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ABSTRACT
Self-adaptive and self-managing systems optimize their own
behaviour according to high-level objectives and constraints.
One way for administrators to specify goals for such opti-
mization problems effectively is using policies. Over the past
decade, researchers produced various approaches, models
and techniques for policy specification in different areas in-
cluding distributed systems, communications networks, web
services, autonomic computing, and cloud computing. Re-
search challenges range from characterizing policies for ease
of specification in particular application domains to catego-
rizing policies for achieving solution qualities for particular
algorithmic techniques.

The contributions of this paper are threefold. Firstly, we
give a mathematical formulation for each of the three policy
types, action, goal and utility function policies, introduced in
the policy framework by Kephart and Walsh. In particular,
we introduce a first precise characterization of goal policies
for optimization problems. Secondly, this paper introduces
a mathematical framework that adds structure to the un-
derlying optimization problem for different types of policies.
Structure is added either to the objective function or the
constraints of the optimization problem. These mathemati-
cal structures, imposed on the underlying problem, progres-
sively increase the quality of the solutions obtained when
using the greedy optimization technique. Thirdly, we show
the applicability of our framework by analyzing several op-
timization problems encountered in self-adaptive and self-
managing systems, such as resource allocation, quality of
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service management, and SLA profit optimization to pro-
vide quality guarantees for their solutions.

Our approach is based on the algorithmic frameworks by
Edmonds, Fisher et al., and Mestre, and the policy frame-
work of Kephart and Walsh. Our characterization and ap-
proach will help designers of self-adaptive and self-managing
systems formulate optimization problems, decide on algo-
rithmic strategies based on policy requirements, and reason
about solution qualities.

Categories and Subject Descriptors
D.2 [Software Engineering]; F.2 [Analysis of Algorithms
and Problem Complexity]

General Terms
Design, Algorithms, Optimization, Verification, Measure-
ment

Keywords
Adaptive systems, self-managing systems, autonomic com-
puting, goal and utility function policies, optimization prob-
lems, greedy algorithm, solution qualities, resource alloca-
tion, QoS management, SLA profit optimization

1. INTRODUCTION
The ever-growing complexity and sophistication of soft-

ware systems and the constantly evolving and dynamic na-
ture of their environments has led software engineers to ex-
plore new ways of designing systems and devices. An impor-
tant direction emerging over the past decade is the design of
self-adaptive systems. Such a system continuously adjusts
its behaviour at run-time in response to its perception of its
environment and its own state in the form of fully or semi-
automatic self-adaptation [10, 28]. While some self-adaptive
systems can function without human intervention, many of
them do require guidance from system administrators to op-
timize quality of service (QoS) properties. Such high-level
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objectives, often expressed in the form of policies, tune the
self-* operations of such a system. Policies enable the system
to perform appropriate actions and change system behaviour
at run-time through high level policy modification.

Policy-based systems span a wide range of application do-
mains including autonomic communication [5], privacy and
security management [1], autonomic computing [13, 15], pro-
visioning computing systems [12], grid and cloud comput-
ing [11, 18], service oriented systems [19, 35], and smart
web services [4]. Policy-based networks play a key role in
managing and ensuring QoS properties by optimizing the
use of resources to meet various user needs [23, 30]. For ex-
ample, multimedia applications, such as video-on-demand,
rely extensively on policy based management [19]. Policies
are also essential to managing access control for security and
privacy [1, 31]. To give an example, in location-based ser-
vices, an emerging area in mobile commerce, services to be
delivered to customers are based on prior knowledge of their
profiles and the amount of sensitive information that can
be revealed to providers. These services are controlled by
security and privacy policies dictated by customers.

In the autonomic computing domain, different approaches
and techniques have been proposed to create policy frame-
works. An approach that is most relevant to our work
is the unifying policy framework created by Kephart and
Walsh [17]. Subsequently, Kephart and Das discussed the
role of utility function policies for self-management [16]. More
recently, Bahati et al. created a framework that relies on re-
inforcement learning to define policy sets that meet different
performance objectives [2, 3]. This learning approach uses
past experience with policies to propose changes to meet
performance requirements.

Kephart and Walsh’s approach to classifying policies is
based on the AI concept of rational agents—reflex agents as
well as goal and utility function based agents [27]. As a result,
their framework features three different types of policy sets,
action, goal, and utility function policies, to solve optimiza-
tion problems encountered in the realm of self-managing sys-
tems [17]. Action policies focus on“What to do”and directly
specify the actions to be performed in the current state as
recommended by rational behavior. Goal policies focus on
“What we desire”and specify a single state or a set of desired
states. Utility function policies focus on “What is the best
choice” and ask for a state with highest utility value. While
the three policy types differ in the level of specification, ev-
ery implementation of each of these policies always involves
a sequence of actions using an algorithmic strategy [14].

Autonomic computing can be viewed as policy based self-
management. In any autonomic system, individual auto-
nomic elements can be viewed as solving optimization prob-
lems at the lowest level in the autonomic reference architec-
ture (ACRA) [14]. A natural question arises: “What exactly
do the three policy types correspond to when we solve op-
timization problems at higher levels of goal management?”
We formalize this idea as follows:

• A utility function policy for an optimization problem
asks for “the best quality or an optimal solution.” This
can be interpreted as targeting the state with the high-
est utility value.

