
Lecture Notes in Computer Science 7475
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Rogério de Lemos Holger Giese
Hausi A. Müller Mary Shaw (Eds.)

Software Engineering
for Self-Adaptive Systems II

International Seminar
Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers

13



Volume Editors

Rogério de Lemos
University of Kent, School of Computing
Canterbury, Kent CT2 7NF, UK
and
Centre for Informatics and Systems
of the University of Coimbra (CISUC)
3030-290 Coimbra, Portugal
E-mail: r.delemos@kent.ac.uk

Holger Giese
University of Potsdam
Hasso Plattner Institute for Software Systems Engineering
Postfach 900460, 14440 Potsdam, Germany
E-mail: holger.giese@hpi.uni-potsdam.de

Hausi A. Müller
University of Victoria, Department of Computer Science
STN CSC, Victoria, BC, V8W 3P6, Canada
E-mail: hausi@cs.uvic.ca

Mary Shaw
Carnegie Mellon University, School of Computer Science
5000 Forbes Avenue, Pittsburgh, PA 15213-3891, USA
E-mail: mary.shaw@cs.cmu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35812-8 e-ISBN 978-3-642-35813-5
DOI 10.1007/978-3-642-35813-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954418

CR Subject Classification (1998): D.2, D.3, F.1.1, I.2.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The complexity of current software-based systems has led the software engineer-
ing community to look for inspiration in diversely related fields (e.g., robotics
and control theory) as well as other areas (e.g., biology) to find innovative
approaches for building, running, and managing software systems and services.
Therefore, self-adaptation—systems that are able to adjust their behavior or
structure at run-time in response to their perception of the environment and
the system itself – has become a hot topic within the software engineering
community.

This book is one of the outcomes of Dagstuhl Seminar 10431 on “Software En-
gineering for Self-Adaptive Systems” held in October 2010. It is the second book
in the series and comprises a research roadmap, four working group papers, and
invited papers from recognized experts in the field. The research roadmap, com-
plemented by four group papers that detail the issues covered by the roadmap,
summarizes the Dagstuhl Seminar discussions and provides insights into key
features of self-adaptive software systems. All the papers in this book are peer-
reviewed, with the exception of the roadmap paper, which was written in several
iterations over the past two years by the participants of this Dagstuhl Seminar.
The book consists of four parts: “Research Roadmap,” “Requirements and Poli-
cies,” “Design Issues,” and “Applications.”

Part one of the book, which is entitled “Research Roadmap,” includes the
roadmap paper “Software Engineering for Self-Adaptive Systems: A Second
research Roadmap” that indentifies selected software engineering research chal-
lenges for self-adaptive systems, and the four working group papers that elab-
orate the four self-adaptation perspectives presented in the roadmap paper.
Instead of dealing with a wide range of topics associated with the field, this
roadmap paper focuses on four fundamental topics of self-adaptation: design
space of adaptive solutions, towards software engineering processes for self-
adaptive systems, from centralized to decentralized control, and practical run-
time verification and validation for self-adaptive systems.

The second paper in the first part of this book by Brun, Desmarais, Geihs,
Litoiu, Lopes, Shaw, and Smit, entitled “A Design Space for Self-Adaptive Sys-
tems,” discusses the importance of systematic design, identifies the dimensions
of the self-adaptive system design space, and identifies key design decisions,
questions, and possible answers relevant to the design space, which are orga-
nized into five clusters: observation, representation, control, identification, and
enacting adaptation.

The third paper entitled “Software Engineering Processes for Self-Adaptive
Systems,” authored by Andersson, Baresi, Bencomo, de Lemos, Gorla, Inverardi,
and Vogel, argues that traditional software engineering processes need to be re-
conceptualized to distinguish between development-time and run-time activities,



VI Preface

and to support designers in taking decisions on how to engineer such systems
properly. The paper also identifies a number of challenges on re-conceptualization
and proposes initial ideas based on process modeling.

The fourth paper “On Patterns for Decentralized Control in Self-Adaptive
Systems,” authored by Weyns, Schmerl, Grassi, Malek, Mirandola, Prehofer,
Wuttke, Andersson, Giese, and Göschka, aims to consolidate knowledge on de-
centralized control in self-adaptive systems in the form of patterns of interacting
MAPE loops to describe the different types of control in self-adaptive systems.

The fifth paper in the first part of this book by Tamura, Villegas, Müller,
Sousa, Becker, Karsai, Mankovskii, Pezzè, Schäfer, Tahvildari, and Wong, en-
titled “Towards Practical Runtime Verification and Validation of Self-Adaptive
Software System,” analyzes fundamental challenges and concerns in the develop-
ment of verification and validation (V&V) methods and techniques that provide
certifiable trust in self-adaptive and self-managing systems and presents a pro-
posal for including V&V operations explicitly in feedback loops for ensuring the
achievement of software self-adaptation goals.

Part two of this book, entitled “Requirements and Policies,” consists of three
papers describing approaches in which requirements and policies assume a central
role in the development, deployment, and operation of self-adaptive software
systems.

The first paper by Souza, Lapouchnian, Robinson, and Mylopoulos, entitled
“Awareness Requirements for Adaptive Systems,” discusses awareness require-
ments, which are characterized syntactically as requirements that refer to other
requirements or domain assumptions and their success or failure at run-time. It
presents how awareness requirements are monitored, and provides a discussion
on how to go from awareness requirements to self-adaptive systems. The pro-
posed approach has been evaluated by analyzing, designing, and developing a
simulation of a real-world system—an ambulance dispatch system.

The second paper, entitled “Self-Management of Distributed Systems Us-
ing High-Level Goal Policies,” by Rosa, Rodrigues, and Lopes describes an ap-
proach to automate the selection of the adaptations that should be performed
in response to changes in the execution environment. The approach identifies
key aspects to describe goals, specify adaptations, and select adaptations when
addressing distributed components, and discusses how to perform the system
monitoring and execution of the adaptations in a distributed setting.

The last paper of this part by Ghezzi and Sharifloo, entitled “Dealing
with Non-Functional Requirements for Adaptive Systems via Dynamic Software
Product-Lines,” presents an approach for ensuring continuous satisfaction of
non-functional requirements using self-adaptation. To achieve this, the authors
propose that the implementation should be architected as a dynamic software
product line (DSPL), whose target configurations can be generated dynamically.
They also discuss how the DSPL can be verified against non-functional require-
ments at development-time through model checking.



Preface VII

Part three of the book covers “Design Issues” and includes three papers on
design perspectives in self-adaptive software systems.

The first paper by Esfahani and Malek, entitled “Uncertainty in Self-Adaptive
Software Systems,” characterizes the sources of uncertainty in a self-adaptive
software system and demonstrates its impact on the system’s ability to satisfy
its objectives. It also provides an alternative notion of optimality that explicitly
incorporates the uncertainty underlying the knowledge (models) used for decision
making.

The second paper, entitled “A Software Life Cycle Process to Support Consis-
tent Evolutions,” by Inverardi and Mori defines a generic model-centric software
life cycle process for context-aware self-adaptive systems. The proposed process
supports concrete mechanisms to achieve consistent evolution at development-
time and run-time through static and dynamic decision-making procedures.

The third paper on design issues, entitled “DYNAMICO: A Reference Model
for Governing Control Objectives and Context Relevance in Self-Adaptive Soft-
ware Systems,” by Villegas, Tamura, Müller, Duchien, and Casallas, introduces
a reference model for engineering highly dynamic adaptive software systems that
helps guarantee the coherence of adaptation mechanisms with respect to changes
in adaptation goals, and monitoring mechanisms with respect to changes in both
adaptation goals and adaptation mechanisms.

Part four of the book contains four papers covering a wide range of “Appli-
cations.”

The first paper in this part by Dubey, Karsai, and Mahadevan, entitled
“Fault-Adaptivity in Hard Real-Time Component-Based Software Systems,” de-
velops an approach and model-based support tools to implement software health
management functions for component-based systems, where developers can cre-
ate models of the system and its components, as well as specify how fault mitiga-
tion will take place. The foundation of the architecture is a real-time component
framework that defines a component model for the ARINC-653 system.

Sousa’s paper, entitled “Towards User Tailoring of Self-adaptation in Ubiq-
uitous Computing,” argues that domain experts and end users will play an
increasingly important role in designing ubiquitous computing systems. He pro-
poses language constructs for users to express and tailor the following kinds
of self-adaptation: design meshing—dynamic adaptation to requirements inde-
pendently put forth by multiple users, pliable applications—structural modes of
operation in response to context or other events, and a decentralized, lightweight
protocol for self-healing.

The third paper, entitled “Hierarchical Self-Optimization of SaaS Applica-
tions in Clouds,” by Simmons, Ghanbari, Liaskos, Litoiu, and Iszlai, defines a
framework to manage a software as a service (SaaS) application on top of a
platform as a service (PaaS) infrastructure. This framework utilizes PaaS policy
sets to implement the SaaS provider’s elasticity policy for its application server
tier. Adaptation is based on strategy-trees to allow for systematic capture, rep-
resentation, and reasoning about adaptation variability.



VIII Preface

The final paper of this part, entitled “Self-Adaptivity from Different Ap-
plication Perspectives: Requirements, Realizations, Reflections,” by Geihs is a
reflection on the design space of self-adaptive systems and a critique of a re-
cently published framework for evaluating self-adaptive software systems. This
evaluation is performed by elaborating on synergies and discrepancies in the
development of three case studies.

Although the self-adaptability of systems has been studied in a wide range of
disciplines, from biology to robotics, only recently has the software engineering
community recognized its key role in enabling the development of self-adaptive
systems that are able to adapt to internal faults, changing requirements, and
evolving environments. Continuing the course of the first book of the series on
Software Engineering for Self-Adaptive Systems the collection of papers in this
second volume addresses the state of the art of the field, describes a wide range
of approaches coming from different strands of software engineering, and posits
future challenges facing this field of research. We hope that this book will prove
valuable for both practitioners and researchers involved in the development and
deployment of self-adaptive software systems.

We would like to thank all the authors of the book chapters for their excellent
contributions, the participants of the Dagstuhl Seminar 10431 on “Software En-
gineering for Self-Adaptive Systems” for their inspiring participation in moving
this field forward, and Alfred Hofmann and his team at Springer for believing in
this important project and helping us to publish this book. Last but not least, we
deeply appreciate the great efforts of the following expert reviewers who helped us
ensure that the contributions are of high quality:R.Abreu, J.Andersson, L.Baresi,
N. Bencomo, Y. Brun, R. Casallas, L. Duchien, F. Eliassen, G. Engels, J. Georgas,
V. Grassi, S. Guinea, S. Hallsteinsen, P. Inverardi, S. Jiang, G. Karsai, S. Liaskos,
M. Litoiu, A. Lopes, S. Malek, R. Mirandola, J. Mylopoulos, O. Nierstrasz,
C. Prehofer, W. Robinson, L. Rodrigues, R. Rouvoy, M. Salehie, B. Schmerl,
B. Simons, D. Smith, J.P. Sousa, L. Tahvildari, M. Tichy, D. Weyns, J. Wuttke,
and several anonymous reviewers.

June 2012 Rogério de Lemos
Holger Giese

Hausi A. Müller
Mary Shaw



Table of Contents

Part I: Research Roadmap

Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rogério de Lemos, Holger Giese, Hausi A. Müller,
Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns,
Luciano Baresi, Basil Becker, Nelly Bencomo,
Yuriy Brun, Bojan Cukic, Ron Desmarais,
Schahram Dustdar, Gregor Engels, Kurt Geihs,
Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi,
Paola Inverardi, Gabor Karsai, Jeff Kramer,
Antónia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii,
Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz,
Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer,
Rick Schlichting, Dennis B. Smith, João Pedro Sousa,
Ladan Tahvildari, Kenny Wong, and Jochen Wuttke

A Design Space for Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu,
Antónia Lopes, Mary Shaw, and Michael Smit

Software Engineering Processes for Self-Adaptive Systems . . . . . . . . . . . . . 51
Jesper Andersson, Luciano Baresi, Nelly Bencomo,
Rogério de Lemos, Alessandra Gorla, Paola Inverardi, and
Thomas Vogel

On Patterns for Decentralized Control in Self-Adaptive Systems . . . . . . . 76
Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek,
Raffaela Mirandola, Christian Prehofer, Jochen Wuttke,
Jesper Andersson, Holger Giese, and Karl M. Göschka

Towards Practical Runtime Verification and Validation of Self-Adaptive
Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Gabriel Tamura, Norha M. Villegas, Hausi A. Müller,
João Pedro Sousa, Basil Becker, Gabor Karsai, Serge Mankovskii,
Mauro Pezzè, Wilhelm Schäfer, Ladan Tahvildari, and Kenny Wong



X Table of Contents

Part II: Requirements and Policies

Awareness Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Vı́tor E. Silva Souza, Alexei Lapouchnian,
William N. Robinson, and John Mylopoulos

Self-management of Distributed Systems Using High-Level Goal
Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Liliana Rosa, Lúıs Rodrigues, and Antónia Lopes

Dealing with Non-Functional Requirements for Adaptive Systems via
Dynamic Software Product-Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Carlo Ghezzi and Amir Molzam Sharifloo

Part III: Design Issues

Uncertainty in Self-Adaptive Software Systems . . . . . . . . . . . . . . . . . . . . . . 214
Naeem Esfahani and Sam Malek

A Software Lifecycle Process to Support Consistent Evolutions . . . . . . . . 239
Paola Inverardi and Marco Mori

DYNAMICO: A Reference Model for Governing Control Objectives
and Context Relevance in Self-Adaptive Software Systems . . . . . . . . . . . . . 265

Norha M. Villegas, Gabriel Tamura, Hausi A. Müller,
Laurence Duchien, and Rubby Casallas

Part IV: Applications

Fault-Adaptivity in Hard Real-Time Component-Based Software
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan

Towards User Tailoring of Self-Adaptation in Ubiquitous Computing . . . 324
João Pedro Sousa

Hierarchical Self-Optimization of SaaS Applications in Clouds . . . . . . . . . 354
Bradley Simmons, Hamoun Ghanbari, Sotirios Liaskos,
Marin Litoiu, and Gabriel Iszlai

Self-Adaptivity from Different Application Perspectives: Requirements,
Realizations, Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Kurt Geihs

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Software Engineering for Self-Adaptive Systems:

A Second Research Roadmap

Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw,
Jesper Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura,
Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi,

Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais,
Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka,
Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai,

Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii,
Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè,
Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith,
João Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke

r.delemos@kent.ac.uk, holger.giese@hpi.uni-potsdam.de, hausi@cs.uvic.ca,

mary.shaw@cs.cmu.edu

Abstract. The goal of this roadmap paper is to summarize the state-
of-the-art and identify research challenges when developing, deploying
and managing self-adaptive software systems. Instead of dealing with a
wide range of topics associated with the field, we focus on four essential
topics of self-adaptation: design space for self-adaptive solutions, soft-
ware engineering processes for self-adaptive systems, from centralized to
decentralized control, and practical run-time verification & validation for
self-adaptive systems. For each topic, we present an overview, suggest fu-
ture directions, and focus on selected challenges. This paper complements
and extends a previous roadmap on software engineering for self-adaptive
systems published in 2009 covering a different set of topics, and reflecting
in part on the previous paper. This roadmap is one of the many results of
the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive
Systems, which took place in October 2010.

1 Introduction

The complexity of current software systems has led the software engineering
community to investigate innovative ways of developing, deploying, managing
and evolving software-intensive systems and services. In addition to the ever
increasing complexity, software systems must become more versatile, flexible,
resilient, dependable, energy-efficient, recoverable, customizable, configurable,
and self-optimizing by adapting to changes that may occur in their operational
contexts, environments and system requirements. Therefore, self-adaptation —
systems that are able to modify their behavior and/or structure in response to
their perception of the environment and the system itself, and their goals — has
become an important research topic in many diverse application areas.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 1–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 R. de Lemos et al.

