21.48
8 2,012,583 NA NA NA 22.43 30.43 77.65 22.43 22.43 22.19 21.56 21.47
12 4,524,996 NA NA NA 22.11 27.64 49.74 NA 22.13 22.37 21.54 21.48

Table III
EXECUTION TIME OF RANGE QUERY WITH THREE DATA MODELS (S)

(a) Uniform Data
Radius (km) 0.01 0.05 0.1 0.5 1 4 8 12 16

QT:≈1 0.251 0.250 0.240 0.692 0.767 7.656 NA NA NA
RG:0.1 0.131 0.135 0.147 0.285 0.572 4.544 10.693 27.545 45.323

HG:≈10:0.1 0.185 0.231 0.238 0.509 0.926 6.410 42.372 85.014 141.308
(b) Skewed Data

Radius (km) 0.01 0.05 0.1 0.5 1 4 8 12 16
QT:≈1 0.398 0.359 0.375 1.172 1.274 30.240 NA NA NA
RG:0.1 0.120 0.132 0.142 0.424 1.140 12.349 NA NA NA

HG:≈10:0.1 0.260 0.314 0.317 0.868 2.015 16.843 NA NA NA

configuration outperforms the other two configurations. The

reason is that the finer granularity of grid can enhance of

the ability of pruning.

Finer-cell granularity results in improved performance for

smaller queries in the quad-tree data model and for all

queries in the regular-grid data model. However, there is a

limit to how small the size of the cell can become. Smaller

cell size implies that a greater number of rows must be

scanned to respond to the query. If the number of rows

exceeds the scan cache size, a higher number of Scan op-

erations between server and client will be required, which

will cause the performance to deteriorate. The size of the

scan cache is constrained by the memory availability on both

the client and server side. If a high-memory configuration

is available, then increasing the cache size may result in

some of the failed cases to work, but the performance trend

remains fundamentally the same, because the number of

irrelevant rows scanned will continue to increase. For the

quad-tree data model, as the index is built and stored in the

memory before the query-processing phase, smaller cell size

and deeper quad-tree imply increased memory allocation.

From Table I, we can observe that, for the regular-grid

data model, best performance can be obtained with the cell

size of 0.1km; while for quad-tree data model, the acceptable

cell size is approximately 1km, with the quad-tree depth of

eight.

2) The HGrid Data Model: In the HGrid data model,

there are two variables that affect the HGrid index: the size

of the tile (T) in the first tier and the size of the cell (t) within

a tile. For our uniform-distribution data set of 100 million

data points, if the individual cell is set as 1km2, the number

of tiles can range from 1 (where there is only one tile and

10,000 number of cells), to 10,000 (where there is only one

cell in each tile). Correspondingly, the number of rows are

varying from 100 to 10,000, and the number of columns are

from 1,000,000 to 10,000. Comparing these dimensions to

the 10,000 rows and 10,000 columns in the quad-tree data

model, and the 100 rows and 100 columns with stacks about

10,000 deep in the regular-grid data model, the HGrid table

is neither as long as that of the quad-tree data model, nor

as deep as that of the regular-grid data model.

Tables I and II report the query response times and false

915

positives for various tile sizes, given a fixed cell size in

the HGrid data model. Smaller-tile organizations exhibit

better performance because they support better pruning of

irrelevant data. However, smaller tiles also imply a bigger

number of sub-queries for every query. The “HG:≈10:0.1”

organization, referring to the configuration with a T≈10km

quad-tree tile and a t=0.1km regular-grid cell, involves fewer

sub-queries and more false positives and outperforms the

HG:≈1:0.1 organization with more sub-queries and fewer

false positives. This is an evidence of the trade-off between

the number of false positives and the number of sub-queries.

The number of rows involved in the query is also an im-

portant factor that influences the performance, as evidenced

by the fact that the performance of the HG:≈10:0.01 orga-

nization is worse than that of the HG:≈10:0.1 organization,

as shown in Table I. Thus, we conclude that the HGrid data

model with tile size of T≈10km and cell size of t=0.1km

approximates the best trade-off between the number of false

positives and the number of sub-queries.