• A goal policy for an optimization problem asks for “a
good quality solution or a close approximation to the
optimal solution.” In other words, the set of desirable

states will include the ones with a utility value compa-
rable to the best quality solution. The notion of being
a close approximation to the optimal solution is made
more precise in Section 3.

• An action policy in this setting asks for“a best possible
choice at every stage.” In other words, it recommends a
local action that is optimal among all available choices.

The first step of Kephart and Walsh’s approach is to model
the optimization problem to be solved [17]. Subsequently,
the policy author designs algorithms to solve the problem to
meet the policy specification. The algorithms progressively
increase in sophistication as the policy set changes from
action to goal, and then to utility function policies. This
leads us to the view that for many optimization problems
one needs to design sophisticated optimization algorithms
to meet utility function policy specifications.

Our approach is complementary to the one by Kephart
and Walsh and aims to answer the following research ques-
tion: “Is it possible to provide mathematical structure for
either the objective function or the constraints of an opti-
mization problem so that a simple algorithmic strategy can
produce solutions with guaranteed qualities and hence meet
the requirements of goal or utility function policies?” In this
paper we show that it is indeed possible.

We illustrate our approach using the greedy technique.
The reason for focusing on this technique is twofold: (1)
self-adaptive and self-managing systems are complex and
can benefit from simple, yet powerful algorithmic strate-
gies that are easy to comprehend and implement; and (2)
there are similarities between action policies and the greedy
technique [26]. For instance in action policies, the author
deems that in the current state, the recommended action is
more desirable than alternate actions and hopes the action
to be good with respect to the global solution (which may
not always be the case). Along the same lines, the greedy
technique makes local optimal choices hoping that this will
lead to a globally optimal solution.

We offer a dartboard as a metaphor to explain how we add
mathematical structure to optimization problems encoun-
tered in self-adaptive and self-managing systems. The dart-
board represents the entire solution space. Individual pixels
on the dartboard represent individual solutions. Throwing
a dart corresponds to hitting a pixel and thus picking a so-
lution. Some of the solutions are better than others and
some are even optimal. The dartboard that corresponds to
action policies has no structure. Thus, when a player throws
a dart at an action dartboard, he or she will arbitrarily get a
good or bad solution regardless of how good the player is at
darts. A goal dartboard has some regions that are delineated
by metal frames as is customary in a real dartboard. While
there are multiple regions, there is a region that corresponds
to high quality solutions (including best ones). The expe-
rienced darts player will aim for the region containing the
high quality solutions. Finally, the utility function dartboard,
besides other regions, contains a region containing only opti-
mal solutions. Of course, the smart and skilled darts player
will aim for the region containing only optimal solutions.

In this paper we introduce a mathematical framework that
adds structure to the underlying optimization problem for
different types of policies. Structure is added either to the
objective function or to the constraints of the optimization
problem. These mathematical structures, imposed on the

71



underlying problem, progressively increase the quality of the
solutions obtained using the greedy optimization technique.
Our approach is based on the algorithmic frameworks by
Edmonds [7], Fisher et al. [8] and Mestre [20], and the policy
framework by Kephart and Walsh [17].

Section 2 constitutes a generic handbook for designing
policy-driven optimization strategies for self-adaptive sys-
tems. In subsequent sections four specific problems are dis-
cussed: (1) resource allocation in distributed systems, (2)
resource allocation for QoS management, (3) data center
based scheduling, and (4) SLA based profit optimization.
Sections 3 and 4 present the underlying mathematical struc-
tures for our objective function and constraint based frame-
works and apply them to the four optimization problems in
the realm of adaptive systems. Section 5 discusses limita-
tions and generalizations of our mathematical framework as
well as how to apply our approach in practice. Section 6
concludes the paper and outlines ideas for future work.

2. A HANDBOOK FOR DESIGNING
POLICY-DRIVEN OPTIMIZATION
STRATEGIES

Engineers, who design policies for a self-adaptive or self-
managing system, have an optimization problem to solve
and a policy level to meet. For example, with the ad-
vent of service oriented architecture (SOA), organizations
now use distributed services offered by third party providers
for complex applications. These services are provided by
large data centers sharing available resources. Such ser-
vice providers sign service level agreements (SLA) with their
clients that specify costs and penalties associated with var-
ious performance levels. The goal of the data center is to
maximize profits by allocating resources effectively. Zhang
and Ardagna designed a resource allocator for a data center
with a scheduling policy to maximize the overall profit [35].
For this optimization problem the objective function max-
imizes the profits subject to the constraints that represent
the various SLA conditions.

The policy designer looks for an answer to the following
question: “What problem solving strategy is most appro-
priate to achieve the desired policy level (i.e., action, goal,
or utility function policies)?” Ideally, the designer can sim-
ply follow a handbook that points to an appropriate problem
solving strategy to fulfill the requirements of the desired pol-
icy level.

Two critical components of a strategy for solving opti-
mization problems are the algorithmic technique (e.g., greedy
or dynamic programming) and the actual problem formula-
tion (i.e., the objective function and constraints). In this
paper, we focus on the greedy technique. In Section 3 and 4
we demonstrate, and illustrate through examples, that if
the objective function is linear and the constraints form a
matroid, then the greedy technique produces an optimal so-
lution. Further, we demonstrate sufficient properties of the
problem such that the greedy technique produces a close
to optimal solution. Our handbook would recommend the
following:

• As a first step, if the objective function is linear and the
constraints form a matroid, then utility function poli-
cies are most appropriate for this optimization prob-
lem.