It is important to emphasize that in all the many initiatives to explore self-
adaption, the common element that enables its provision is usually software. Al-
though control theory provides 60 years of experience and software the
necessary flexibility to attain self-adaptability, the proper engineering and re-
alization of self-adaptation in software still remains a formidable intellectual
challenge. Moreover, only recently have the first attempts been made to estab-
lish suitable software engineering approaches for the provision of self-adaptation.
In the long run, we need to establish the foundations that enable the systematic
development, deployment, management and evolution of future generations of
self-adaptive software systems.

The goal of this roadmap paper is to summarize the state-of-the-art and
identify research challenges when developing, deploying, managing and evolving
self-adaptive software systems. Specifically, we focus on development methods,
techniques, and tools that we believe are required when dealing with software-
intensive systems that are self-adaptive in their nature. In contrast to merely
speculative and conjectural visions and ad hoc approaches for systems support-
ing self-adaptability, the objective of this paper is to establish a roadmap for
research and identify the key research challenges.

The intent of this new roadmap paper is not to supersede the previous paper
on software engineering self-adaptive systems [15], but rather to complement
and extend it with additional topics and challenges. The research challenges
identified in the previous paper are still valid. Moreover, it is too early to re-
assess the conjectures made in that paper. In order to provide a context for
this roadmap, in the following, we summarize the most important challenges
identified in the first roadmap paper [15].

– Modeling dimensions — the challenge was to define models that can repre-
sent a wide range of system properties. The more precise the models are, the
more effective they should be in supporting run-time analyses and decision
processes.

– Requirements — the challenge was to define a new language capable of cap-
turing uncertainty at an abstract level. Once we consider uncertainty at the
requirements stage, we must also find means of managing it. Thus, the need
to represent the trade-offs between the flexibility provided by the uncertainty
and the assurances required by the application.

– Engineering — the challenge was to make the role of feedback control loops
more explicit. In other words, feedback control loops must become first-class
entities throughout the lifecycle of self-adaptive systems. Explicit modeling
of feedback loops will ease reifying system properties to allow their query
and modification at run-time.

– Assurances — the challenge was how to supplement traditional V&V meth-
ods applied at requirements and design stages of development with run-time
assurances. Since system context changes dynamically at run-time, systems
must manage contexts effectively, and its models must include uncertainty.

Similar to previous research roadmap paper, instead of dealing with a wide range
of topics associated with the field, this paper focuses on four essential topics



Software Engineering for Self-Adaptive Systems 3

of self-adaptation: design space of self-adaptive solutions, software engineering
processes for self-adaptive systems, from centralized to decentralized control, and
practical run-time verification and validation (V&V) for self-adaptive systems.
The presentations of each of the topics do not cover all related aspects, instead
focused theses are used as a means to identify challenges associated with each
topic. The four identified theses are the following.

– Design space – the need to define what is the design space for self-adaptive
software systems, including the decisions the developer should address.

– Processes – the need to define innovative generic processes for the devel-
opment, deployment, operation, maintenance, and evolution of self-adaptive
software systems.

– Decentralization of control loops – the need to define a systematic engineer-
ing approach for control loops for software adaptation of varying degree of
centralization and decentralization of the loop elements.

– Practical run-time verification and validation – the need to investigate V&V
methods and techniques for obtaining inferential and incremental assess-
ments for the provision of confidence and certifiable trust in self-adaptation.

Although the topics covered by the two roadmap papers may appear related, the
issues covered are quite distinct since the topics covered different theses: design
spaces is related to the former modeling dimensions topic but taking a broader
more top-down rather than bottom up perspective, processes is a completely
new topic, decentralization of control loops looks into the control loop addressed
by the former engineering topic with the particular focus on decentralization,
and practical run-time V&V refines the related former assurances topic looking
in particular into techniques that can be effectively applied at run-time.

In order to motivate and present a new set of research challenges associated
with the engineering of self-adaptive software systems, the paper is divided into
four parts, each related to one of the new topics identified for this research
roadmap. For each topic, we present an overview, suggest future directions,
and focus on selected challenges. The four topics are: design space for adaptive
solutions (Section 2), towards software engineering processes for self-adaptive
systems (Section 3), from centralized to decentralized control (Section 4), and
practical run-time verification and validation (Section 5). Finally, Section 6 sum-
marizes our findings.

2 Design Space

Designing self-adaptive software systems involves making design decisions about
observing the environment and the system itself, selecting adaptation mecha-
nisms, and enacting those mechanisms. While most research on self-adaptive
systems deals with some subset of these decisions, to the best of our knowledge,
there has been neither a systematic study of the overall design space for such
systems nor an enumeration of the decisions the developer should address.



4 R. de Lemos et al.

2.1 Design Space Definitions

The design space of a system is the set of decisions, together with the possi-
ble choices, the developer must make. A representation of a design space is a
static textual or graphical form of a design space, or a subset of that space.
Intuitively, a design space is a Cartesian space with dimensions representing
the design decisions and values along those dimensions representing the pos-
sible choices. Points in the space represent concrete designs. In practice, most
interesting design spaces are too rich to represent in their entirety, so represen-
tations of the design space capture only the principal decisions, the ones that
are significant for the task at hand. Typically, the design dimensions are not
independent, so making one decision may preclude, restrict, or make irrelevant,
other decisions [9,49].

Several partial methodologies for identifying and representing design spaces
have emerged. For example, Andersson et al. [1] defined a set of modeling di-
mensions for self-adaptive software systems. The identified dimensions were or-
ganized into four categories: the self-adaptive goals of the system, the causes
or triggers of self-adaptation, the mechanisms used to adapt, and the effects of
those mechanisms on the system. Kramer and Magee [33] outline three tiers of
decisions the developer must make — ones that pertain to goal management,
change management, and component control. Dobson et al. [17] identify four as-
pects of self-adaptive systems around which decisions can be organized: collect,
analyze, decide, act. Finally, Brun et al. [10] discuss the importance of making
the adaptation control loops explicit during the development process and outline
several types of control loops that can lead to adaptation. Specific design spaces
have also been proposed in the form of taxonomies. For example, Brake et al. [8]
introduce (and Ghanbari et al. [22] later refine) a taxonomy for performance
monitoring of self-adaptive systems together with a method for discovering pa-
rameters in source code. Ionescu et al. [29] formally define controllability and
observability for web services and show that controllability can be preserved in
composition.

2.2 Key Design Space Dimensions

In this section, we outline a design space for self-adaptive systems with five
principal dimensions — clusters of design decisions pertinent to self-adaptive sys-
tems. The clusters are: observation, representation, control, identification, and
enacting adaptation. Each cluster provides additional structure in the form of
questions a developer should consider when designing such a system. The Obser-
vation cluster answers questions related to what is monitored by the self-adaptive
system, when and how often monitoring occurs, and how states are determined
based on the monitored data. The Representation cluster is concerned with the
run-time representation of adaptation targets, inputs, effects, system indicators,
and states. The Control cluster is concerned with the mechanisms through which
a solution is enacted. The Identification cluster is concerned with the possible
solution instances that can achieve the adaptation targets. Finally, the cluster



Software Engineering for Self-Adaptive Systems 5

of Enacting Adaptation concerns how adaptation can be achieved. While we
hope our enumeration will help formalize and advance the understanding for
self-adaptive system design, it is not intended to be complete and further work
on expanding and refining this design space is necessary and appropriate.

To explain the concepts, we separate self-adaptive systems into two elements:
the Managed System, which is responsible for the system’s main functionality,
and the Adaptation System, which is responsible for altering the Managed Sys-
tem as appropriate. The elements inherent to the managed system (that is, the
things that would exist even if it were not adaptively managed) such as the in-
puts and the environment are captured and used by the Adaptation System. The
Adaptation System produces adaptations that impact the Managed System.

Observation. The observation cluster is concerned with design decisions re-
garding what information is observed by the self-adaptive system and when
such observations are made.

A key design decision about self-adaptive systems is “what information will
the system observe?” In particular, “what information about the external envi-
ronment and about the system itself will need to be measured or estimated?” To
make these measurements, the system will need a set of sensors; these determine
what the system can observe. Some of the measurements can be made implicitly
(e.g., by inferring them from the state of the system or success or failure of an
action). Choices include different aspects of goals, domain knowledge, environ-
ment, and the system itself necessary to make decisions about adaptation toward
meeting the adaptation goals.

Given the set of information the system observes, another important design
decision is “how will the system determine that information?” The system could
make direct measurements with sensors, infer information from a proxy, extrap-
olate based on earlier measurements, aggregate knowledge, etc.

Given a way to observe, there are two important decisions that relate to tim-
ing: “what triggers observation?” and “what triggers adaptation?” The system
could be continuously observing or observation could be triggered by an exter-
nal event, a timer, an inference from a previous observation, deviation or error
from expected behavior, etc. Thus, the observation can happen at a fixed delay,
on-demand, or employ a best-effort strategy. The same decisions relate to when
the adaptation triggers, which is also relevant to the control cluster.

Handling uncertainty in the measurements is another decision related to ob-
servation. Filtering, smoothing, and redundancy are just some of the solutions
to dealing with noise and uncertainty.

Representation. The representation cluster is concerned with design decisions
regarding how the problem and system are represented at run-time. Uncertainty
is intrinsic to many self-adaptive systems, so some information may be available
only at run-time. Therefore, to enable mechanisms of adaptation, key informa-
tion about the problem and system may have to be made available at run-time.
This cluster is closely related to the observation cluster, and has ties to the
remaining clusters that make use of this representation.



6 R. de Lemos et al.

A key decision in this cluster is “what information is made available to the
components of the self-adaptive system?” Answers include different aspects of
the adaptation targets, existing domain knowledge, and observations of the en-
vironment and Managed System that are found necessary and sufficient for a
self-adaptive system to operate.

Another design decision in this cluster relates to choices of internal represen-
tation. “How is this information represented?” is meant to guide the designer
to the representation that best matches the adaptation targets and the nature
of the problem. Choices include explicit representations such as graph models,
formulae, bounds, objective functions, etc., or implicit representations in the
code.

Control. The control cluster is concerned with the system’s run-time decision
making toward self-adaptation.

“How to compute how much change to enact forms one design decision in this
cluster?” Possible choices include the change being a predefined constant value
or proportional to the deviation from the desired behavior. The PID technique
adds three values to determine the amount of change: a value proportional to
the control error, a value proportional to the derivative of the error, and a value
proportional to the integral of the error.

Feedback loops play an integral role in adaptation decisions. Thus, key de-
cisions about a self-adaptive system’s control are: “what control loops are in-
volved?” and “how do those control loops interact?” The choices depend on the
structure of the system and the complexity of the adaptation goals. Control
loops can be composed in series, parallel, multi-level (hierarchical), nested, or
independent patterns. Brun et al. [10] have further discussed the choices and
impact of control loops on the design of self-adaptive systems.

What aspects of the system can be adapted from another design decision? Sys-
tems can change parameters, representations, and resource allocations, choose
among pre-constructed components and connectors, synthesize new components
and connectors, and augment the system with new sensors and actuators.

The possible adaptations those aspects can undergo form another design deci-
sion. Choices include aborting, modifying data, calling procedures, starting new
processes, etc.

The design decision from the observation cluster that deals with what triggers
adaptation is closely related to the control cluster.

Identification. At every moment in time, the self-adaptive system is in one in-
stantiation. The self-adaptation process consists of traversing the space of such
instantiations. The identification cluster is concerned with identifying those in-
stantiations the system may take on at run-time. Instantiations can describe
system structure, behavior, or both.

For each adaptation target, there is a decision about which instantiations
could satisfy that target. The main concern of this decision is enumerating con-
crete sets of possible structures, behaviors, states, parameter values, etc. It is



Software Engineering for Self-Adaptive Systems 7

likely that not all identified instantiations will be supported at run-time. Select-
ing those that will be supported is another design decision.

Identifying the relevant domain assumptions and contexts for each instantia-
tion is yet another design decision in this cluster. The system can then recognize
the context and enact the relevant instantiations.

Finally, identifying the transition cost between instantiations informs the sys-
tem of the run-time costs of certain types of self-adaptation.

Enabling Adaptation. The choice of adaptation mechanisms the self-adaptive
system employs, how are they triggered and supported and how failure is handled
are design decisions included in the Enabling Adaptation cluster.

The mechanisms can be represented explicitly or implicitly in the system. For
example, self-managing systems with autonomic components typically have ex-
plicit adaptation mechanisms. Meanwhile, self-organizing systems often exhibit
self-adaptation as an emergent property and do not explicitly define the adapta-
tion mechanisms. The decision concerning control loops from the control cluster
is closely related to this decision. Some forms of control can be explicitly ex-
pressed in the design, whereas other forms are emergent. It is also possible to
create hybrid explicit-implicit self-adaptive systems.

Support of the self-adaptation forms another design decision. Support can
be enacted through plugin architectures, component substitution, web services,
etc. Related to this decision is what to do when adaptation fails. Choices include
trying again, trying a different adaptation mechanism or strategy, observing the
environment and the system itself to update internal representations, etc.

In selecting the adaptation mechanisms, it is important to consider the states
or events that can trigger adaptation. Examples triggers include not satisfying
the adaptation targets that relate to non-functional requirements (e.g., response
time, throughput, energy consumption, reliability, fault tolerance), behavior,
undesirable events, state maintenance, anticipated change, and unanticipated
change.

2.3 Research Challenges

The design space described above can help formalize and advance the under-
standing of self-adaptive system design. However, it is incomplete, so further
exploration and expansion are necessary to aid self-adaptive system develop-
ers. A more complete list can help ensure designers avoid leaving out critical
decisions.

The main benefit of understanding the design space is infusing a systematic
understanding of the options for self-adaptive control into the design process.
The developer should understand the trade-offs among different options and
the quantitative and qualitative implications of the design choices. To do this
effectively, we need to understand the effects of these design decisions, and their
order, on the quality of the resulting system.

Each cluster we outlined above can be further expanded and refined. Fur-
ther, validation of the alternatives against real-world examples can serve as the



8 R. de Lemos et al.

framework for describing options. Dimensions in the self-adaptive design space
are not independent and the interactions between the decisions in those clusters
need to be explored. Understanding the decision relationships can narrow the
search space and reduce the complexity of the design and the design process.

An important challenge to consider is bridging the gap between the design
and the implementation of self-adaptive systems. Frameworks and middleware
(e.g., [18,38]) can help bridge that gap, providing developers with automatically
generated code and reusable models for their specific design decisions. This chal-
lenge is even more difficult in the case of reengineering existing non-self-adaptive
systems or integrating self-adaptive and non-self-adaptive systems.

Finally, of particular importance is the understanding of interactions of con-
trol loops and self-adaptation mechanisms. If we are to build complex systems,
and systems-of-systems with self-adaptive components, we must understand how
these mechanisms and their relevant control loops interact and affect one an-
other.

3 Processes

Software engineering (SE) research has primarily focused on principles for de-
veloping high quality software systems, while the maintenance and the evolu-
tion of such systems have received less attention [40]. Meanwhile, it has been
commonly accepted that software, which implements real world applications,
must continually evolve. If software does not evolve, it will not fulfill the con-
tinuously changing requirements and thus, it will become outdated earlier than
expected [35,36]. This awareness has impacted software process models to bet-
ter address the inherent need for change and evolution by introducing iterative,
incremental, and evolutionary approaches to software development as an alter-
native to strictly separating sequenced disciplines of requirements engineering,
design, implementation, and testing [34,40].

In the last decade, software maintenance and evolution have emerged as a
key research field in SE [40] that separates the time before and the time af-
ter the software is delivered, or in other words, divides the software lifecycle
into development-time, deployment-time, and run-time. Post-delivery changes
are typically realized by re-entering the regular development disciplines, which
eventually results in a new version of a software product or a patch that is then
released to replace or enhance the currently running version [32]. Such releases
are usually performed during scheduled down-times of the system compromis-
ing the system’s availability. Thus, the whole maintenance process is mainly
performed off-line guided by human-driven change management activities and
decoupled from the running system.