Table IV
EXECUTION TIME OF KNN QUERY WITH THREE DATA MODELS (S)

(a) Uniform Data
k 1 10 100 1,000 10,000

QT:≈1 1.766 7.689 7.432 7.759 7.231
RG:0.1 0.307 0.270 0.302 0.596 1.295

HG:≈10:0.1 0.320 0.357 0.373 0.807 2.003
(b) Skewed Data

k 1 10 100 1,000 10,000
QT:≈1 1.737 1.885 1.914 1.900 4.583
RG:0.1 0.147 0.139 0.151 0.480 1.592

HG:≈10:0.1 0.325 0.314 0.358 0.879 3.307

C. Comparison of the Three Data Models

In this section, we compare the performance of the

three data models, with range and kNN queries. We used

the appropriate configuration obtained in Section IV-B for

each data model: QT:≈1, RG:0.1, and HG:≈10:0.1. In our

experiments, we simply applied the same configuration into

both uniform data and skewed data.

For uniform data, we randomly select a data point as the

query input and a systematic variation of the radius. For

skewed data, we selected three data points, each one with

20%, 50%, and 70% probability correspondingly in the Zipf

distribution as the query input, and systematically varied the

query radius from 0.01km to 4km.

1) Range Query: We evaluated the range-query perfor-

mance under three data models with both uniform and Zipf

distribution data. Table III shows the query response time of

the three data models for various ranges when the system

contains 100 million objects. As the radius increases, the

size of irrelevant data vs. the return-set size ratio increases,

and the running time also increases because more data

points are retrieved. The regular-grid data model outperforms

the others, because it supports better data locality and the

percentage of irrelevant rows scanned is low. The HGrid data

model performs much better than the quad-tree data model

and slightly worse than the regular-grid data model. The

same performance trends persist with both uniform and

skewed data. In addition, in Table III, we can also see that

for skewed data, the queries with the radius of 8km, 12km,

and 16km, cannot get result under these three data models.

The reason is that the data points in the result are so large

that the execution time exceeds the client socket timeout.

2) k-Nearest Neighbor Query: We also evaluated the

performance for k Nearest Neighbor (kNN) queries using

the same data set, under the three data models. Table IV

shows the response time (in seconds) for kNN queries, where

k takes the values 1, 10, 100, 1,000, and 10,000. As the

density-based range estimation method is employed [14],

there is only one Scan operation in the query processing

for uniform data, while for skewed data, more than one

Scan iterations are invoked to retrieve the data. That is

why the performance with skewed data under all data

models is worse than that with the uniform data set. For

both uniform and skewed data, the regular-grid data model

performs best, followed by the HGrid data model with the

quad-tree data model being the worst. The poor quad-tree

locality contributes to the poor performance of the quad-tree

data model, and also impacts the performance of HGrid,

albeit less strongly. For skewed data, with too many false

positives, the query with the data points having more than

70% probability cannot get the result below the timeout

threshold under all data models when k equals to 10,000.

To improve performance, a finer granularity is required to

filter irrelevant data scanning.

In summary, the query performance of the HGrid data

model is better than the quad-tree data model and worse

than the regular-grid data model. The HGrid data model

benefits from the good locality of the second-tier regular-

grid index, but suffers from the poor locality of the Z-

ordering linearization at the first tier. Better performance

can potentially be obtained with alternative linearization

techniques. In addition, the experiment result proved once

again that a new configuration of these three data models

for skewed data should be set.

D. Best Practices

Based on our experimental results, we have two types of

guidelines for the organization of geospatial data in HBase.

The first set guides the design of the data schema.

• The row key and column name should be short, since

they are stored with every cell in the row.

• The row key should be designed to support pruning of

unrelated data easily.

• The amount of data in one row should be kept relatively

small. The cost (in time) of retrieving a row has n data

increases more than twice with n (when n is large)

[12].

• It is better to have one column family, only introducing

more column families in the case where data access is

916

usually column scoped [10].

• The number of columns should be limited. A number

in the hundreds is likely to lead to good performance.

• When the third dimension is used for storing other in-

formation rather than time-to-live values, it is preferable

to keep it shallow, and be limited to containing up to

no more than hundreds of data points, as deep stacks

lead to poor insertion performance.

• The Bloom Filter [10] should be configured as it can

accelerate the performance by pruning the data from

both row and column sides.

• Compression can improve the performance by reducing

the amount of data transmission.

The second set of guidelines refers to the implementation

of the query-processing mechanism.

• It is more efficient to Get one row with n data points

than n rows with one data point each [12].