Table 1: Illustration of the Handbook: Mapping of
objective functions and constraint classes to solution
qualities/policy types for the greedy strategy.
HHHHHHHHH
con-
straints

objec-
tive

function linear submodular unrestricted

optimal/ 1
2
-approx- no guar-

matroid utility imation/ antee/
function goal action
1
k
-approx- no guar- no guar-

k-extendible imation/ antee/ antee/
goal action action

no guar- no guar- no guar-
unrestricted antee/ antee/ antee/

action action action

• Secondly, if the objective function is submodular and
the constraints form a matroid, or if the objective func-
tion is linear and the constraints form a k-extendible
system, then goal policies are most appropriate.

• In all other scenarios action policies are most appro-
priate.

Table 1 summarizes the above information. The dark-grey
shaded cell in the top-left corner depicts the problem prop-
erties where a greedy solution exists that yields an optimal
solution, suggesting utility function policies. Cells shaded
in medium grey depict problem properties where the greedy
technique achieves close to optimal solutions and therefore
goal policies are most appropriate. In this case, restricting
the problem’s objective function from sub-modular to linear
or the constraints from k-extendible to matroid will result
in optimal solutions. For all other scenarios (i.e., light grey
and white areas in the table), action policies are appropri-
ate. Note that the greedy technique for problems with prop-
erties that fall into light grey cells are only one step away
from achieving guaranteed high quality solutions: restrict-
ing the problem’s objective function to submodular, or its
constraints to k-extendible, will suffice. The problem prop-
erties corresponding to the three white cells will require two
or more steps for improvement in their solution quality. If
neither of our mathematical frameworks fits the underlying
optimization problem, then the designer still has the option
to test if either the objective function or the constraint set
can be restricted to fit one of these, as suggested in Table 1.

For instructions on how to test the objective function for
linearity or submodularity, we refer to the objective based
framework presented in Section 3. For instructions on how
to test for whether the constraints satisfy the matroid or
k-extendibility properties, we refer to the constraint based
framework introduced in Section 4.

3. OBJECTIVE FUNCTION BASED
FRAMEWORK

Any optimization problem has two components: an ob-
jective function and a set of constraints. In this section, we
assume that the constraint set of an underlying optimiza-
tion problem is fixed and the objective function is variable.
Moreover, we assume that the constraint set satisfies the
matroid property (introduced below). We then show how to
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constrain the general objective function by adding mathe-
matical structure to it to satisfy the properties submodular
or linear. We use two examples of optimization problems to
show that if the constraints form a matroid, and as the struc-
ture of the objective function is changed from unrestricted or
general, to submodular, and then to linear, the quality of the
solution obtained by the greedy technique pregressively in-
creases to meet the specifications of action, goal, and utility
function policies, respectively.

3.1 Resource Allocation in Distributed Systems
The following resource allocation problem arises naturally

in many settings. It is the task of allocating heterogeneous
resources to servers with the goal of maximizing the system
throughput. Applications of this problem include alloca-
tions of file servers to workstations in a local network, load
balancing in distributed systems and session allocation in
time-shared systems. In this paper, the notation 2S , for any
set S, will stand for the powerset of S, i.e., set of all possible
subsets of S. In addition, we remark that all the objective
functions studied in this paper are non-decreasing.

Problem 1. (Resource Allocation in Distributed
Systems) We are given a set V = {1, 2, . . . , M} of M
servers, and a set R = {1, 2, . . . , L} of L resources (e.g.,
CPU, memory, or bandwidth) that are to be assigned to these
servers. The throughput of a server m, 1 ≤ m ≤M , denoted
by Tm, is a function Tm : 2R → IR+. The goal is to max-

imize the sum of the throughputs of the servers,
M∑

m=1

Tm,

subject to the constraint that every such resource is assigned
at most one server.1

A utility function policy for this problem produces an opti-
mal allocation that maximizes the sum of the throughput. A
goal policy produces an allocation that compares favourably
in quality to the optimal allocation, while an action pol-
icy recommends actions based on some local criterion best
choice.

A greedy algorithm in general makes local optimal choices
with the goal that this strategy will lead to a globally opti-
mal solution. A greedy algorithm for the problem described
above is as follows:

1. Consider all resources that have not been assigned to
a server.

2. Among those, choose a (resource, server)-tuple so that
the resulting allocation has the largest increase in the
sum of throughput functions.

3. Repeat until each resource is assigned to a server.

To analyze the quality of the solution produced by this
greedy algorithm, we introduce the mathematical construct
of a matroid. This enables us to characterize the properties
satisfied by the collection of all possible allocations of re-
sources to servers satisfying the constraint described above.

Matroids are combinatorial structures that are defined to
capture the notion of independence in a general setting [7].

1Here, we assume that every resource type like memory or
CPU time is split into many blocks of fixed size so that one
or more such blocks can be assigned to each server.