However, such a lifecycle does not meet the requirements of self-adaptive soft-
ware [15] that we are considering in this work. A self-adaptive software system
operates in a highly dynamic world and must adjust its behavior automatically
in response to changes in its environment, in its goals, or in the system itself.
This vision requires shifting the human role from operational to strategic. Hu-
mans define adaptations, that is, how a system should react to changes and the



Software Engineering for Self-Adaptive Systems 9

system then performs adaptations autonomously at run-time. The implication
is that activities previously performed during development-time will be shifted
to run-time. Several researchers [4,6,27,28] argue that, as a consequence, we
have to reconceptualize SE processes to fit modern software systems better. In
particular, to fit self-adaptive software systems.

The problem being addressed concerns the timing of software activities [12]
in a particular process regarding the software lifecycle. This problem has three
dimensions:

– Software lifecycle phases [43] (i.e., development, deployment, operation, and
maintenance and evolution).

– Software engineering disciplines [43] (i.e., requirements, design, implementa-
tion, validation, verification, etc.), and activities included in the disciplines
(e.g., requirements elicitation, prioritization, and validation).

– Software activities timeline [12], that is, when activities take place (i.e.,
development-time, deployment-time, run-time).

The motivation for our work is that lifecycle activities in a self-adaptive software
system are not bound to a traditional timeline (e.g., development-time), but may
be shifted to run-time. However, such shifts have uncharted consequences, for
instance, they may introduce new process requirements in a different phase (e.g.,
that additional activities have to be performed during development or deploy-
ment of the system to enable shifts of other activities to run-time). Moreover,
these consequences must be identified, analyzed, and possibly mitigated, thus re-
sulting in a more dynamic view on software processes. One example of changed
timing for activities in self-adaptive systems is verification and validation. The
dynamic nature of a running self-adaptive system and its environment requires
continuous verification and validation (V&V) to assess the system at run-time.
V&V are traditionally performed at development-time and shifting it to run-
time requires new and efficient techniques (cf. Section 5). The consequence is a
different and more dynamic SE process for self-adaptive systems that needs to
be understood and elaborated. Our main challenge is to provide means for engi-
neering processes for self-adaptive systems that will cover the complete software
lifecycle. Engineering processes implies support for reasoning about costs and
benefits of shifting activities in a process, a prerequisite for engineers to make
informed decisions.

3.1 Example: Migrating Evolution Activities

To illustrate the specifics of SE processes for self-adaptive software systems and
their differences to traditional software development and evolution activities,
we compare the traditional approach to corrective maintenance [50] with the
automatic workarounds approach [13,14]. Automatic workarounds aim to mask
functional faults at run-time by automatically looking for and executing alter-
native ways to perform actions that lead to failures.

Besides the implementation of new or changing requirements, the evolution
of software systems may include corrective maintenance activities [50]. Tradi-
tionally, users experience failures and report them to developers who are then in



10 R. de Lemos et al.

charge of analyzing the failure report, identifying the root cause of the problem,
implementing the changes, and releasing the new fixed version of the software.

In contrast, the automatic workarounds mechanism exploits the intrinsic re-
dundancy of “equivalent operations” usually offered by software systems for
different needs, but for obtaining the same functionality. Consider for example a
container component that implements an operation to add a single element, and
another operation to add several elements. To add two elements, it is possible
to add one element after another, or as an equivalent alternative to add them
both at the same time using the other operation. If adding two elements in se-
quence causes a failure at run-time, the automatic workarounds mechanism tries
to execute the equivalent operation instead, as an attempt to avoid the problem.

Thus, the automatic workarounds approach partially moves corrective main-
tenance activities to run-time. Once the user reports a failure, the automatic
workarounds mechanism tries to find a workaround based on that information. It
checks whether the failure has been experienced by other users and a workaround
is already known. If so, it first attempts to execute the workaround known to be
valid. If no workaround is known or the known workaround no longer works, the
mechanism scans the list of equivalent operations and checks whether they may
serve as workarounds.

The automatic workaround mechanism exemplifies how activities, previously
performed decoupled from running system instances by software developers simi-
lar to development activities, are now performed at run-time by a managing sub-
system in a self-adaptive software system. Another example is the failure analysis
activity, where failure causes are analyzed. In traditional maintenance, the fail-
ure report is analyzed by developers while in a self-adaptive software system,
the managing subsystem analyzes the failure to find alternative workarounds. In
general, compared to traditional SE processes, adding a managing subsystem af-
fects how activities in lifecycle phases are defined and connected. The automatic
workarounds approach exemplifies three effects:

– Migrating activities from one phase to another —the analyzing failure reports
activity is (partially) moved from development-time (maintenance) phase to
run-time. This (partially) delegates the developer’s responsibility for this ac-
tivity to a self-adaptation mechanism in the self-adaptive system and it is an
example of the effects on the activities’ timeline.

– Introducing new activities in other lifecycle phases — introducing the auto-
matic workaroundmechanism requires that additional activities are performed
in the development andmaintenance phases. One example is the identification
of equivalent operations. Whenever some behavior is “assigned” to the auto-
matic workaround mechanism, equivalent operations for this behavior must
be identified.

– Defining new lifecycle phase inter-dependencies — the automatic workaround
mechanism searches for equivalent operations, executes them, and lets the
users evaluate the results. This is repeated either until the user approves the
results, and thus the workaround, or until no more equivalent operations could
be found. If this is the case, the mechanism is not able to provide a



Software Engineering for Self-Adaptive Systems 11

solution to the problem. The only fallback available is to generate a failure re-
port and send it to the maintenance organization where it will be dealt within
the traditional maintenance activity. This exemplifies how traditional mainte-
nance activities integrate with run-time activities, for instance, as information
providers or as fallback activities if run-time activities do not succeed.

3.2 Understanding a Self-Adaptive Software System’s Lifecycle

Understanding how software is best developed, operated, and maintained is a
pervasive research challenge in the SE field. During the last two decades we
have witnessed the development of ultra-large-scale, integrated, embedded, and
context-aware software systems that have introduced new challenges
concerned with system development, operation, and maintenance. For instance,
dynamic environments may change systems’ goals, the systems’ inherent com-
plexity makes it difficult for external parties to be responsible for the operation,
and finally, the vast number of systems makes the operations task too com-
plex for a single centralized machine or a system operator. One answer to these
advances is to instrument software systems with managing systems that make
them more autonomous. This autonomy means that systems take over some of
the responsibilities previously performed by other roles in the software lifecycle,
such as sensing failures and automatically recovering from them.

An SE process is a workflow of activities that are performed by roles and that
use and produce artifacts in order to develop, operate, and evolve a software sys-
tem. In general, we conceive two extreme poles of SE processes [27,28]. One pole
corresponds to a traditional, off-line lifecycle process where the system itself has
no on-line process activities, that is, no activities are performed by the running
system. In contrast, the other pole describes a process with almost all activities
performed on-line by the system at run-time. The distinction between off-line
and on-line process activities is pivotal for the design of self-adaptive software
systems as it enables engineers to design more sophisticated self-adaptation ca-
pabilities. In practice, a process for a self-adaptive software system is positioned
in between these two extreme poles, due to cost and benefits trade-offs.

The research we envision has as its goal a generic process engineering frame-
work for self-adaptive software systems that provides reasoning support based
on the relative costs and benefits for individual design decisions. The framework
should include a library of reusable process elements (i.e., activity, role, and
artifact definitions). With its built-in support for reasoning, the framework as-
sociates value (costs and benefits) with these process elements. These will guide
and support engineers in understanding, specifying, analyzing, tuning, and en-
acting an SE process for a concrete self-adaptive system. The framework is based
on process modeling, where models specify processes. Such process descriptions
materialize how a self-adaptive software system is developed and how its man-
aging system behaves at run-time. By reifying a process in models, a framework
will promote discussions about the process and its design. In the long term, it
will promote reuse and even automated analysis of processes [45], which will
further support a better understanding of a self-adaptive system’s lifecycle.



12 R. de Lemos et al.

The key research challenge is the design of the process engineering frame-
work for self-adaptive software systems, which includes three corner-stone com-
ponents: (i) A library containing definitions of reusable process elements; (ii)
Support for specification of concrete self-adaptive software systems’ processes;
and (iii) Support for reasoning, analysis, and tuning of such process specifications
based on their relative costs and benefits.

Definitions of process elements for the library as well as process specifica-
tions should be based on an existing framework, such as the Software & Systems
Process Engineering Metamodel Specification (SPEM) [43]. SPEM provides a
modeling language for process specifications including, among others, lifecycle
phases, milestones, roles, activities, and work products. Research needs to iden-
tify required extensions to SPEM in order to model specifics of processes for
self-adaptive systems, like the phases when process elements are employed and
their inter-relationships to elements in other lifecycle phases. For example, in
the automatic workarounds approach, we identified the analyze failure report
activity as one activity that may be performed as part of a regular maintenance
phase or at run-time. Another example is to model dependencies between phases
(e.g., an activity can only be performed at run-time if another activity has been
performed at development-time). In addition, research on how to integrate no-
tions of value, that is, costs and benefits, into SPEM concepts is key. Extensions
to SPEM will provide a language for the process engineering framework. A lan-
guage to define process elements for the library, to model concrete processes for
self-adaptive software systems, and to analyze and tune these processes.

The first framework component, defining reusable elements for the generic
library, requires a solid understanding of SE processes, self-adaptive systems,
and the influential factors such as benefits and costs to a self-adaptive system.
This understanding is materialized by those elements that define processes, ac-
tivities, roles, or artifacts, and is persisted and shared as knowledge, such as
best-practices, in the library. Thus, the library supports the understanding and
specification of concrete processes by reusing the library’s knowledge and element
definitions, which is addressed by the second component.

Starting with an abstract conceptual model of the self-adaptive software
to be developed and the goals and the environments of the system, an engi-
neer instantiates the library to create a process model for the specific product.
The process engineering framework provides methods for decision support and
product/process analysis that will assist in the instantiation task. Self-adaptive
behavior introduces a complicated bi-directional dependency relation between
process modeling and software design. The framework’s methods will have to
take several factors into consideration including the type of adaptation required
at run-time, the associated costs and benefits, and the consequences for other
lifecycle activities. In our example, there is a design decision (to use the auto-
matic workaroundmechanism) that introduces additional activities as part of the
development activities (defining the scope of the mechanism, i.e., which opera-
tions should be covered by the mechanism, and identifying equivalent operations
for this defined scope).



Software Engineering for Self-Adaptive Systems 13

The third framework component explicitly addresses the product/process anal-
ysis and tuning to obtain an enactable process specification that appropriately
fits the specific product and the product’s goals and environments. A typical sen-
sitivity point is the degree of adaptation and evolution support at run-time. Any
design decision concerned with self-adaptive behavior must analyze, for instance,
the overhead it introduces. Is the overhead acceptable or not? If not, are pre-
computed adaptations possible to tune the process by reducing the overhead?
As stated in [4], run-time validation and verification may not match the require-
ments of efficiency to allow the systems to timely react according to changes.
This exemplifies that software design and process analysis/tuning are not iso-
lated activities, and it promotes the continuous integration of design decisions
and process analysis/tuning throughout a self-adaptive software system’s lifecy-
cle.

Finally, it is likely that an engineer uses the three components of the process
engineering framework iteratively and concurrently rather than sequentially. For
example, while specifying a process, an engineer does not find a suitable process
element definition in the library, and thus, new definitions will be created and
possibly added to the library. Or during product/process analysis, an engineer
identifies the need for process optimization, and searches the library for more
suitable process element definitions that could be used to tune the process.
Like software development processes, the process of using the framework itself
is characterized by incremental, iterative, and evolutionary principles.

Another dimension that should be considered from the beginning is the de-
gree of automation. An absolute requirement is that the process is based on
and uses models throughout the lifecycle. Since the system evolves at run-time,
these models may also have to evolve (model evolution) and thus, models need
to be accessible at run-time, either on-line or off-line [6]. The availability of
run-time models makes it possible to use them as interfaces for monitoring [57]
and adapting [56] a running system, and to perform what-if analyses and con-
sultations [6] (e.g., to test adaptations at the level of models before actually
adapting the running system). In addition, process activities must be based on
up-to-date models. Changes in a run-time model allow to some extent for the
dynamic derivation of new capabilities to respond to situations unforeseen in
the original design. Not all need to be new, we envisage the use of a library of
model transformation strategies [4] to derive system models as well as keeping
the process up-to-date with respect to the running system and vice versa. As
an initial step, model synchronization techniques have already been applied at
run-time to keep multiple system models providing different views on a running
system up-to-date and consistent to each other [56,57].

3.3 Research Challenges

The different problems and dimensions highlighted in the previous sections can
be summarized as research challenges in process comprehension, process model-
ing, and process design.



14 R. de Lemos et al.

First, dynamic environments change the system’s goals. As a consequence
we need proper means to fully comprehend the characteristics of self-adaptive
software systems and the key characteristics of their lifecycles to enhance design
& modeling, optimization, and enactment of such systems and processes. For
example, more autonomy calls for the capability of self-reacting to anomalous
situations. Both probing and reacting must be properly planned, designed, and
implemented, and they also require that some activities, which were traditionally
performed before releasing the system, be shifted to run-time.

To fully comprehend how software processes change when developing a self-
adaptive system also requires that influential factors are identified and under-
stood. Identification of these factors is essential. Factors are costs and benefits
related to self-adaptation capabilities. Less complex capabilities may be sup-
ported even in a primarily off-line process while more advanced, complex self-
adaptation capabilities call for processes where a majority of the activities are
performed on-line.

These two challenges impose a proper formalization of the software processes
to allow involved parties to fully understand the roles, activities, and artifacts at
each stage, but also to increase knowledge and foster reuse. Since some solutions
for process definition already exists and SPEM is imposing as one of the most
interesting/promising solutions, one should analyze it to understand what can
be defined through the standard model, and identify required extensions of this
model to take the specifics of processes for self-adaptive systems into account.

Another challenge associated with processes for self-adaptive software systems
is the fact that processes need to be generated dynamically at run-time since
changes affecting the system, its context and goals may require processes to
adapt. However, to deal effectively with the variability associated with software
adaptation, it is also necessary to adapt the processes that actually manage the
dynamic generation of processes for handling the uncertainty of the changes.
This calls for the need to have reflective processes in which a process is adapted
by reflecting on itself and its goals. Since off-line and on-line activities might
influence each other, another challenge that is identified is the need to consider
how the initial development-time design rationale can affect the processes being
generated at run-time. The reverse is also crucial, there is the need to incorporate
into off-line activities the decisions being made during run-time since they would
provide insightful knowledge about the operational profile of the system.

A SPEM-like solution is the enabler for defining a suitable library of generic,
reusable process elements. The availability of these elements would turn the def-
inition of suitable software processes, for the different self-adaptive systems, into
the assembly of pre-existing blocks with a significant gain in terms of quality,
speed, and accuracy of delivered solutions. Orthogonally, it would also allow for
the analysis and tuning of designed processes to obtain enactable solutions that
appropriately fit different products given their specific stakeholders’ goals and
environments in which they operate. Accurate analysis and optimization capa-
bilities are mandatory to oversee the actual release of these processes, but they
are also important to govern evolution since it is foreseeable that these processes



Software Engineering for Self-Adaptive Systems 15

must evolve in parallel with developed systems. Processes must remain aligned
and consistent with the corresponding systems and with the environments in
which these systems operate. Adequate design support for self-adaptive systems
and their lifecycle processes, where value and trade-offs are central, is a remain-
ing grand challenge for engineering self-adaptive software systems.