• Scan operations are preferable to Get operations for re-

trieving discontinuous keys, even though the Scan result

is bound to also include data points that are not part of

the response data set.

• It is advisable to narrow the range of queried columns

with the Filter mechanism.

• The number of rows to be scanned for a query should

not exceed the scan cache size, which depends on client

and server memory. Otherwise, it is better to split the

query into several sub-queries.

• When there are too many unrelated rows within the

defined scan range, splitting one query into multiple

sub-queries with multiple Scan operations is more effi-

cient than one query with Filter mechanism to retrieve

rows one by one.

• The Scan operation is preferable for small queries,

while Coprocessor for large queries.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed the HGrid data model for

HBase, based on a hybrid index structure, combining a

quad-tree and a regular grid as primary and secondary

indices correspondingly. We comparatively evaluated the

performance of the HGrid with uniform and skewed data,

against the other two data models. Our results demonstrate

that the HGrid organization scales well and supports efficient

performance for range and k-nearest neighbor queries. Ben-

efiting from the hierarchical index, the HGrid data model

can be flexibly configured and extended. In the first tier,

the quad-tree index can be replaced by the hash code of

each sub-space or the point-based quad-tree index method

is employed. In addition, the granularity in the second stage

can be varied from sub-space to sub-space based on the

various densities. Therefore, HGrid is more scalable and

suitable for both homogeneously covered and discontinuous

spaces.

In the future, we plan to experiment with alternative

space-filling curves for the linearization of the quad-tree

first-tier index, and to evaluate the model with real data.

ACKNOWLEDGMENT

This work has been funded by the SAVI Strategic Net-

work, NSERC, AITF and IBM.

REFERENCES

[1] S. Nishimura, S. Das, D. Agrawal, and A. Abbadi, “Md-
hbase: A scalable multi-dimensional data infrastructure for lo-
cation aware services,” in Mobile Data Management (MDM),
2011 12th IEEE International Conference on, vol. 1. IEEE,
2011, pp. 7–16.

[2] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[3] R. Finkel and J. Bentley, “Quad trees a data structure for
retrieval on composite keys,” Acta informatica, vol. 4, no. 1,
pp. 1–9, 1974.

[4] A. Guttman, R-trees: a dynamic index structure for spatial
searching. ACM, 1984, vol. 14, no. 2.

[5] R. Cattell, “Scalable sql and nosql data stores,” ACM SIG-
MOD Record, vol. 39, no. 4, pp. 12–27, 2011.

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans-
actions on Computer Systems (TOCS), vol. 26, no. 2, p. 4,
2008.

[7] G. Morton, A computer oriented geodetic data base and a
new technique in file sequencing. International Business
Machines Company, 1966.

[8] C. Freksa and D. Mark, Spatial Information Theory. Cognitive
and Computational Foundations of Geographic Information
Science: International Conference COSIT’99 Stade, Germany,
August 25-29, 1999 Proceedings. Springer, 1999, vol. 1661.

[9] J. Lawder and P. King, “Using space-filling curves for multi-
dimensional indexing,” Advances in Databases, pp. 20–35,
2000.

[10] A. S. Foundation, “Apache HBase Reference Guide,” April
2012. [Online]. Available: http://hbase.apache.org/book/book.
html

[11] K. Muthukkaruppan, “HBase @ FacebookThe Tech-
nology Behind Messages,” April 2012. [On-
line]. Available: http://qconlondon.com/dl/qcon-london-2011/
slides/KannanMuthukkaruppan HBaseFacebook.pdf

[12] Y.-T. Hsu, Y.-C. Pan, L.-Y. Wei, W.-C. Peng, and W.-C. Lee,
“Key formulation schemes for spatial index in cloud data
managements,” in Mobile Data Management (MDM), 2012
IEEE 13th International Conference on, 2012, pp. 21–26.

[13] Wikipedia, “Bloom Filter,” May 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Bloom filter

[14] D. Liu, E. Lim, and W. Ng, “Efficient k nearest neighbor
queries on remote spatial databases using range estimation,”
in Scientific and Statistical Database Management, 2002.
Proceedings. 14th International Conference on. IEEE, 2002,
pp. 121–130.

[15] D. Han and E. Stroulia, “A three-dimensional data model in
hbase for large time-series dataset analysis,” in Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), 2012 IEEE 6th International Workshop on the.
IEEE, 2012, pp. 47–56.

917