Definition 1 (Matroid [22]). A set system (U,F),
F ⊆ 2U , is called a matroid if it satisfies the following con-
ditions:

1. F satisfies the downward-closure property: If A ⊆ B
and B ∈ F , then A ∈ F . That is, any subset of a
member of the collection F is also a member of F .

U = {1, 2, 3}

{1,2} {2,3} {1,3}

{1} {2} {3}

{φ}

Members of F

Figure 1: Set system (U,F) with F = {∅, {1}, {2},
{3}, {1, 2}, {2, 3}} forms a matroid as it satisfies the
downward-closure and the augmentation properties.

2. F satisfies the augmentation property: If A,B ∈ F
and |B| > |A|, then there exists an element x in B−A
such that A∪ x ∈ F . In other words, if we choose two
sets A and B from F such that the size of B is larger
than A, then it is possible to move an element x from
B to A such that A ∪ x also is in F .

U = {1, 2, 3}

{1,2} {2,3} {1,3}

{1} {2} {3}

{φ}

F = {φ, {1, 2}, {2, 3}, {1}, {2}}

Members of F

Figure 2: Set system (U,F) is not a matroid as it
does not satisfy the downward-closure property: B =
{2, 3} ∈ F but A = {3} /∈ F .

We use the structures depicted in Figures 1 and 2 to illus-
trate the verification of the two matroid properties downward-
closure and augmentation. In particular, for Figure 1:

1. F satisfies the downward-closure property. Every sub-
set of a member of F is also in F .

2. F satisfies the augmentation property. To verify this
property, we have to check all possible choices of sets
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A and B such that |B| > |A|. We illustrate this by
one of the choices where A = {1} and B = {2, 3} and
|B| > |A|, and leave the other cases to the reader.
In this case, there exists at least one element x = 2,
x ∈ B − A, that can be added to A and the resulting
set {1, 2} is in F .

Hence (U,F) in Figure 1 is a matroid. In contrast, the struc-
ture depicted in Figure 2 is not a matroid because F is not
downward closed.

We now show that for Problem 1, the set of all feasible
allocations of resources to servers satisfying the given con-
straint forms a matroid.

Verification for Problem 1. To view the allocation of
resources to servers as a set system, we define the underlying
universe set U = {1, 2, . . . , L}× {1, 2, . . . ,M}. Any element
of set U is a pair (i, j) such that i is 1 ≤ i ≤ L and j
is 1 ≤ j ≤ M . We interpret this choice as “resource i is
assigned to server j”. Then, the set of all possible such
allocations F satisfying the constraint that each resource
is assigned to at most one server is clearly a collection of
subsets of U . We now show that the pair (U,F) forms a
matroid.

• Downward Closure: Let A be any allocation of at most
L resources to M servers in F . If A satisfies the given
constraint, then any “sub-allocation” B, B ⊆ A, also
satisfies the constraint and must be a valid schedule for
the allocation of the resource to the servers satisfying
the constraints.

• Augmentation: Consider two allocations A and B of
resources to the M servers in F such that |B| > |A|.
Then, since B contains more elements than A, there
exists a resource r that has been allocated to a server s
in B but not in A. Then, we can add the tuple (r, s) to
the set A. Since resource r was previously not assigned
to any server, we have a valid allocation.

Having shown that the set of all feasible allocations forms a
matroid, we now focus on the nature of the objective func-
tion. We show that, as we introduce additional structure
into the objective function, the quality of solution produced
by the greedy algorithm improves. In general, the objective
function is a function from 2U to IR+. For example, in the
resource allocation problem, function T = ΣM

m=1Tm takes
any allocation and outputs the total throughput (positive
real value).

We use the mathematical concepts of submodular and lin-
ear functions to characterize the different types of objective
functions. We call an objective function submodular if it
satisfies the following property.

Definition 2 (Submodular Function). For a given
set U , function g : 2U → IR+ is called submodular if g(A ∪
B) + g(A ∩B) ≤ g(A) + g(B) for all A,B ⊆ U .

The property satisfied by submodular functions is also ref-
ered to as property of diminishing returns [8, 29].

Example of a submodular function. Let U = {1, 2, 3}.
Then function g defined on 2U by g(φ) = 0, g({1}) = 1,
g({2}) = 3, g({3}) = 2, g({1, 2}) = 3, g({2, 3}) = 3,

g({1, 3}) = 3, g({1, 2, 3}) = 3 is a submodular function.
To show this, one can verify that the inequality given in the
definition holds for all choices of A and B.

Remark. In general, one way of constructing a submod-
ular function is as follows. We start with a weight function
w, w : U → IR+. Suppose the function g for any subset S
of U is defined as g(S) = min(Σi∈Sw(i), B) for some B ≥ 0.
Then we can show that g is a submodular function. The
weight function g above is min(Σi∈Sw(i), 3) for a weight
function w on U defined as w(1) = 1, w(2) = 3, w(3) = 2.

The class of linear objective functions is another common
class for optimization problems. We call an objective func-
tion linear if it satisfies the following property.

Definition 3 (Linear Function). For a given set U ,
a function W : 2U → IR+ is called linear if, for any F ⊆ U ,
W (F ) = Σs∈Fw(s) for some fixed underlying weight func-
tion w : U → IR+.