4 Decentralization of Control Loops

Control loops have been identified as crucial elements to realize the adaptation of
software systems [17,30,48]. As outlined in the the former road map [15], a single
centralized control component may realize the adaptation of a software system,
or multiple control components may realize the adaptation of a composite of
software systems in a decentralized manner. In a decentralized setting, the overall
system behavior emerges from the localized decisions and interactions. These two
cases of self-adaptive behavior, in the form centralized and decentralized control
of adaptation are two extreme poles. In practice, the line between the two is
rather blurred, and development may result in a compromise. We illustrate this
with a number of examples.

Adaptation control can be realized by a simple sequence of four activities:
monitor, analyze, plan, and execute (MAPE). Together, these activities form
a feedback control system from control theory [47]. A prominent example of
such adaptation control is realized in the Rainbow framework [19]. Hierarchi-
cal control schemes allow management or the complexity of adaptation when
multiple concerns (self-healing, self-protection, etc.) have to be taken into ac-
count. In this setting, higher level adaptation controllers determine the set values
for the subordinated controllers. A prominent example of a hierarchical control
schema is the IBM architectural blueprint [25]. In a fully decentralized adapta-
tion control schema, relatively independent system components coordinate with
one another and adapt the system when needed. An example of this approach
is discussed in [21] in which component managers on different nodes automat-
ically configure the system’s components according to the overall architectural
specification.

These examples show that a variety of control schemas for self-adaptive sys-
tems are available. Our interest in this section is twofold: first, we are interested
in understanding the drivers to select a particular control schema for adaptation;
and second, we are interested in getting better insight in the possible solutions
to control adaptation in self-adaptive systems. Both the drivers and solutions
are important for software engineers of self-adaptive system to choose the right
solution concerning centralized or decentralized control. In the remainder of this
section, we report on our findings concerning this endeavor and outline some
of the major research questions we see to achieve that a systematic engineering
approach for designing centralized or decentralized control schemes for software
adaptation.



16 R. de Lemos et al.

4.1 Distribution versus Decentralization

Before we elaborate on the problems and possible solutions of different control
schemas in self-adaptive systems, we first clarify terminology. In particular, we
want to clarify the terms distribution and decentralization, two terms that are
often mixed by software engineers in the community of self-adaptive systems,
leading to a lot of confusion.

Textbooks on distributed systems (e.g., [51]) typically differentiate between
centralized data (in contrast to distributed, partitioned, and replicated data),
centralized services (in contrast to distributed, partitioned, and replicated ser-
vices) and centralized algorithms (in contrast to decentralized algorithms).

Our main focus with respect to decentralization is on the algorithmic as-
pect. In particular, with decentralization we refer to a particular type of con-
trol in a self-adaptive software system. With control, we mean the decision
making process that results in actions that are executed by the self-adaptive
system. In a decentralized system there is no single component that has the
complete system state information, and the processes make adaptation deci-
sions based only on local information. In a centralized self-adaptive system
on the other hand, decisions regarding the adaptations are made by a single
component.

With distribution, we refer to the deployment of a software system to the
hardware. Our particular focus of distribution here is on the deployment of the
managed software system. A distributed software system consists of multiple
software components that are deployed on multiple processors that are connected
via some kind of network. The opposite of a distributed software system is a
system consisting of software that is deployed on a single processor.

From this perspective, control in a self-adaptive software system can be
centralized or decentralized, independent of whether the managed software is
distributed. In practice, however, when the software is deployed on a single
processor, the adaptation control is typically centralized. Similarly, decentral-
ized control often goes hand in hand with distribution of the managed software
system.

The existing self-adaptive literature and research, in particular those with
a software engineering perspective, have by and large tackled the problem of
managing either local or distributed software systems in a centralized fash-
ion (e.g., [19,25,44]). While promising work is emerging in decentralized con-
trol of self-adaptive software (e.g., [11,21,39,58,59]), we believe that there is
a dearth of practical and effective techniques to build systems in this
fashion.

It is important to highlight that the adaptation control schema we consider
here (from centralized to decentralized control) is just one dimension of the de-
sign space of a distributed self-adaptive system. Other aspects of the design space
include the actual distribution of the MAPE components, the distribution of the
data and supporting services required to realize adaptation, the mechanisms for
communication and coordination, etc.



Software Engineering for Self-Adaptive Systems 17

4.2 Drivers for Selecting a Control Schema for Adaptation

Two key drivers for selecting the right control schema for adaptation in self-
adaptive systems are the characteristics of the domain and the requirements of
the problem at hand.

Domain Characteristics. Specific properties of the domain may put con-
straints on the selection of a particular control schema for adaptation. We give
a number of example scenarios.

– In open systems, it might be the case that no trustworthy authority exists
that can realize central control.

– When all information that is required for realizing adaptations is available
at the single node, a centralized control schema may be easy to realize.
However, in other settings, it might be very difficult or even unfeasible to
get centralized access to all the information that is required to perform an
adaptation.

– The communication network may be unreliable causing network disruptions
that require decision making for adaptations based on local information only.

Requirements of the Problem at Hand. Stakeholder requirements may
exclude particular solutions to realize adaptations.

If optimization is high on the priority list of requirements, a centralized ap-
proach may be easier to develop and enables optimization to be rather straight-
forward. On the other hand, in a decentralized approach, meeting global goals is
known to be a complex problem. Hence, we have to compromise on the overall
optimality in most cases.

For systems in which guarantees about system wide properties are crucial,
fully decentralized solutions can be very problematic. Decentralized control
imposes difficult challenges concerning consistency, in particular in distributed
settings with unreliable network infrastructures. However, if reaction time is a
priority, exchanging all monitored data that is required for an adaptation may
be too slow (or too costly) in a centralized setting.

When scalability is a key concern, a decentralized solution may be preferable.
Control systems with local information scale well in terms of size, and also re-
garding performance as the collection of information and control implementation
are local. In contrast, scalability in a centralized setting is limited as all control
information must be collected and processed at the single control point.

A central control scheme is also less robust as it results in a single point of
failure. In a decentralized setting, when subsystems get disconnected, they may
be able to operate and make decisions based on the local information only, hence
increasing robustness.

4.3 Patterns for Interacting Control Loops

Ideally, we would like to have a list of problem characteristics/requirements
and then match solutions against these. However, in practice, as stakeholders



18 R. de Lemos et al.

typically have multiple, often conflicting requirements, any solution will imply
trade-offs.

We have identified different solutions in the form of patterns of interacting
control loops in self-adaptive systems. Patterns are an established way to capture
design knowledge fostering comprehension of complex systems, and serving as
the basis for engineering such systems. Each pattern can be considered as a
particular way to orchestrate the control loops of complex self-adaptive software
systems, as we explained in Section 2.2.

In order to describe the different patterns, we consider the interactions among
the different phases of control loops realized by the MAPE components. Typi-
cally only the M and E phases interact with the managed system (to observe and
adapt the system respectively). Furthermore, we consider possible peer interac-
tions among phases of any particular type (e.g., interactions between P phases),
and interactions among phases that are responsible for subsequent phases (e.g.,
an A phase interacts with a P phase, or a P phase that interacts with an E
phase). According to the different interaction ways we have identified five differ-
ent patterns that we briefly illustrate in the following.

Pattern 1: Hierarchical Control. In the hierarchical control pattern, the
overall system is controlled by a hierarchical control structure where complete
MAPE loops are present at all levels of the hierarchy. Generally, different levels
operate at different time scales. Lower levels loops operate at a short time scale,
to guarantee timely adaptation concerning the part of the system under their
direct control. Higher levels operate at a longer time scale and with a more global
vision. MAPE loops at different levels interact with each other by exchanging
information. The MAPE loop at a given level may pass to the level above infor-
mation it has collected, possibly filtered or aggregated, together with information
about locally planned actions, and may issue to the level below directives about
adaptation plans that should be refined into corresponding actions.

This pattern naturally fits systems with a hierarchical architecture. However,
independently of the actual system architecture, hierarchical organization of the
control system has been proposed (e.g., in [33]) to get a better separation of
concerns among different control levels.

Pattern 2: Master/Slave. The master/slave pattern creates a hierarchical
relationship between one master that is responsible for the analysis and planning
part of the adaptation and multiple slaves that are responsible for monitoring
and execution. Figure 1 shows a concrete instance of the pattern with two slaves.

In this case, the monitor components M of the slaves monitor the status of the
local managed subsystems and possibly their execution environment and send
the relevant information to the analysis component A of the master. A, in turn,
examines the collected information and coordinates with the plan component P,
when a problem arises that requires an adaptation of the managed system. The
plan component then puts together a plan to resolve the problem and coordinates
with the execute components (E) on the slaves to execute the actions to the local
managed subsystems.



Software Engineering for Self-Adaptive Systems 19

Fig. 1. Master-slave pattern

The master/slave pattern is a suitable solution for application scenarios in
which slaves are willing to share the required information to allow centralized
decision making. However, sending the collected information to the master node
and distributing the adaptation plans may impose a significant communication
overhead. Moreover, the solution may be problematic in case of large-scale dis-
tributed systems where the master may become a bottleneck.

Pattern 3: Regional Planner. In the regional planner pattern, a (varying)
number of local hosts are hierarchically related to a single regional host. The local
hosts are responsible for monitoring, analyzing and executing, while the regional
host is in charge of the planning part. In this case, the monitor component M
of each local host monitors the status of the managed subsystem and possibly
its execution environment, and the local analysis component A analyzes the
collected information, and reports the analysis results to the associated regional
plan component P. P collects this information from all the hosts under its direct
supervision, thus acquiring a global knowledge of their status. The regional P
is in charge to evaluate the need of adaptation of the managed system and, in
case, to elaborate an adaptation plan to resolve the problem, coordinating its
decisions with other peer regional plan components. The plan can then be put
in action activating the execute components E on the local hosts involved in the
adaptation.

Regional planner is a possible solution to the scalability problems with mas-
ter/slave. Regions may also map to ownership domains where each planner is
responsible for the planning of adaptations of its region.

Pattern 4: Fully Decentralized. In this pattern, each host implements a
complete MAPE loop, whose local M, A, P and E components coordinate their
operation with corresponding peer components of the other hosts. Ideally, this
should lead to a flexible sharing of information about the status of the managed
systems, as well as the results of the analysis. The triggering of possible adapta-
tion actions is then agreed on and managed by the local P components, which
then activate their local E components to execute the actions to the local man-
aged subsystems. In practice, achieving a globally consistent view on the system



20 R. de Lemos et al.

status, and reaching a global consensus about suitable adaptation actions is not
an easy task. In this case, it could be preferable to limit the interaction among
peer control components to get some partial information sharing and some kind
of lose coordination. Generally, this may lead to sub-optimal adaptation actions,
from the overall system viewpoint. However, depending on the system at hand
and the corresponding adaptation goals, even local adaptation actions based
on partial knowledge of the global system status may lead to achieve globally
optimal goals (TCP adaptive control flow is a typical example of this).

Fig. 2. Decentralized pattern

Pattern 5: Information Sharing. In this pattern, each host owns local M, A,
P and E components, but only the monitor components M communicates with
the corresponding peer components. Therefore the information collected about
the status of the managed systems is shared among the various monitors, while
the analysis of the collected data and the decision about possible adaptation
actions taken by the plan components P are performed without any coordination
action with the other hosts.

Information sharing is for example useful in peer-to-peer systems where peers
can perform local adaptations but require some global information. One possible
approach to share such global information is by using a gossip approach.

4.4 Outlook

So far, the research community on self-adaptive and autonomic systems has spent
little effort in studying the interactions among components of MAPE loops. Our
position of making the control loops explicit underlines the need for a disciplined
engineering practice in this area. Besides the consolidation of architecture knowl-
edge in the form of different MAPE configurations as patterns, we also need
practical interface definitions (signatures and APIs), message formats, and pro-
tocols. The necessity of such definitions has partially already been appreciated
in the past, e.g., in [37] the authors standardize the communication from the
A to the P component by using standard BPEL (Business Process Execution



Software Engineering for Self-Adaptive Systems 21

Language) as the data exchange format, but no comprehensive approach exists
so far.

In terms of future research, there are a number of interesting challenges that
need to be investigated when considering different self-adaptive control schemes,
including:

– Pattern applicability — in what circumstances and for what systems are
the different patterns of control applicable? Which quality attribute require-
ments hinder or encourage which patterns? What styles and domains of
software are more easily managed with which patterns?

– Pattern completeness — what is the complete set of patterns that could be
applied to self-management?

– Quality of service analysis — for decentralized approaches, what techniques
can we use to guarantee system-wide quality goals? What are the coordina-
tion schemes that can enable guaranteeing these qualities?

We already mentioned the need for studying other aspects of the design space
of adaptation in self-adaptive software systems, including distribution of the
MAPE components, distribution of the data and supporting services required to
realize adaptation, etc.

Finally, there may be a relationship between the architecture of the managed
system and the architecture of the management system. How do we characterize
this relationship and help us to choose the appropriate management patterns for
the appropriate systems?

5 Practical Run-Time Verification and Validation

In a 2010 science and technology research agenda for the next 20 years, US
Air Force (USAF) chief scientist Werner Dahm identified control science as a
top priority for the USAF [60]. Control science can be defined as a systematic
way to study certifiable validation and verification (V&V) methods and tools
to allow humans to trust decisions made by self-adaptive systems. According
to Dahm, the major barrier preventing the USAF from gaining more capability
from autonomous systems is the lack of V&V methods and tools. In other words
run-time V&V methods and tools are critical for the success of autonomous,
autonomic, smart, self-adaptive and self-managing systems.

While high levels of adaptability and autonomy result in obvious benefits to
the stakeholders of software systems, realizing these abilities with confidence is
hard. Designing and deploying certifiable V&V methods for self-adaptive sys-
tems (SAS) is one of the major research challenges for the software engineering
community in general and the self-adaptive systems community in particular. It
may take a large part of this decade, if not more, investigating these research
challenges to arrive at effective and practical solutions [60].

The V&V roadmap chapter in this book, entitled “Towards Practical
Run-time V&V of Self-Adaptive Software Systems,” provides a vision of open
challenges and discusses run-time V&V challenges from several perspectives:



22 R. de Lemos et al.

(i) contrasting design-time and run-time V&V; (ii) defining adaptation prop-
erties and viability zone dynamics for SAS; (iii) making V&V explicit in the
self-adaptation loops of SAS; (iv) characterizing run-time V&V enablers (i.e.,
requirements at run-time, models at run-time, and smart context); and (v) en-
suring adaptive control.

5.1 Run-Time V&V Research Enablers

Foundational Questions and the Viability Zone. One systematic approach
to control science for adaptive systems is to study V&V methods for the mech-
anisms that sense the dynamic environmental conditions and the target system
behavior, and act in response to these conditions by answering the fundamental
questions: (i) what to validate? (ii) where to measure the aspects to validate?
and (iii) when to validate these aspects? The what refers to the system’s require-
ments and adaptation properties that must be validated and verified. The where
relates to the separation of concerns between the target system and the adapta-
tion mechanism (where V&V must be applied). Finally, the when corresponds
to the stages of the adaptation process in which V&V tasks are to be performed.
The answers to these questions determine the V&V methods that are suitable to
keep a particular adaptive system operating within its viability zone. We define
the viability zone of an adaptive system as the set of possible states in which the
system’s requirements and desired properties are satisfied [3].

Dependency on Dynamic Context Monitoring. Viability zones are highly
dependent on relevant context entities. Relevant context entities provide the
attributes to characterize the dimensions of a viability zone.

Viability zones are dynamic. Every time the adaptation process modifies ei-
ther the target system or the adaptation controller, new variables are added to,
or existing ones are replaced by others in the viability zone. Changes in require-
ments or adaptation goals can affect also the viability zone. Therefore, dynamic
context monitoring is an important requirement for run-time V&V tasks, since
the coherence of the monitoring infrastructure with respect to the system goals
can be compromised. Dynamic context monitoring exploits models and require-
ments at run-time to maintain an up-to-date and explicit relationship between
system requirements and monitoring strategies. This explicit representation and
monitoring allow SAS to recognize changes in requirements and then to trigger
changes in monitoring strategies accordingly [52,54,55].