Example of a linear function. Let U = {1, 2, 3}. Let
w be a weight function defined on U by w(1) = 0, w(2) =
1 and w(3) = 2. Further let weight function W be de-
fined on 2U by W (φ) = 0, W ({1}) = 0, W ({2}) = 1,
W ({3}) = 2, W ({1, 2}) = 1, W ({2, 3}) = 3, W ({1, 3}) = 2
and W ({1, 2, 3}) = 3. Then, W is linear because, for any
subset of U , W is the sum of the weights of all the elements
inside the subset. We remark that any linear function is a
submodular function.

To formalize the expectations from a goal policy, we intro-
duce the concept of approximation algorithm. The notion of
an approximation algorithm gives us a way to measure the
quality of the solution produced by such an algorithm with
respect to its optimal solution. In particular, we give here
the definition for maximization problems.2

Definition 4. (Approximation Algorithms [32]).
An algorithm A for a maximization problem P is said to be
a ρ-approximation algorithm if for any instance x of P , the
value of the objective function on the output of A, denoted
by A(x), is at most a factor ρ away from the value of the
objective function for the best possible solution, denoted by
OPT (x). That is,

A(x)

OPT (x)
≥ ρ

.

We remind the reader that many optimization problems en-
countered in practice are computationally NP-hard [9]. For
such problems, it is unlikely that we will be able to design
an efficient algorithm (i.e., running in polynomial time) that
produces an optimal solution.

There are several common ways to dealing with NP-hard
problems. One approach is to aim for fast heuristic meth-
ods that work well in practice but offer no guarantees on the
quality of the solution. Another approach is to design ex-
act algorithms that are, while not polynomial, efficient when
certain aspects of the problem are small (i.e., fixed-parameter
tractable [6, 21]. Yet another approach is to design efficient
algorithms that produce solutions that are comparable in

2An analogous definition can be formulated for minimization
problems.
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quality to an optimal solution. In the theory of algorithms,
such an algorithm is referred to as an approximation algo-
rithm.

Given the introduced concepts of greedy algorithm, ap-
proximation algorithm, as well as general, submodular and
linear objective functions, we can now state our three results
for Problem 1 concisely.

1. General objective function: If the objective func-
tion of a given optimization problem is unrestricted,
then there are no theoretical guarantees on the perfor-
mance of the greedy algorithm. For example, let Tm

be defined as Tm(A) = |A|m|2 where A, A ⊆ U , is
an allocation and A|m ⊆ A contains all the tuples in
A assigned to server m. Then, the greedy algorithm
may or may not give a good quality solution. Hence,
the greedy algorithm in this case can only satisfy the
requirements of action policies.

2. Submodular objective function: If we restrict the
objective function to be submodular, then the greedy
algorithm gives a 1

2
-approximation algorithm [8]. In

other words, the solution produced by the greedy al-
gorithm is guaranteed to have a throughput that is at
least half as good as the throughput of the optimal
solution. Hence, it satisfies the requirements of goal
policies. To give an example of a submodular func-
tion, let t(i, j), for t : U → IR+, give the through-
put obtained when resource i is assigned to server j.
For any server m and A ⊆ U , let Tm(A) be defined
as min(Σa∈A|mt(a), Bm) where Bm > 0 is a thresh-
old value. We have previously mentioned that Tm and
hence T is submodular.

3. Linear objective function: If we further restrict the
objective function to be linear, then the greedy algo-
rithm produces an optimal solution [7]. Thus, we con-
clude that the greedy algorithm satisfies the require-
ments of utility function policies. As an example of a
linear function, let t(i, j) give the throughput obtained
when resource i is assigned to server j. For any server
m and A ⊆ U , let Tm(A) be defined as Σa∈A|mt(a).
Then, Tm and hence T is linear.

To illustrate the main results from our objective function
based framework further, we discuss another resource man-
agement problem in the next section.

3.2 Resource Allocation for QoS Management
Quality of service (QoS) issues are an important topic

of research in several areas, including communication net-
works, distributed systems, service oriented systems, and
real-time systems. All these systems involve strategies to
allocate sufficient amounts of resources to the various ap-
plications that are running concurrently to satisfy various
requirements. Typical QoS parameters include quality, re-
liability, security, or timeliness. Motivated by the general
QoS scenario, Rajkumar et al. studied the following QoS
resource-allocation problem [24, 25].

Problem 2. (Resource Allocation for QoS Man-
agement)
Given are

• a set of applications {A1, A2, . . . , An},

• a set of minimum resources required
{Rmin

1 , Rmin
2 , . . . , Rmin

n } for QoS purposes, and

• a total available resource R with R ≥
n∑

i=1

Rmin
i .

Furthermore, we assume that:

• Each application Ai has an associated weight wi spec-
ifying its relative importance.

• For each application Ai, a utility function Ui is given
that depends on the resource allocated to that applica-
tion.

• Every application Ai must be given at least its minimal
resource requirement Rmin

i .

The goal is to divide the given resource R among the n ap-
plications into {R1, R2, . . . , Rn} so that the total utility of

the system U =
n∑

i=1

wiUi(Ri) is maximized.

A greedy strategy for this problem is as follows:

1. Allocate a minimum resource Rmin
i to application Ai.

2. Assign one unit of additional resource to an application
so that the resulting allocation has the largest increase
of the utility function U .

3. Repeat step (2) until E = R−∑
i

Rmin
i units of excess

resource are allocated.

We now show that in Problem 2, the set of all feasible al-
locations of E units of excess resources to n applications
satisfying the constraints given forms a matroid.

Verification for Problem 2. To view the allocation of
the excess resource to various applications as a set system,
we define the underlying universe set U = {1, 2, . . . , E} ×
{1, 2, . . . , n}. Then, any element of set U is a pair (i, j) such
that i is 1 ≤ i ≤ E and j is 1 ≤ j ≤ n. We interpret this
choice as “i units of excess resource is allocated to Appli-
cation j”. Then, the set of all possible such allocations F
satisfying the constraints described above is clearly a col-
lection of subsets of U . We will now explain why the pair
(U,F) forms a matroid.

• Downward closure: Let us choose any feasible alloca-
tion A of at most E units of the excess resource to
the n applications. If A is feasible, then any “sub-
allocation”B, B ⊆ A, must also be a feasible schedule
of the resource to the applications.

• Augmentation: Consider two feasible allocations A and
B of at most E units of excess resource to the n ap-
plications such that |B| > |A|. Then, since the size of
B is bigger than that of A, there is a unit resource k
that was allocated to an application At in B but not
in A. Since resource k was previously not assigned to
any application, we can add the tuple (k,At) to the
set A and we get a new feasible schedule.

Since we showed that the set of constraints forms a matroid,
we can now state our conclusions for Problem 2 in the ob-
jective function framework:
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1. General objective function: For a general, non-
decreasing, utility function U , there is no theoretical
guarantee for the quality of the solution produced by
the greedy technique. Hence, the greedy technique can
only satisfy the requirements of action policies.

2. Submodular objective function: If the utility func-
tion U is submodular, the greedy algorithm gives a
1
2
-approximation [8]. Therefore, the greedy algorithm

satisfies the expectations of goal policies.

3. Linear objective function: Finally, if we further re-
strict the utility function U to be linear, the greedy al-
gorithm produces an optimal solution and hence match-
es the needs of utility function policies.

Remarks. The results that we have shown has two inter-
esting implications for the work by Rajkumar et al. [24, 25].

• They consider a definition for the utility function called
the min-linear-max function and point out that this
special case is very useful and appropriate in many
scenarios [25]. We can show that the min-linear-max
utility function is submodular. We postpone the de-
tails to the full version. Therefore, for this special case,
the greedy algorithm produces a 1

2
-approximation.

• Another important scenario they consider is the case
of linear utility (objective) functions with many depen-
dent QoS requirements [24]. For this case, the authors
designed a greedy algorithm and showed, using an ex-
ample, that it is sub-optimal. In our work, we show
that for the case of linear utility function coupled with
many independent QoS dimensions, the greedy algo-
rithm produces an optimal solution.

4. CONSTRAINT BASED FRAMEWORK
In this section, we assume that the objective function of

an optimization problem is fixed and the constraint set is
variable. Moreover, we assume that objective function is
linear. We then show how to constrain the general con-
straint set by adding mathematical structure to it to satisfy
k-extendibility and matroid properties. We use two examples
to show that if the objective function is linear, and as the
structure of the constraint set is changed from general, to
k-extendible, and then to matroid, the quality of solution ob-
tained using the greedy technique satisfies the specifications
ranging from action to goal, and to utility function policies.
k-extendible systems are generalizations of matroids and are
introduced below. The examples discussed in this section are
motivated by optimization problems arising in the context
of autonomic computing [15, 20, 35].

4.1 Data Center Based Scheduling Problem
Let us consider a scheduling problem as outlined and stud-

ied by Mestre [20].

Problem 3. (Data Center Based Scheduling Prob-
lem) Given a set of n Jobs J1, . . . , Jn each with the following
parameters:

• Arrival time: Ai

• Deadline: Di

• Processing time: Pi

• Profit or revenue: Ri.

We need to schedule the jobs on a single server so that the
total revenue is maximized. The total revenue of a sched-
ule is the sum of the revenues of the jobs processed in the
schedule.

The greedy algorithm for this problem is as follows:

1. Sort jobs based on the revenue Ri.

2. Start with the empty schedule and add a job
to the current schedule if feasible. For each
job added, fix a start time.

Verification for Problem 3. The objective function, the
total revenue R of a schedule S, is defined as R = Σi∈SRi.
This objective function is linear.

Thus, we focus on the constraint set. Let D = maxi[Di]
denote the deadline by which the schedule completes all the
jobs chosen by it. To view the allocation of jobs to the
server as a set system, we define the underlying universe set
U = {1, 2, . . . , n}×{1, 2, . . . , D}. Then, any element of U is
a pair (i, j) and we interpret this as “Job i will be processed
starting from time instant j”. Note that F , the set of all
feasible schedules, is now a collection of subsets of U .

We now introduce the concept of a k-extendible system
which is needed to provide performance guarantees of a
greedy algorithm towards meeting the specifications of goal
policies in our constraint based framework. The concept
of a k-extendible system was introduced by Mestre [20] in
his study of the performance of the greedy technique as an
approximation algorithm. It is useful in understanding the
structure within a set of constraints when it is “close” to
being a matroid.