5.2 Run-Time V&V Research Directions

Software validation and verification (V&V) concerns the quality assessment of
software systems throughout their lifecycle. The goal is to ensure that the soft-
ware system satisfies its functional requirements and meets its expected quality
attributes [7,26]. To establish “certifiable trust” in software systems that adapt
themselves according to contextual and environmental changes at run-time, we
need powerful and versatile V&V methods, techniques, and tools. A promising



Software Engineering for Self-Adaptive Systems 23

research direction is to ease or relax the traditional software engineering ap-
proach, where we satisfy requirements outright, to a more control engineering
approach, where we regulate the satisfaction of functional and particularly non-
functional requirements using feedback loops [41]. To accomplish this, adaptive
software assesses its own situation with respect to its goals continuously, and uses
different adaptation strategies accordingly. Nevertheless, the system itself must
ensure that its desired behavior is not compromised as a result of the adaptation
process. This is particularly important for safety-critical applications.

Quality assessment of self-adaptive software involves both the immutable and
the adaptive parts of the system. For the immutable parts, traditional V&V
techniques are sufficient. However, for the adaptive parts, the engineering of
self-adaptive software requires the development of new, or the tailoring of tra-
ditional V&V methods to be applied at run-time throughout the adaptation
process. The Models@run-time and Requirements@run-time research commu-
nities provide valuable support for validating and monitoring run-time behav-
ior with respect to the system’s requirements [6,46]. The term control science
is an appropriate term to characterize this research realm that combines self-
adaptation with run-time V&V techniques to regulate the satisfaction of sys-
tem requirements. It is critical for the SEAMS community to develop a control
science involving design-time and run-time V&V methods and techniques for
self-adaptive and self-managing systems with inferential, incremental and com-
positional characteristics that provide adequate confidence levels and certifiable
trust in the self-adaptation processes of such systems.

An important first step towards practical run-time validation and verification
of self-adaptive software systems is to make V&V tasks explicit in the elements of
feedback adaptation loops. This means, for example, to add a V&V component
to every phase of the MAPE-K loop [30]. V&V enablers (i.e., requirements at
run-time, models at run-time, and dynamic context monitoring) provide effective
support to materialize V&V assurances for self-adaptation. Models at run-time
enable the validation and monitoring of run-time behavior by providing on-line
abstractions of the system state and its relevant context [2,5]. Requirements
at run-time provide V&V tasks with on-line representations of the system re-
quirements and adaptation properties throughout the adaptation process [46].
Dynamic context monitoring enables run-time V&V with relevant monitoring
mechanisms that keep track of aspects to validate, even when monitoring re-
quirements change at run-time [54].

5.3 Research Challenges

We argue that the fundamental problems addressed by run-time V&V for self-
adaptive systems are identical to those of traditional, design-time V&V [20].
That is, independent of the self-* adaptation goals, context awareness, and even
uncertainty, V&V fundamentally aims at guaranteeing that a system meets its
requirements and expected properties. One key differentiating factor between
run-time and design-time V&V is that resource constraints such as time and
computing power are more critical for run-time V&V. From these constraints,



24 R. de Lemos et al.

non-trivial challenges arise, and to tackle them we should depart of course from
traditional V&V methods and techniques. On the one hand, these formal V&V
methods are often too expensive to be executed regularly at run-time when
the system adapts due to their time and space complexity. On the other hand,
context-dependent variables are unbound at design time, but bound at run-time.
Thus, performing V&V on these variables at run-time is valuable to reduce the
verification space significantly, even when the SAS system viability zone varies
with context changes. From this perspective, it is crucial to determine precisely
when in the adaptation process these V&V operations are to be performed to
guarantee the system properties and prevent unsafe operation.

V&V Techniques: Desirable Properties. Even though traditional V&V
techniques (e.g., testing, model checking, formal verification, static and run-time
analysis, and program synthesis) have been used for the assessment of quality at-
tributes such as those mapped to adaptation properties by Villegas et al. [53], an
important challenge is their integration into the self-adaptation lifecycle (i.e., at
run-time). This integration requires yet another kind of properties—properties
on V&V techniques—including sensitivity, isolation, incrementality, and com-
posability.

According to González et al., sensitivity and isolation refer to the level of
run-time testability that an adaptive software system can support [24]. On the
one hand, sensibility defines the degree to which run-time testing operations in-
terfere with the running system services delivery. That is, the degree in which
run-time V&V may affect the accomplishment of system requirements and adap-
tation goals. Examples of factors that can affect run-time test sensitivity are (i)
component state, not only because run-time tests are influenced by the actual
state of the system, but because the state of the system could be altered as a
result of test invocations; (ii) component interactions, as the run-time testabil-
ity of a component may depend on the testability of the components it interacts
with; (iii) resource limitations, because run-time V&V may affect non-functional
requirements such as performance at undesirable levels; and (iv) availability, as
run-time validation can be performed depending on whether testing tasks re-
quire exclusive usage of components with high availability requirements. On the
other hand, González et al. also define isolation as the means to counteract run-
time test sensitivity. Instances of techniques for implementing test isolation are
(i) state separation (e.g., blocking the component operation while testing takes
place, performing testing on cloned components); (ii) interaction separation (e.g.,
blocking component interactions that may be propagated due to results of test
invocations); (iii) resource monitoring (e.g., indicating that testing must be post-
poned due to resources unavailability); and (iv) scheduling (e.g., planning testing
executions when involved components are less used).

Requirements and Models at Run-Time. Requirements define the objec-
tives of validation and verification for software systems. However, adaptive sys-
tems requirements are dynamic and subject to change at run-time. Thus, these
systems require suitable V&V techniques to cope with the dynamics



Software Engineering for Self-Adaptive Systems 25

after behavioral and structural changes. From this perspective, the application
of run-time automatic testing techniques to enable adaptive software systems
with self-testing capabilities seems to be a promising approach. An instance of
this approach is the self-testing framework for autonomic computing systems
proposed by King et al. [31]. This framework dynamically validates change re-
quests in requirements using regression testing and customized tests to assess the
behavior of the system under the presence of added components. For this, au-
tonomic managers designed for testing are integrated into the current workflow
of autonomic managers designed for adaptation. Two strategies support their
validation process: (i) safe adaptation with validation, and (ii) replication with
validation. In the first strategy, testing autonomic managers apply an appro-
priate validation policy during the adaptation process where involved managed
resources are blocked until the validation is completed. If the change request
is accepted, the corresponding managed resources are adapted. In the second
strategy, the framework maintains copies of the managed resources for valida-
tion purposes. Thus, changes are implemented on copies, then validated, and
if they are accepted, the adaptation is performed. Testing policies can also be
defined by administrators and loaded into the framework at run-time.

This self-testing approach illustrates the blurred boundaries among the soft-
ware lifecycle phases and the many implications of V&V for self-adaptive software
systems. Some of these implications constitute challenges that arise from require-
ments engineering, and model-driven engineering. First, run-time V&V tasks rely
onon-line representations of the systemand its requirements. Second, requirements
at run-time support requirements traceability to identify incrementally what to
validate, the requirements subset that has changed, and when. Moreover, test case
priority further contributes to refine this incremental validation.Third, for context-
aware requirements, run-time models must explicitly define the mapping between
environmental conditions that must be monitored at run-time, and corresponding
varying requirements. Furthermore, models are useful to support the dynamic re-
configuration of monitoring strategies according to changes in requirements and
the execution environment. The Requirements@run-time and Models@run-time
research communities provide valuable foundations for run-time V&V of
self-adaptive software systems [2,5,46].

Context Uncertainty. To cope with context uncertainty, some of the previ-
ously proposed approaches to manage unexpected context changes, fully auto-
mated or human-assisted, can be exploited. For instance, Murray et al. used
feedback loops to cover, with respect to the system requirements, the broadest
possible range of system states to transition among them by adaptation opera-
tions. Their strategy is to augment robustness by reducing context uncertainty
[42]. The approach by Goldsby and Cheng uses state machines to model adaptive
systems with transitions as system reconfiguration [23]. Inspired by the adapt-
ability of living organisms, they model systems using UML diagrams and apply
digital evolution techniques to generate not only one, but several target states
for a given transition, and then assist the user to select the one most appro-
priate. Thus, they address context uncertainty by generating several possible



26 R. de Lemos et al.

target system states with qualitatively different QoS characteristics, all of them
satisfying the required QoS conditions.

On the side of exhaustive V&V methods, model checking has been used at
design time to verify desired properties or conditions on software systems to
overcome the limitations of testing techniques, based on a correctness specifica-
tion. The well known practical problem of this method is the state explosion,
which implies the representation of all of the states of the system behavior. In
self-adaptive software, this problem is augmented given its changing nature. In
effect, the software structure of this kind of systems is subject to re-configuration
operations (e.g., adding/removing components and their interconnections) in re-
sponse to context changes at run-time. Thus, in contrast to the checking require-
ments of structural static configuration of traditional software, in self-adaptive
systems model checking must be applied to each of the possible configurations
produced by adaptation mechanisms.

The validation and verification of self-adaptive software systems at run-time
is an urgent necessity, and a huge challenge to establish “certifiable trust” in
practical adaptation mechanisms. However, despite the development of run-time
V&V methods is necessary and plays an important role in the quest towards
achieving effective run-time V&V, they are insufficient. To reason effectively
and provide assurances on the behavior of self-adaptive systems at run-time, a
promising approach is to combine control and software engineering techniques.
We aptly termed this combination of foundational theories and principles for
run-time V&V methods control science.

This section discussed important challenges and possible roadblocks for run-
time validation and verification of self-adaptive systems. First, the traceability
of evolving requirements, and run-time representations of system aspects are
crucial for the identification of what to validate and when. Concrete issues con-
cerning the answers to these questions appear when deciding in which phase
of the adaptation loop to implement run-time V&V techniques. Second, these
techniques must exhibit desirable properties thus increasing their complexity.
Third, dynamic instrumentation such as dynamic monitoring is also required to
realize run-time V&V techniques to be implemented throughout the adaptation
process.

The assessment of research approaches on self-adaptive software systems con-
stitutes an important starting point for the development of standardized and
objective certification methods. For this, we believe that the evaluation frame-
work proposed by Villegas et al. provides useful guidance and insights [53]. The
SEAMS community is ideally positioned to conduct ground-breaking control
science research in our quest towards certifiable trust in self-adaptation.

6 Overall Challenges

In this section, we present the overall conclusions of the research roadmap paper
in the context of the major ensuing challenges for our community. First and
foremost, this exercise was not intended to be exhaustive. We decided to focus



Software Engineering for Self-Adaptive Systems 27

on four major topics identified as key to engineering of self-adaptive software
systems: design space of self-adaptive solutions, software engineering processes
for self-adaptive systems, from centralized to decentralized control, and practical
run-time verification and validation (V&V) for self-adaptive systems. We now
summarize the most important challenges for each topic.

– Design space — a major challenge associated with design space is to infuse a
systematic understanding of the alternatives for adaptive control into the de-
sign process. Since the alternatives could be represented as clusters of design
decisions, another challenge should be the detailed refinement of dimensions
that characterize these clusters in order to provide a complete set of choices
to the developer. Moreover, since dimensions should not be dependent, the
search space for the solution can be reduced by identifying the dependencies
between the different dimensions. Another identified challenge is how to map
a generalized design space into an implementation.

– Processes — there are two key challenges related to software processes for
self-adaptive systems, first, to have a full understanding of the nature of
system, its goals and lifecycle in order to establish appropriate software pro-
cesses, and second, to understand how processes changes and what are the
factors affecting these changes. Another major challenge is the formalization
of processes for understanding the roles, activities, and artifacts at each stage
of the process. This formalization would enable the definition of a library of
generic and reusable entities that could be used across different self-adaptive
software systems, and would also facilitate the analysis and tuning of pro-
cesses according to the system.

– Decentralization of control loops — since the direction taken in this topic
was the identification of patterns for capturing the interaction of control
loops in self-adaptive systems, most of the challenges identified are associated
with patterns. For example, concerning pattern applicability, what are the
circumstances that decide the applicability of patterns, and what application
domains or architectural styles that are better managed by patterns? Also
there is the challenge of identifying a complete set of patterns that could be
applied to the management of self-adaptive systems. Outside the context of
patterns, when considering decentralized approach, a major challenge would
be to identify techniques that can be used for guaranteeing system-wide
quality goals, and the coordination schemes that enable guaranteeing these
qualities.

– Practical run-time verification and validation — three key challenges related
to the run-time verification and validation of self-adaptive software systems
were identified. The first challenge is associated with the need to trace the
evolution of requirements in order to identify what and when to validate,
and the V&V method to be employed. The second challenge is to control
the inevitable complexity that is expected from run-time V&V techniques,
and final challenge is related to the need of providing appropriate dynamic
monitoring when employing run-time V&V techniques.



28 R. de Lemos et al.

There are several topics related to software engineering for self-adaptive systems
that we did not cover, some of which we now mention, and which can be con-
sidered key challenges on their own. First, how to design in an integrated way
self-adaptive system in order to enable them to handle expected and unexpected
changes? For example, when composing systems designs should provide some
elasticity in order to improve their robustness when reacting to changes. An-
other issue related to system design is whether adaptation should be reactive or
proactive. Further, how should competition and cooperation be managed? How
to integrate development-time and run-time V&V in order to provide the neces-
sary assurances before deploying a self-adaptive system? Still related to run-time
V&V, what kind of processes and how these should be deployed in order to man-
age the collection, structuring and analysis of evidence? One of the key activities
of feedback control loops in self-adaptive software systems is decision making,
and its associated adaptation techniques and criteria for balancing, for example,
quality of services, over-provisioning, and cost of ownership. Underpinning all
the above issues is the question what shape should take a comprehensive system
theory, or theories, for self-adaptive software systems [16]? We also did not cover
technologies like model-driven development, aspect-oriented programming, and
software product lines. These technologies might offer new opportunities and ap-
proaches in the development of self-adaptive software systems. Finally, we did not
discuss exemplars — canonical problems and accompanying self-adaptive solu-
tions — which are a likely stepping stone to the necessary benchmarks, methods,
techniques, and tools to solve the challenges of engineering self-adaptive software
systems.

The four topics discussed in this paper outline challenges that our commu-
nity must face in engineering self-adapting software systems. All these challenges
result from the dynamic nature of self-adaptation, which brings uncertainty to
the forefront of system design. It is this uncertainty that challenges the applica-
bility of traditional software engineering principles and practices, but motivates
the search for new approaches for developing, deploying, managing and evolving
self-adaptive software systems.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling Dimensions of Self-
Adaptive Software Systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer,
Heidelberg (2009)

2. Aßmann, U., Bencomo, N., Cheng, B.H.C., France, R.B.: Models@run.time
(Dagstuhl Seminar 11481). Dagstuhl Reports 1(11), 91–123 (2012),
http://drops.dagstuhl.de/opus/volltexte/2012/3379

3. Aubin, J., Bayen, A., Saint-Pierre, P.: Viability Theory: New Directions. Springer,
Heidelberg (2011), http://books.google.ca/books?id=0YpZNVBXNK8C

4. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research (FoSER 2010), pp. 17–22. ACM, New York (2010),
http://doi.acm.org/10.1145/1882362.1882367

http://drops.dagstuhl.de/opus/volltexte/2012/3379
http://books.google.ca/books?id=0YpZNVBXNK8C
http://doi.acm.org/10.1145/1882362.1882367


Software Engineering for Self-Adaptive Systems 29

5. Bencomo, N., Blair, G., France, R., Muñoz, F., Jeanneret, C.: 4th Interna-
tional Workshop on Models@run.time. In: Ghosh, S. (ed.) MODELS 2009. LNCS,
vol. 6002, pp. 119–123. Springer, Heidelberg (2010)

6. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduc-
tion. IEEE Computer 42(10), 22–27 (2009)

7. Bourque, P., Dupuis, R.: Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Computer Society (2005),
http://www.computer.org/portal/web/swebok/home

8. Brake, N., Cordy, J.R., Dancy, E., Litoiu, M., Popescu, V.: Automating discovery of
software tuning parameters. In: Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-managing Systems, SEAMS 2008, pp.
65–72. ACM, New York (2008), http://doi.acm.org/10.1145/1370018.1370031

9. Brooks, F.P.: The Design of Design: Essays from a Computer Scientist, 1st edn.
Addison-Wesley Professional (2010)

10. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

11. Brun, Y., Medvidovic, N.: An architectural style for solving computationally in-
tensive problems on large networks. In: Proceedings of Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (May
2007)

12. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice 17(5), 309–332 (2005), http://dx.doi.org/10.1002/smr.319

13. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: FSE 2010: Proceedings of the 2010 Foundations of Software En-
gineering Conference, pp. 237–246. ACM, New York (2010)

14. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: SEAMS 2008: Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pp. 17–24. ACM,
New York (2008)

15. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

16. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic
computing. Computer 43(1), 35–41 (2010)

17. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1, 223–259
(2006)

18. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2010),
Santa Fe, NM, USA, pp. 7–16 (2010)

http://www.computer.org/portal/web/swebok/home
http://doi.acm.org/10.1145/1370018.1370031
http://dx.doi.org/10.1002/smr.319


30 R. de Lemos et al.

19. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.:
Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer 37, 46–54 (2004)

20. Gat, E.: Autonomy software verification and validation might not be as hard as it
seems. In: Proceedings 2004 IEEE Aerospace Conference, pp. 3123–3128 (2004)

21. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: 1st Workshop on Self-Healing Systems. ACM, New York
(2002)

22. Ghanbari, H., Litoiu, M.: Identifying implicitly declared self-tuning behavior
through dynamic analysis. In: International Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pp. 48–57 (2009)

23. Goldsby, H.J., Cheng, B.H.C.: Automatically Generating Behavioral Models of
Adaptive Systems to Address Uncertainty. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 568–583. Springer,
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-87875-9_40

24. González, A., Piel, E., Gross, H.G.: A Model for the Measurement of the Runtime
Testability of Component-Based Systems. In: Proceedings of 2009 International
Conference on Software Testing Verification and Validation Workshops, pp. 19–28.
IEEE (2009),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4976367

25. IBM: An architectural blueprint for autonomic computing. Tech. rep. IBM (Jan-
uary 2006)

26. IEEE: Industry implementation of international standard ISO/IEC 12207:95, stan-
dard for information technology-software life cycle processes. Tech. rep. IEEE
(1996)

27. Inverardi, P.: Software of the Future Is the Future of Software? In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-75336-0_5

28. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 1–31.
Springer, Heidelberg (2009),
http://www.springerlink.com/content/g624t1466m9v5647/

29. Ionescu, D., Solomon, B., Litoiu, M., Iszlai, G.: Observability and controllability
of autonomic computing systems for composed web services. In: 6th IEEE Interna-
tional Symposium on Applied Computational Intelligence and Informatics, SACI
2011 (2011)

30. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

31. King, T.M., Ramirez, A.E., Cruz, R., Clarke, P.J.: An Integrated Self-Testing
Framework for Autonomic Computing Systems. Journal of Computers 2(9), 37–49
(2007), http://academypublisher.com/ojs/index.php/jcp/article/view/361

32. Kitchenham, B.A., Travassos, G.H., von Mayrhauser, A., Niessink, F., Schnei-
dewind, N.F., Singer, J., Takada, S., Vehvilainen, R., Yang, H.: Towards an on-
tology of software maintenance. Journal of Software Maintenance: Research and
Practice 11(6), 365–389 (1999), http://dx.doi.org/10.1002/(SICI)1096-908X
(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W

33. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society,
Washington, DC (2007)

http://dx.doi.org/10.1007/978-3-540-87875-9_40
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4976367
http://dx.doi.org/10.1007/978-3-540-75336-0_5
http://www.springerlink.com/content/g624t1466m9v5647/
http://academypublisher.com/ojs/index.php/jcp/article/view/361
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W


Software Engineering for Self-Adaptive Systems 31

34. Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief History.
IEEE Computer 36(6), 47–56 (2003),
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375

35. Lehman, M.M.: Software’s Future: Managing Evolution. IEEE Software 15(01),
40–44 (1998)

36. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego (1985)

37. Leymann, F.: Combining Web Services and the Grid: Towards Adaptive Enterprise
Applications. In: Castro, J., Teniente, E. (eds.) First International Workshop on
Adaptive and Self-Managing Enterprise Applications (ASMEA 2005) - CAiSE
Workshop, pp. 9–21. FEUP Edi cões (June 2005),
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL view.pl?id=INPROC-2005-123&engl=1

38. Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I., Medvidovic, N.,
Mikic-Rakic, M., Sukhatme, G.: An architecture-driven software mobility frame-
work. Journal of Systems and Software 83(6), 972–989 (2010)

39. Malek, S., Mikic-Rakic, M., Medvidov́ıc, N.: A Decentralized Redeployment Algo-
rithm for Improving the Availability of Distributed Systems. In: Dearle, A., Savani,
R. (eds.) CD 2005. LNCS, vol. 3798, pp. 99–114. Springer, Heidelberg (2005)

40. Mens, T.: Introduction and Roadmap: History and Challenges of Software Evolu-
tion. In: Software Evolution, ch.1. Springer (2008),
http://www.springerlink.com/content/978-3-540-76439-7

41. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of control in adaptive systems.
In: Proceedings of Second International Workshop on Ultra-Large-Scale Software-
Intensive Systems (ULSSIS 2008), pp. 23–27. ACM/IEEE (2008)

42. Murray, R.M., Ȧström, K.J., Boyd, S.P., Brockett, R.W., Stein, G.: Future Direc-
tions in Control in an Information Rich World. IEEE Control Systems 23, 20–33
(2003)

43. Object Management Group (OMG): Software & Systems Process Engineering
Meta-Model Specification (SPEM), Version 2.0 (2008)

44. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14, 54–62 (1999),
http://dx.doi.org/10.1109/5254.769885

45. Osterweil, L.J.: Software processes are software too. In: Proceedings of the 9th
International Conference on Software Engineering (ICSE 1987), pp. 2–13. IEEE
Computer Society Press, Los Alamitos (1987),
http://portal.acm.org/citation.cfm?id=41765.41766

46. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems. A Research Agenda for RE For Self-Adaptive Systems. In: 18th
International Requirements Engineering Conference (RE 2010), pp. 95–103. IEEE
(2010)

47. Seborg, D.E., Edgar, T.F., Mellichamp, D.A., Doyle III, F.J.: Process Dynamics
and Control, 3rd edn. John Wiley & Sons (1989)

48. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

49. Shaw, M.: The role of design spaces in software design (2011) (submitted for pub-
lication)

http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2005-123&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2005-123&engl=1
http://www.springerlink.com/content/978-3-540-76439-7
http://dx.doi.org/10.1109/5254.769885
http://portal.acm.org/citation.cfm?id=41765.41766


32 R. de Lemos et al.

50. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2nd In-
ternational Conference on Software Engineering (ICSE 1976), pp. 492–497. IEEE
Computer Society Press (1976),
http://portal.acm.org/citation.cfm?id=800253.807723

51. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

52. Villegas, N.M., Müller, H.A.: Context-driven Adaptive Monitoring for Supporting
SOA Governance. In: 4th International Workshop on a Research Agenda for Main-
tenance and Evolution of Service-Oriented Systems (MESOA 2010). CMU/SEI-
2011-SR-008, Pittsburgh: Carnegie Mellon University (2011),
http://www.sei.cmu.edu/library/abstracts/reports/11sr008.cfm

53. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A Framework
for Evaluating Quality-driven Self-Adaptive Software Systems. In: Proceedings 6th
International Symposium on Software Engineering for Adaptive and Self-managing
Systems (SEAMS 2011), pp. 80–89. ACM, New York (2011),
http://doi.acm.org/10.1145/1988008.1988020

54. Villegas, N.M., Müller, H.A., Tamura, G.: Optimizing Run-Time SOA Governance
through Context-Driven SLAs and Dynamic Monitoring. In: 2011 IEEE Interna-
tional Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems (MESOCA 2011), pp. 1–10. IEEE (2011)

55. Villegas, N.M., Müller, H.A., Muñoz, J.C., Lau, A., Ng, J., Brealey, C.: A Dynamic
Context Management Infrastructure for Supporting User-driven Web Integration
in the Personal Web. In: 2011 Conference of the Center for Advanced Studies
on Collaborative Research (CASCON 2011), pp. 200–214. IBM Corp., Markham
(2011), http://dl.acm.org/citation.cfm?id=2093889.2093913

56. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proceedings of
the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2010), pp. 39–48. ACM (2010),
http://portal.acm.org/citation.cfm?id=1808984.1808989

57. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MODELS
2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010),
http://www.springerlink.com/content/1518022k168n5055/

58. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: Proceedings of Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2011), Honolulu, Hawaii (2011)

59. Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In: Proceedings of the 2010 ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2010, pp. 84–93. ACM, New York (2010),
http://doi.acm.org/10.1145/1808984.1808994

60. Dahm, W.J.A.: Technology Horizons a Vision for Air Force Science & Technology
During 2010-2030. Tech. rep., U.S. Air Force (2010)

http://portal.acm.org/citation.cfm?id=800253.807723
http://www.sei.cmu.edu/library/abstracts/reports/11sr008.cfm
http://doi.acm.org/10.1145/1988008.1988020
http://dl.acm.org/citation.cfm?id=2093889.2093913
http://portal.acm.org/citation.cfm?id=1808984.1808989
http://www.springerlink.com/content/1518022k168n5055/
http://doi.acm.org/10.1145/1808984.1808994


A Design Space for Self-Adaptive Systems

Yuriy Brun1, Ron Desmarais2, Kurt Geihs3, Marin Litoiu4,
Antonia Lopes5, Mary Shaw6, and Michael Smit4

1 Computer Science & Engineering, University of Washington, Seattle WA, USA
brun@cs.washington.edu

2 University of Victoria, Vancouver, Canada
rd@uvic.ca

3 EECS Department, University of Kassel, Kassel, Germany
geihs@uni-kassel.de

4 York University, Toronto ON, Canada
{mlitoiu,msmit}@yorku.ca

5 Department of Informatics, University of Lisbon, Lisboa, Portugal
mal@di.fc.ul.pt

6 Institute for Software Research, Carnegie Mellon University, Pittsburgh PA, USA
mary.shaw@cs.cmu.edu

Abstract. Self-adaptive systems research is expanding as systems professionals
recognize the importance of automation for managing the growing complexity,
scale, and scope of software systems. The current approach to designing such
systems is ad hoc, varied, and fractured, often resulting in systems with parts
of multiple, sometimes poorly compatible designs. In addition to the challenges
inherent to all software, this makes evaluating, understanding, comparing, main-
taining, and even using such systems more difficult. This paper discusses the im-
portance of systematic design and identifies the dimensions of the self-adaptive
system design space. It identifies key design decisions, questions, and possible
answers relevant to the design space, and organizes these into five clusters: obser-
vation, representation, control, identification, and enacting adaptation. This char-
acterization can serve as a standard lexicon, that, in turn, can aid in describing and
evaluating the behavior of existing and new self-adaptive systems. The paper also
outlines the future challenges for improving the design of self-adaptive systems.

Keywords: adaptive, self-adaptive, design, architecture.

1 Introduction

Designing a self-adaptive software system involves making design decisions about how
the system will observe its environment and choose and enact adaptation mechanisms.
While most research on self-adaptive systems deals with some subset of these decisions,
to our knowledge, there has been neither a systematic study of the design space nor an
enumeration of the decisions the developer should address. Developers draw from their
own backgrounds to make decisions about self-adaptive system design. At worst, the
design is predicated on modifying the existing system until it appears to work.

A design space is a set of decisions about an artifact, together with the choices for
these decisions. A design space serves as a general guide for a class of applications,

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 33–50, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



34 Y. Brun et al.

enumerating decisions and alternatives to provide a common vocabulary for describing,
understanding, and comparing systems. A designer seeking to solve a problem may be
guided by the design space, using it to systematically identify required decisions, their
alternatives, and their interactions.

Intuitively, a design space is a k-dimensional Cartesian space in which design deci-
sions are the k dimensions, possible alternatives are values on those dimensions, and
complete designs are points in the space. In practice, most interesting design spaces are
too rich to represent in their entirety, so their representations capture only the principal
decisions as dimensions. Also in practice, the design dimensions are neither indepen-
dent nor orthogonal, so choosing an alternative for one dimension may affect other
dimensions and preclude or make irrelevant other decisions [3, 16, 20]. Creating a de-
sign space leads to creating rules, guidelines, and best practices that identify good and
bad combinations of choices.

In this paper, we outline a design space for self-adaptive systems with five princi-
pal clusters of dimensions (design decisions). The clusters are observation, representa-
tion, control, identification, and enacting adaptation. Each cluster provides additional
structure in the form of questions a designer should consider. These questions are not
necessarily novel themselves; indeed, some of them are fundamental to self-adaptive
systems. Rather, we hope our enumeration and organization will help formalize and ad-
vance the understanding of self-adaptive system design as a whole. The formulation as
a design space is intended to explicitly help design systems. We do not present this as
a final and definitive design space; further work on expanding and refining this design
space is necessary and appropriate.

The remainder of this paper is organized as follows. Section 2 identifies related work
on characterizations and models for self-adaptive systems, and discusses how present-
ing a design space is a novel contribution. Section 3 presents (1) a basic architecture
and terminology and (2) an example system. Section 4 describes the design space and
Section 5 places the example system in that space. Section 6 outlines future challenges
for defining the self-adaptive system design space. Finally, Section 7 summarizes our
contributions.

2 Related Work

Examples of self-adaptive systems include autonomic computing systems and self-
managing software systems. This broad term includes self-configuring, self-healing,
self-adapting, and self-protecting. IBM has identified a four-stage cycle for autonomic
computing, called MAPE-K: Monitor, Analyze, Plan, and Execute, with a Knowledge
Base common to all components (see Figure 1) [12,14]. Others have referred to this cy-
cle as the collect / analyze / decide / act cycle [7]. The architectural model that employs
such a cycle implements a feedback loop with the Controller comprising of the four
stages of MAPE-K. This Controller uses measured output from sensors monitoring the
managed system to choose control signals to send to the managed system. The Monitor
stage uses sensors to measure key attributes, usually related to the current performance
and load of the system. The Analyze stage identifies any metrics not within tolerances
(or violating some type of defined rule) and attempts to identify the cause or source of



A Design Space for Self-Adaptive Systems 35

Autonomic Manager

Execute

Plan

Monitor

Analyze

Knowledge 

Managed System

Fig. 1. The MAPE-K model (based on [14])

the problem. In the Plan stage, the system reacts to the fault (or generally, the results
of the Analyze stage) by identifying a set of actions that remedy the situation. These
actions are implemented in the Execute stage via actuators that act on the managed
systems. All the stages make use of a Knowledge Base.

Several partial approaches to identifying and representing design spaces for self-
adaptive software systems are available. These existing approaches have their roots in
both software engineering (e.g., [7, 15]) and control theory (e.g., [4, 22]).

Andersson et al. [1] defined a set of modeling dimensions for self-adaptive software
systems. The dimensions were organized into four groups, including the self-adaptive
goals of the system, the causes or triggers of self-adaptation, the mechanisms used to
adapt, and the effects of those mechanisms on the system. Their dimensions have some
overlap with our dimensions; they and we both explicitly encourage the addition of
more dimensions. Though parts of our work extend theirs, and we consider their work
important and relevant, we offer a redevelopment with important differences that are in
part related with the differences between modeling and design:

First, their dimensions are appropriate for classifying an existing adaptive system,
while ours are more appropriate for designing a system based on a set of requirements.
Their categories could be said to be driven by observation; that is, the inputs, the causes,
and the effects. We make explicit the design decisions regarding how we observe and
represent the inputs, how these inputs are translated into adaptation triggers, and what
the capabilities and limits of our adaptation mechanisms are.