Definition 5 (k-Extendible System [20]). Set sys-
tem (U,F), F ⊆ 2U is called k-extendible if it satisfies the
following properties:

1. Downward-closure: If A ⊆ B and B ∈ F , then A ∈ F .

2. Exchange: Let A,B ∈ F , A ⊆ B and x ∈ U − B such
that A ∪ {x} ∈ F . Then there exists Y ⊆ B − A,
|Y | ≤ k such that B − Y ∪ {x} ∈ F . In other words,
let us start with any choice of two sets A and B such
that B is an extension of A. Suppose that there is an
element x such that the set A with x added to it also
belongs to F . Then we will be able to find a subset Y
inside B of size at most k such that if we remove the
elements of Y from B and add the element x to the
resulting set, it will also belong to the collection F .

Figure 3 shows an example of a 2-extendible system. We
will show that F satisfies the downward-closure and the ex-
change properties.

1. Downward-closure: As in the matroid example (cf. Fig. 1),
we can check that F is downward-closed.

2. Exchange: Suppose A = φ, B = {1, 2} and x = 3. We
need to remove two elements from B before we can
add x so that the resulting set {3} is in F . It can be
checked that this is the maximum among all possible
choices of A, B and x.
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U = {1, 2, 3}

{1,2} {2,3} {1,3}

{1} {2} {3}

{φ}

F = {φ, {1}, {2}, {3}, {1, 2}}

Members of F

Figure 3: Set system (U,F) is 2-extendible.

Therefore, F is a 2-extendible system. To remark on the
connection between matroids and k-extendible systems, one
can check that matroids are equivalent to 1-extendible sys-
tems. In this sense, k-extendible systems for k ≥ 2 are
generalizations of matroids.

So why are these systems useful for problems studied in
the constraint based framework? Mestre showed that in
the job scheduling problem introduced above (cf. Problem
3), if all the processing times are equal, the set of feasible
schedules forms a 2-extendible system [20]. The main idea
of the proof is illustrated as follows. Let us try to add a new
job labeled i at time t to a schedule B that is an extension
of a schedule A. This can create a conflict with other jobs
already scheduled in B. Using the fact that all the jobs have
the same processing time, say P , there cannot be more than
two jobs to be in conflict with job i. If these two jobs are
removed from B and the new job i is added to B with start
time t, it is a feasible schedule.

Having introduced the concept of k-extendible systems,
we are now ready to state our observations for the data cen-
ter scheduling problem (Problem 3) in the constraint based
framework.

1. General constraint set: Consider an unrestricted
constraint set without any conditions on the four pa-
rameters, Ai, Di, Pi and Ri. Then, the set of all fea-
sible schedules is not a k-extendible system. This is
because the exchange property is not satisfied. If we
start with a feasible schedule S of jobs and try to add a
new job J , it may not always be possible to bound the
number of jobs that need to be removed from S. We
may need to remove many jobs with small processing
times to be able to include a new job J with a large
processing time. Hence, there are no theoretical guar-
antees for the performance of the greedy algorithm.
Hence, it satisfies the expectations of a action policies.

2. k-Extendible constraint set: If all the processing
times Pi are equal, then the set of all feasible sched-
ules forms a 2-extendible system. The main idea for
this proof was described above. Mestre showed that
for any optimization problem in which the objective
function is a linear function and the constraints form
a k-extendible system, the greedy algorithm gives a 1

k
-

approximation [20]. Applying this result to our prob-
lem, the greedy technique provides a 1

2
-approximation

when Pi = P for all i. Therefore, it satisfies the spec-
ifications of goal policies.

3. Matroid constraint set: If we further assume Pi = 1
for all i, then the set of all feasible schedules forms a
matroid as shown by Mestre [20]. The greedy algo-
rithm produces an optimal schedule in this scenario
using the result of Edmonds [7]. Therefore, the qual-
ity of the solution matches the requirements of utility
function policies.

The scheduling problem studied above is closely related to
the Data Center problem studied by Kephart and Chess [15].
The job Ji has release time ti. The jobs come from two
classes, gold and silver—gold jobs have a higher priority than
silver jobs. Job Ji is expected to be serviced within response
time ri. Furthermore, let us assume that Ji has processing
time Pi and define the deadline for job Ji to be di = ti+ri+
Pi. Then, it is clear that whenever a job is serviced within
its response time, it is also processed before its deadline and
vice versa. Thus, the two problems are similar and we are
able to relate our results for the scheduling problem above
to the Kephart and Chess data center problem.

4.2 SLA Based Profit Optimization
As a last example to illustrate our results for the con-

straint based framework, we present a variant of the profit
optimization problem in autonomic computing systems stud-
ied by Zhang and Ardagna [35].

To model the profit optimization problem, the authors
view a data center as a distributed system with M clus-
ters where each cluster consists of many servers. Further,
there are K different classes of request streams. The job
of the scheduler is to assign incoming requests to servers.
Each job class has an associated function that gives the rev-
enue (or penalty) gained based on the average response time.
This function is a part of the service level agreement (SLA).
In their paper, one of the constraints requires that at each
server, each job class is assigned to exactly one service level.
We modify this constraint so that each job class is assigned
at most one service level. Each such SLA level can be viewed
as assigning a priority level to a job class at each server. If
no SLA level is allocated to a job class, the allocator will
use a default option for this class.