Second, our work aims at a higher level of abstraction. Some of their dimensions
would be implementation decisions in our design space. For instance, whether one or
several components are responsible for adaptation is a design dimension in their work.

Third, while there is some overlap among the categories of dimensions, each makes
different exclusion and inclusion decisions. They view the adaptation goal as one of
the major categories (having 5 dimensions). We assume the goals (called adaptation
targets) are dynamic, multiple, and specified at run-time not design time (and therefore
not explicitly included in the design space). However, our design space is still appli-
cable to static, singular adaptation targets. We identify several key dimensions not in-
cluded in their work, in particular those related to modeling, representation, and control
loops. For example, though perhaps not essential to a working implementation, an ex-
plicit conceptual understanding of how the control loops are orchestrated improves the



36 Y. Brun et al.

developers’ understanding. We include assessing what is possible: what can be ob-
served, what can be adapted, whether the managed system provides appropriate mech-
anisms to achieve the desired control, etc.

Kramer and Magee [15] outline three tiers of decisions the developer must make —
ones that pertain to goal management, change management, and component control.
Finally, Brun et al. [4] discuss the importance of making the self-adaptation control
loops explicit during the development process and outline several types of control loops
that can lead to self-adaptation.

Villegas et al. [22] describe a characterization model for approaches to self-adaptive
systems that include a survey of existing self-adaptive systems. They systematically
identify what these systems use for each element of self-adaptation (these elements are
described here in Section 3). Their results support our claim that current systems are of-
ten designed using an ad-hoc approach. This post-hoc analysis of past implementations
is interesting and useful; their focus is on evaluating and characterizing self-adaptive
systems post-implementation, rather than guiding design decisions at design time.

Taxonomies for self-adaptive systems have also been proposed. For example, Brake
et al. [2] and Ghanbari et al. [10] introduce and discuss a taxonomy for performance
monitoring of self-adaptive systems together with a method for discovering parameters
in source code. Checiu et al. [6] formally defined controllability and observability for
web services and showed that controllability can be preserved in composition.

3 Self-Adaptive Systems

This section describes (1) a basic architecture and terminology for self-adaptive systems
used as a working definition throughout the paper, and (2) a web application that illus-
trates this terminology and will serve as a running example throughout the remainder
of this paper.

We separate self-adaptive systems into two elements: the Managed System, which
is responsible for the system’s main functionality, and the Adaptation System, which
is responsible for altering the Managed System as appropriate. Figure 2 shows these
two elements linked by the flow of system indicators and adaptations. The elements
inherent to the managed system (that is, the things that would exist even if it were not
adaptively managed) such as the inputs and the environment are captured and used by
the Adaptation System. The Adaptation System produces adaptations that impact the
Managed System.

Example. To illustrate these concepts, consider the following example which will be
used throughout the paper to illustrate the design space. This generic example is repre-
sentative of a large class of self-adaptive systems.

Consider a web application running on one or more web servers. This application
must support an arbitrary number of users with a response time below a predefined
threshold. The application accesses a database, but this is only a potential bottleneck
when certain intensive features are used, like the recommendation engine. The appli-
cation must also be available for a predefined minimum percentage of time, except for
defined maintenance windows. The operational and environmental conditions (e.g., the
number of users) change during execution. Elements of the application or the hardware



A Design Space for Self-Adaptive Systems 37

     Managed System State

Adaptations

Effects

EnvironmentAdaptation Targets

Inputs

System 
Indicators

Adaptation System

Fig. 2. Elements of a self-adaptive system. The arrows indicate information flow

server may fail at any time. The web application proper (Managed System) is aug-
mented with an adaptation driver (Adaptation System) that will monitor the application
and select and apply the necessary changes at runtime.

Definitions. The information used by the Managed and Adaptation System is described
in more detail below.

– Adaptation Targets define what the self-adaptation should achieve. Adaptation tar-
gets are not necessarily end user requirements; they could be design goals derived
by determining what is required to meet end user requirements in an optimal man-
ner. For instance, in our example, the end user requirement response time below a
threshold could result in an adaptation target outlining how to achieve this require-
ment with minimum resources. These targets can be expressed in different ways
depending on the domain and the design decisions.

– Effects are what Managed Systems produce per their functional requirements; how-
ever, included are system indicators (of functional or non-functional properties)
which can be evaluated to determine how compliant the managed software is with
the adaptation targets, and are part of the input to the Adaptation System. In our
example, the response time of the web application would constitute an effect pa-
rameter. The evaluation process may be more complex than comparing a momen-
tary value to an established threshold. Again in the example, the availability over
time effect requires capturing availability information over time and calculating an
average over a sliding window of time.

– Adaptations are the actions taken by the Adaptation System. One type of adapta-
tion is parametric adaptation, the adjusting of tuneable parameters to attain the de-
sired behavior from the Managed System. The correct tuning for these parameters



38 Y. Brun et al.

is computed by the Adaptation System by taking into account the System Indica-
tors, Environment and State. In the web application, a tuneable parameter might
be the number of threads used to service user requests. By adjusting the number
of threads, the State is changed (specifically the thread queue length state) and the
Effect and System Indicators are affected (response time). Another type is architec-
tural adaptation (or composition adaptation), for instance exchanging one compo-
nent for another. In our example system, depending on how the change is effected,
changing the type of recommendation engine would be an example of exchanging
one component for another.

– State is the representation of the internal state of the Managed System, and is com-
prised of a collection of state parameters that characterize or model the Managed
System. The state of the Managed System is affected by the Inputs and Environ-
ment streams, and plays a role in determining the Effects and System Indicators. In
our web application example, the length of the thread queue serving user requests
could be a State parameter. Other parameters could be identified based on their
ability to accurately characterize or model what is happening inside the Managed
Application. The State used in an adaptive system is highly dependent on which
System Indicators can be measured and with what accuracy, a challenge discussed
further in the Observation cluster (Section 4.1).

– Environment (or perturbation) indicators are external to the self-adaptive software
and the Managed System, but have a direct or indirect influence on the State, Ef-
fects, and System Indicators. For our example, the workload (e.g., the number of
users accessing the application running on the web server or the frequency of their
requests) is an environment indicator. These indicators typically cannot be con-
trolled (directly or indirectly).

4 Dimensions of the Design Space

We describe the design space for self-adaptive systems using various dimensions, each
defined by a design question that admits more than one possible answer (the design de-
cision). The dimensions are from our own experience designing self-adaptive systems,
and can and should be extended with the experience of others. To manage the complex-
ity, we group dimensions into dimension clusters, such that each cluster represents a
particular category of concern. The clusters, shown in large font in Figure 3, represent
the design space. There is natural overlap between the clusters (indicated by dimen-
sions affecting multiple clusters) and dependence between some dimensions (indicated
by similarity of color). The clustering helps manage the complexity of the design space,
but it is also possible to consider the dimensions independently of their clusters.

The Observation cluster includes questions related to what is monitored by the Adap-
tation System, when and how often monitoring occurs, and how states are determined
based on the monitored data. The Representation cluster is concerned with the runtime
representation of adaptation targets, inputs, effects, system indicators, and states. The
Control cluster is concerned with the mechanisms through which a solution is enacted.



A Design Space for Self-Adaptive Systems 39

ad
ap

tat
ion

identification

ob
se

rva
tio

n

representation

control

sample
res

po
ns

e t
im

e

environmental parameters

state variables

updating

wind
ow

 si
zedata structures

S
O

A

alg
ori

thm
s

# servers

se
lec

te
d 

alg
or

ith
m

s

# threads

# servers

selected algorithm
s

# threads

Fig. 3. The dimensions of the self-adaptive system design space can be grouped into five clusters,
shown here with a sampling of properties for our example system. Intersections among the di-
mension lines indicate potential overlap. Sample properties with bulleted text in the same colour
represent dependencies. For example, the window size chosen in representation depends on the
sample size available in observation.

While these three dimensions are somewhat independent, they have more significant
overlap with the final two. The Identification cluster is concerned with the possible
solution instances that can achieve the adaptation targets. Finally, the cluster of Enacting
Adaptation concerns how adaptation can be achieved.

Table 4 details the clusters and each cluster’s dimensions. For each cluster, we name
the key dimensions (in the form of questions) and by way of example suggest answers
to these questions. When using the design space as a guide for software design, it is im-
portant that the answers be more specific and implementation-focused. For instance, for
the question “What triggers observation of metric m?” a general answer is “periodically,
on a timer,” whereas a more-specific answer is “every k seconds, for k ∈ [1,2, . . . ,1000]
sec.” The level of appropriate abstraction depends on the design space’s use. Section 5
steps through the dimension clusters answering design questions for the sample appli-
cation described in Section 3.

While we hope our enumeration will help formalize and advance the understanding
for self-adaptive system design, it is not intended to be complete and further work on
expanding and refining this design space is necessary and appropriate.



40 Y. Brun et al.

Observation
– what can be observed?
– what information will the system observe?
– what information about the external environment and about the system itself will
need to be measured and represented internally?
– how will the system determine that information?
– what triggers observation?
– what triggers adaptation?
– how is uncertainty in the observations handled?
Representation
– what information is made available to the components of the self-adaptive system?
– how is this information represented?
– when and how is the information updated?
Control
– does the system provide enough operations/parameters to achieve the desired con-
trol?
– how does the system decide what and how much to change to modify its behavior?
– how will the control loops be orchestrated?
– what to adapt?
– how to adapt?
– when to adapt?
Identification
– what are possible solutions for a given set of adaptation targets?
– which solutions are or will be supported?
– what are relevant domain assumptions and contexts for each solution?
– what are the required observed and control parameters for each solution?
Enacting Adaptation
– is the adaptation mechanism represented explicitly or implicitly in the architecture?
– how is adaptability supported?
– how will failures of the adaptation mechanism be handled?
– what is the cause of adaptation?

Fig. 4. Dimensions of the design space and their primary questions, organized into clusters

4.1 Observation

The observation cluster includes dimensions covering design decisions regarding what
information is observed by the Adaptation System. Generally, the dimensions in this
cluster are related to the question “How do we gather information about the Managed
System (System Indicators and States) and its Environment?” This cluster is related to
the representation cluster: observations gathered with no mechanism for internal repre-
sentation are superfluous, and internal representations not updated by observations are
potentially serious problems. (Although we acknowledge that some reactive systems
may act on observations directly, without internalizing them in a representation.)

At a conceptual level, the information gathered in a self-adaptive system is intended
to be a proxy measure for one or more higher-level constructs, such as workload,



A Design Space for Self-Adaptive Systems 41

performance, or safety. The designer chooses system and environmental properties that
they expect to be good predictors of these constructs. However, the ability to measure
these properties is often limited. For instance, to decrease the overhead of monitoring,
periodic samples are taken, and intermediate values are inferred. If physical elements
are involved (e.g., CPU temperature, server room temperature, voltage, etc.), there may
be limits on where a sensor can be placed, and on the accuracy of that sensor. The
designer must be aware of what value the self-adaptive system will be using. If not pre-
cisely the CPU temperature, is it the temperature at some point near the CPU where a
sensor can be installed? If so, can the value returned by the sensor be trusted? Or should
it instead be a value derived from the sensor but corrected by calibration and averaging?
If so, what inaccuracies are introduced by the time lag waiting for these measurements?

We wrap up these questions into a single question: “what can be observed?” For
any system property of interest (perhaps because that’s a target, perhaps because it’s
used in a model), the designer must understand if it is possible to observe directly, if
it must be indirectly estimated by inference or aggregation, etc. In short, the designer
must distinguish between “what the system wants to measure” and “what the system
can measure and infer from measurements.” This makes it explicit that the self-adaptive
system relies on the ability of the observations to actually estimate the desired system
property, and may even impose proof obligations on the designer to show that what the
system is capable of measuring is an acceptable proxy for the higher-level construct that
is conceptually important.

A key design decision about self-adaptive systems is “what information will the
system observe?” In particular, “what information about the external environment and
about the system itself will need to be measured and represented internally?” The self-
adaptive system may require awareness of the context within which the managed system
is operating (e.g., [9]). Answering these questions requires an understanding of how the
information will be used, which may require other design decisions to be made first.

Given the set of information the system observes, another important design decision
is “how will the system determine that information?” The system could make direct
measurements with sensors, use measurements provided by an already instrumented
system, infer information from a proxy, extrapolate based on earlier measurements,
aggregate knowledge, etc. Some of the measurements can be made implicitly, e.g., by
inferring them from the state of the system or success or failure of an action. Others will
require aggregation or reasoning over time or events, or be in some way combined with
previous measurements. The answer may be different for each metric being observed.

Knowing what to observe and how it is observed, the next dimension is when to ob-
serve. There are actually two timing questions: “what triggers observation?” and “what
triggers adaptation?” The system could be continuously observing or observation could
be triggered by an external event, a timer, an inference from a previous observation,
deviation or error from expected behavior, etc. Thus, the observation can happen at a
fixed delay, on-demand, or employ a best-effort strategy. The same decisions relate to
when the adaptation triggers. Again, this question may need to be answered differently
for each item in the set of information being observed.



42 Y. Brun et al.

A final set of decisions dealing with observation is “how is uncertainty in the ob-
servations handled?” Answers could include filtering, smoothing, and redundancy, or
perhaps the system might not have a specific strategy to deal with noise and uncertainty.

4.2 Representation

The representation cluster is concerned with design decisions regarding how the prob-
lem and system are represented at runtime. To enable mechanisms of adaptation, key
information about the problem and system may have to be made available at runtime.
As mentioned, this cluster is closely related to the observation cluster, and has ties to
the remaining clusters that make use of this representation.

A key decision in this cluster is “what information is made available to the compo-
nents of the self-adaptive system?” Answers include different aspects of the adaptation
targets, existing domain knowledge, and observations of the environment and Managed
System that are found necessary and sufficient for self-adaptive system to operate.

Another design decision in this cluster relates to choices of internal representation.
“How is this information represented?” is meant to guide the designer to the represen-
tation that best matches the adaptation targets and the nature of the problem. Choices
include explicit representations such as graph models, formulae, bounds, objective func-
tions, etc., or implicit representations in the code.

Since some of the information in the representation is dynamic — primarily obser-
vations of the environment and the Managed System, but potentially also the adaptation
targets or the knowledge model — it is necessary to have an approach to update the
representation: “when and how is the information updated?” This dimension prompts a
decision regarding when updates will occur (a fixed delay, on-demand, best effort, etc.),
and how these updates occur (push? pull? with notification to concerned components?).
Of course, static information will not be updated; another important design decision is
what information is static.

4.3 Control

This cluster is concerned with the mechanisms whereby system execution changes the
Managed System in some way to bring it in line with the adaptation targets.

Perhaps the most important question regarding this cluster is “does the system pro-
vide enough operations or parameters to achieve the desired control?” The designer has
the obligation to show that the choices made in the Identification cluster are sufficient
to achieve the desired adaptation targets.

One dimension in this cluster is “how does the system decide what behavior to mod-
ify and by how much?” Deciding “what” will change depends on knowing what adap-
tations (control inputs, architectural changes, deployment changes, etc.) are available,
and then identifying those that will modify the system appropriately. The amount of
the change can be a predefined constant value, or can be proportional to, or a func-
tion of the deviation from the desired behavior, or of another factor. In some cases,
the change is a sum of three terms, a control technique known as PID: a component
proportional with the control error (P, roughly the error at the time), a component pro-
portional with the derivative of the error (D, roughly the rate of change of the error)



A Design Space for Self-Adaptive Systems 43

and another proportional with the integral of the error (I, roughly the accumulated error
over time). In addition to the PID controller, other control-systems analogies can also be
used. In situations with the target of modifying along several requirements, optimizing
a utility function may be appropriate. Complex modifications may require planning and
re-planning.