Given our model, if we now consider the scenario stud-
ied by the authors in which the number of servers ON and
the load at each server are fixed, the optimization problem
becomes a multi-choice binary knapsack problem:

Problem 4. (SLA Based Profit Optimization) There
are n groups of items. Group l has kl items. Item j of the
group i has a value vij and requires resources represented by
its weight wij.

The objective is to pick at most one item from each group
so that the total value of the collected items is maximized,
subject to the resource or weight constraint of the knapsack
that the total weight of the knapsack cannot exceed a weight
W . Note that the objective function is linear as the total
value is the sum of the values of the collected items.

A greedy strategy for this problem is as follows:

1. Sort items based on their values vij .
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2. Starting with an empty knapsack, add the next item
from the sorted list into the knapsack provided the
weight constraint of the knapsack is satisfied.

3. Repeat this process until we reach the end of the sorted
list.

Thus, the three main results for the SLA based optimiza-
tion problem in the constraint based framework are:

• General constraint set: For the general case with no
conditions on the resource requirements of individual
items the exchange property is not satisfied. If we
consider a feasible collection of items in the knapsack
to which we need to add a new item, it may not be
possible to bound the number of items to be removed
before the new item can be added to get a new feasible
collection satisfying the weight constraint. So, one of
the two properties needed for the constraints to form
a k-extendible systems is not satisfied and hence the
greedy algorithm can only satisfy the expectation of
action policies.

• k-Extendible constraint set: In many scenarios,
the weights of the items can satisfy some more condi-
tions. Suppose the weights are such that wmax/wmin ≤
k. For example, suppose that there are n classes of
jobs, items in each class have the same weight. Also,
the biggest and the smallest weight class differ by a
ratio of k. Then, we can show that the set of all possi-
ble collections forms a k-extendible system. Therefore,
the greedy algorithm is a 1

k
-approximation algorithm.

Then the solution produced by the greedy algorithm
satisfies the requirements of goal policies.

Interestingly, Zhang and Ardagna designed a solution based
on Tabu search to solve the optimization problem [35]. The
initial high-quality solution needed to start Tabu search is
obtained using the greedy approach and is then further im-
proved upon. Under more structured conditions, we can
guarantee that the greedy solution already performs well
and provides theoretical guarantees for the quality of the
solution.

5. DISCUSSION
This paper initiates the study of policy design for self-

adaptive and self-managing systems from a mathematical
perspective. Our approach is based on the unifying policy
framework of Kephart and Walsh and the algorithmic frame-
works by Edmonds [7], Fisher et al. [8], and Mestre [20]. Our
paper envisions a handbook that provides policy designers
with guidelines to help them choose an appropriate algorith-
mic strategy to achieve the desired policy level for an opti-
mization problem of interest. It also provides information
on how to customize a component (i.e., either the objective
function or the constraints) of the problem to realize a better
solution quality.

We would like to discuss some questions related to our
approach that could arise. Our framework and results are
in the static environment. It can be argued that real-world
situations are dynamic. However, it has been observed that
algorithms for data centers or web farms need a static com-
ponent that decides the strategy over long periods of time

and a dynamic component that handles short-term fluctua-
tions or changes [34]. In other words, a good understanding
of the static environment is important for self-adaptive sys-
tems.

Some researchers or practitioners may argue that results
that impose structure on either the objective function or the
constraints of an optimization problem may not be interest-
ing in real-world scenarios. This can be refuted with two
arguments: There is always a tendency to model problems
in their utmost generality without looking for conditions sat-
isfied by the instances arising in practice. This needs to be
avoided. Furthermore, it is definitely possible that in a dy-
namic environment, the scenario could shift between struc-
tured and unstructured on different occasions. In such cases,
the policies of an autonomic system could make use of the
knowledge gained from this work and use simpler algorith-
mic strategies whenever possible.

6. CONCLUSIONS
This paper introduces a mathematical framework that

adds structure to the underlying optimization problem for
different types of policies. Structure is added either to the
objective function or the constraints of the optimization
problem. These mathematical structures, imposed on the
underlying problem, progressively increase the quality of
the solutions obtained using the greedy optimization tech-
nique. We characterized and analyzed several optimization
problems encountered in the realm of self-adaptive and self-
managing systems to provide quality guarantees for their
solutions.

To conclude, we believe that similar mathematical struc-
tures can be found for other algorithmic techniques such
as dynamic programming (DP). It is known that dynamic
programming computes the optimal solution when the opti-
mization problem has special properties such as overlapping
subproblems and optimal substructure. This technique works
well as an approximation scheme for problems that are DP-
benevolent [33]. A DP-benevolent problem has the property
that it has a dynamic program formulation satisfying a set
of structural conditions. Thus, we view our work as a first
step towards an in-depth study that envisions knowledge
transfer from the area of algorithm design to self-adaptive
computing.

It would be worthwhile to investigate and identify more
examples that support our framework. Experimental eval-
uation of the greedy technique to study its average-case
behaviour is a natural extension of this work. For exam-
ple, we showed that the greedy technique provides a 1/2-
approximation algorithm when the objective function is sub-
modular and the constraints form a matroid. However, it is
only a worst-case result. We plan to investigate how the
algorithm performs in this case on randomly generated in-
stances.
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