Adaptation is realized through feedback loops and complex software systems require
multiple loops to adapt [4]. A key decision is “how will the control loops be orches-
trated?” Possible answers depend on the structure of the system and the complexity of
the adaptation targets. Composition patterns include series, parallel, multi-level (hier-
archical), nested, and independent loops. The control loops may not be explicit in all
self-adaptive systems, but some understanding of the nature of the loops (feedback,
feedforward, etc.) is important to guide the design.

Control loops need to be further augmented with actuation decisions. The design
questions “what to adapt?” can have several answers. We can adapt parameters, rep-
resentation, resource allocation, component and connector selection, component and
connector synthesis, sensor and actuator augmentation, component deployment, etc.
Once the actuators are selected, the next question becomes “how to adapt?” This deci-
sion provides concrete actuation methods, including abort, modify data, call procedure,
start new process, etc. Like observation and representation, there is a time dimension
in control. “When to adapt?” can lead to choices such as: immediately, on a time scale,
with fixed delay, continuous change, lazy, on-demand, best effort, etc.

4.4 Identification

The identification cluster defines the possible solutions a self-adaptive system instance
can assume when it adapts. The solutions can cover changes in system structure, in its
behavior, or in a combination of both.

The first dimension in this cluster identifies adaptation solutions: “what are possible
solutions for a given set of adaptation targets?” Finding a discrete set of possible struc-
tural changes, states, parameter values, etc. is the main concern. Changes can include
parametric adaptations where some tuneable parameter is adjusted, architectural (com-
positional) adaptations where software components or their connections are replaced or
updated, and deployment adaptations where the deployment of the adaptation system
is changed (e.g., moving it to the public cloud). Not all solutions will be supported at
runtime. Answering the question “which solutions are or will be supported?” narrows
the list to a subset that will be available at runtime.

Another set of dimensions identifies runtime contexts and feedback loop parame-
ters for a particular set of solutions. The “what are relevant domain assumptions and
contexts for each solution?” design question provides the runtime context for the avail-
able self-adaptive solutions. “What are the required observed and control parameters
for each solution?” identifies prerequisites; this information should be taken into con-
sideration in the observation and representation clusters. It also provides the necessary
information to enable the changes in feedback loop components when switching from
one solution to another.



44 Y. Brun et al.

4.5 Enacting Adaptation

The Enacting Adaption cluster includes the adaptation mechanisms, how they are trig-
gered, how they are supported, and how failure is handled; it is the closest of the clusters
to the implementation solution.

A first question to ask is “is the adaptation mechanism represented explicitly or im-
plicitly in the architecture?” Some feedback loops can be represented explicitly in the
architecture whereas others are intrinsic to the system functionality and therefore rep-
resented implicitly. A self-adaptive system can also be a hybrid of explicit and implicit
loops.

The answers to the question “how is adaptability supported?” might depend on issues
not related to adaptivity itself but on other system goals, such as maintainability and
reliability. This could be answered in terms of the architecture of the Managed System
(a plugin architecture, web services style, etc.) or in terms of the adaptations available on
the Managed System. Closely related to the previous design question is “how will failures
of the adaptation mechanism be handled?” e.g., try again, adopt another mechanism, etc.

Design decisions in all clusters will be affected by what causes adaptation, so it is
important to answer the question of “what is the cause of adaptation?” Answers include:
non-functional requirements (these often use control-theoretic concepts and relate to
response time, throughput, energy, consumption, reliability, fault tolerance), behavior,
prevention of undesirable events, maintaining state, dealing with anticipated change,
dealing with unanticipated change, etc.

5 Using the Design Space

The design space is intended to be useful for tasks such as describing the behavior of
existing self-adaptive systems using a shared standard lexicon, characterizing or creat-
ing a taxonomy for self-adaptive systems, evaluating a self-adaptive system using the
design space as a checklist, comparing several systems or designs, and designing a new
self-adaptive system. The primary intended use for the design space is to serve as a
guide when designing a self-adaptive system. The questions of each dimension either
can be answered throughout the design document or can be explicitly separated into
their own chapter.

To illustrate this use of the design space, we show here the design decisions for our
sample managed web-server system (Section 3), with the adaptation target of achieving
response time within a given limit for 95% of requests, while controlling costs. Note
we have not explicitly shown these design decisions are the right ones; that is, we show
what a point in the design space looks like, but do not make a claim that it is the correct
point (or one of the several possible correct points).

5.1 Observation

The Adaptation System will observe the effect Response Time; the internal state param-
eters Actual Number of Threads, Thread Queue Length, CPU Utilization; and the envi-
ronmental indicators of workload Request Arrival Rate and Number of Users.



A Design Space for Self-Adaptive Systems 45

The Adaptation System also observes the state of the available control inputs — number
of threads, number of servers, and the algorithm used by the Recommendation Engine.

The effect and environmental indicators are captured at the application boundary
(measuring incoming requests and outgoing responses); the state parameters and inputs
are captured using sensors built into the application itself. Observations at the appli-
cation boundary are made after every k requests and reported in the aggregate (me-
dian, mean, standard deviation) over those k requests, with a configurable k (default is
k = 1000). The state parameters are observed every j seconds, with a configurable j
(default j = 180). Control inputs are observed, and can be changed every i minutes,
with i configurable (default i = 10). Uncertainty in the observations is not handled by
the observation and monitoring components, though we note that high variance in the
data can be measured by observing its standard deviation.

5.2 Representation

The information observed is available, both current and historic for a configurable
length of time. Other than the information discussed in the Observation cluster above,
the system also keeps track of

– 95th percentile response time over various sliding windows of time (contract period,
last day, last hour) to measure compliance with the adaptation target,

– the current cost of the configuration (computed based on control inputs and current
architecture),

– past configuration and workload pairs that have met the adaptation target, and
– the current target required by the adaptation target.

The software components can access the observed information though internal data
structures. Known-good configuration and workload pairs are represented in a machine-
readable knowledge base, translated into a set of logical rules that can be used to pro-
duce recommendations or to power an expert system. (For the purpose of this example,
we leave aside the details of the expert system design and treat it as an oracle loosely
coupled to the Adaptation System.) The adaptation targets are expressed as objective
functions.

The adaptation targets must be updated manually (not automatically). The rest of the
represented information is dynamic and will be updated as follows:

– Rules are added to the knowledge base without notification to any components. The
intent for is for the rules to considered in the next recommendation produced by the
knowledge base.

– The software data structures used to store and access observed information ensure
that any request for information will always return the most up to date informa-
tion available. Such requests will block if there is a pending or overdue attempt
to update. The data structure is updated as the information is observed (see the
Observation cluster above).



46 Y. Brun et al.

5.3 Control

The controls available to our system are: adding and removing a thread, and adding
and removing a server. The available architectural change is swapping out the recom-
mendation engine component. The number of threads that can be added is limited by
the resources available on the currently deployed servers. The number of servers is the-
oretically not bounded. Resources scale non-linearly: adding a thread for which there
is enough capacity is quite inexpensive, but adding a whole server is more expensive.
(We assume a utility computing model, such as the cloud, where additional scaling —
adding a rack or adding data center capacity — is not required.) The Recommenda-
tion algorithm can be either highly personalized (database intensive) or generic (with
low resource usage). Our example does not allow for database replication, so we do not
consider the complexity of added revenue from a personalized recommendation engine.
Threads can be removed one at a time and are added proportionally to how overloaded
existing threads are. Servers are added and removed one at a time. The decision to
change is based on the optimization of the target adaptation objective function and the
recommendation of the expert system and knowledge base.

For this simple example, there is one primary feedback loop that manages response
time. There are simple, nested feedback loops that identify corrective actions based
on the current state of the control inputs. If we included other adaptation targets (e.g.,
managing uptime), there would be parallel feedback loops.

The actuator for adding a thread launches a lightweight process and adds an entry to
the load balancer. Removing a thread involves identifying the oldest lightweight pro-
cess, removing its entry from the load balancer, stopping it safely, and monitoring to
ensure the stop command succeeds (in necessary, the process can be killed). The actu-
ator for adding a server involves a utility-computing command to deploy a new server
from a given machine image and to trigger the thread actuator to add new threads.
Server removal requires safe termination of the threads and utility-computing com-
mands. Changing the recommendation engine algorithm involves making a call to the
web application API, then updating the internal representation of the Managed Sys-
tem to note the reduced resource usage that will enable more threads per server. All
actuations of adaptations occur immediately.

5.4 Identification

Adaptation solutions define architectural changes and ways of influencing the state and
effect variables through changes in control inputs. Alternative solutions can be explic-
itly represented in the design or implicitly represented in the algorithms and functions.

In the web-server example, changes will take place when:

– the expert system makes a recommendation, and
– the feedback loop identifies that additional resources are required, based on obser-

vations of the state of the application and the environment.

The self-adaptive solutions supported at runtime are combinations of:

A) change to the low-cost Recommendation Engine,
B) change to high-cost Recommendation Engine,



A Design Space for Self-Adaptive Systems 47

C) add threads to a server,
D) remove threads from existing servers, and
E) add a server.

The specific parameters and contexts for effecting each solution above, respectively:

A) When the database layer is the identified bottleneck (CPU utilization on the appli-
cation server is low; thread queue is high).

B) When resource utilization is low and less than four application servers are in use.
C) When additional capacity is needed to ensure the adaptation target is met and when

sufficient memory and CPU resources are available on a server but requests need to
be processed faster.

D) When resource utilization is low and less than four application servers are in use.
E) When sufficient memory and CPU resources are not available on a server, requests

need to be processed faster, and the utility cost of deploying a new server is less
than the utility cost of violating the adaptation targets for the projected length of
time the workload will remain high.

An important mechanism of evaluating adaptation solutions at runtime is the repre-
sentation of the solution space through a quantitative model. Quantitative models are
quality attribute-specific, and as such performance, reliability, security and availability
have different models. For our example, we can choose from four major classes of per-
formance models [18]. Queuing models can be implemented through simulation [21]
or analytical models [17] and are easy to reconfigure at runtime for vertical and hori-
zontal scaling of applications. Dynamic models such as regression models allow for a
synthesis of the control using classic system control techniques. Policy models are a set
of rules that capture the designer experience or can be discrete representations of more
complex models. A Markov Decision Process model can be used to compute optimal
reactions to state changes, combining observations on the system (for example, an ob-
servation of the system state) with assumptions about the rate of changes of state that
are expected in the future.

5.5 Enacting Adaptation

The adaption mechanisms are built into the Managed System, and the observation and
other elements of the feedback loop are explicitly designed and implemented directly
in the code. The feedback loop is implicit. The Managed System is built with a service-
oriented API and instrumentation to support being managed by the Adaptation System.
When the provided adaptation mechanisms fail, the system will retry the adaptation
at the next control interval. If the failure repeats, the system will attempt designated
fallbacks (e.g., if adding a thread fails, the system will add a server). When the fallbacks
are exhausted, the system will generate a notification that intervention is required and
will retry the adaptations until it either unnecessary, works, or halted by the user.

The adaptation is caused by the expert system and through measurements on the
Managed System.



48 Y. Brun et al.

6 Self-Adaptive System Design Space Challenges

While the design space described above helps formalize and advance the understanding
of self-adaptive system design, it is not complete.

The main remaining challenge is to infuse a systematic understanding of the alterna-
tives for adaptive control into the design process. Further, the trade-offs among the choices
and quantitative and qualitative implications of the design decisions on the overall adap-
tation quality need to be investigated. The clusters of dimensions described here pose the
questions that need to be answered by designers of self-adaptive systems. A complete so-
lution, however, will also include the possible answers and a systematic way of evaluating
the trade-offs of each choice (such as the SEI approach to architectural design [13]).

Another remaining challenge is to expand and refine the dimensions in each cluster.
At the same time, since the dimensions are not independent, the dependencies among
the dimensions and choices need to be understood. Such proper understanding can
narrow the search through the design space, improve the efficiency of the design pro-
cess, and reduce the design complexity. Validating the dimensions and their constraints
against real-world examples can serve as the framework for describing alternatives and
as a checklist to help designers avoid leaving out critical decisions.

This initial description has largely set aside the question of evaluating proposed de-
signs. While the design space can be used as-is to ensure a design has considered the
various dimensions, further work is required to help designers evaluate if their choices
will lead to a system that achieves the desired control. Not all the points in the design
space correspond to systems that will solve a given problem. How does the designer
decide whether a given set of decisions (i.e., a point in the design space) suffices?

Bridging the gap from a generalized design space to an implementation is a com-
plex challenge. The design space helps guide decisions but offers little guidance on the
implementation of those decisions. Design patterns, architectural patterns, middleware,
and frameworks can help bridge this gap. In particular, design patterns are solution
templates designed to be reused [8]. The choices for each question in the design space
could map to specific design patterns. Ramirez and Cheng [19] identify several design
patterns specific to self-adaptive systems. Architectural patterns are to design patterns
but target a higher level of abstraction, serving as blueprints that can be used and mod-
ified to suggest typical architectural solutions to common problems [5]. Middleware
and frameworks and are more concrete and provide partial implementation, such as
implementations of common tasks, common solutions, and common architectures for
self-adaptive systems. As there are many proposed frameworks, architectures, and mid-
dleware for self-adaptive systems, selecting an appropriate approach based on choices
made in the design space is an open, and non-trivial research problem.

For existing systems that need to be re-engineered to be self-adaptive, the design
space may be even more constrained and complex than the space we have explored
here. Extra dependencies and constraints may eliminate potential solutions in the design
space. Tools can likely help understand this space, and the constraints.

Since complex self-adaptive systems will have more than one control loop, it is imper-
ative that the common ways in which control loops interact be defined, along with pat-
terns or common templates for handling these cases. For example, Hellerstein et al. [11]
describes two systems with multiple feedback loops. The first system is a self-tuning



A Design Space for Self-Adaptive Systems 49

regulator, which adapts the controller’s parameters, which, in turn, manage a plant. In
this case, the plant (Managed System), does not need to be modified because the self-
tuning regulator can determine the Managed System’s internal state from its effect. The
second system is a gain scheduler. For this system, the output of the Managed System is
not sufficient to determine its state and the Managed System must allow itself to modified
to provide the necessary scheduling variables. Thus, a remaining challenge is to better
understand the control-loop-related questions that need to be answered in designing sys-
tems with multiple forms of feedback.

7 Conclusion

Before designing a self-adaptive software system, it is valuable to explore the design
space of such systems and to understand the dimensions of the space. Further, the under-
standing of the design space can increase maintainability and interoperability of deployed
systems and facilitate evaluation and enhancement of existing and proposed systems. In
this paper, we have described the design space of self-adaptive systems in terms of five
clusters of dimensions: observation, representation, control, identification, and enacting
adaptation. Each dimension is a question a designer must answer. We have also proposed
possible answers for each dimension question and discusses dimension dependencies.
Finally, we have illustrated the design space with a self-adaptive web-server system.

This paper represents the next step in what we hope will be a confluence of several
lines of research on the design of self-adaptive systems. The design space we have out-
lined here is not complete and not exhaustive. Further work defining and understanding
the design space — primarily by adding additional key dimensions and possible an-
swers to existing questions — will increase its utility. Understanding the trade-offs,
dependencies, and best practices for the design space will further enrich the experience
of self-adaptive system developers. Finally, establishing paths from the design space
to the system implementation, via design and architectural patterns, frameworks, and
middleware, will assist designers and developers.

We believe that understanding the design space of self-adaptive systems and fol-
lowing a more-systematic approach to such system design will ultimately improve the
outcomes of self-adaptive systems research.

Acknowledgments. We thank Gregor Engels, Jeff Magee, and John Mylopoulos for
contributing ideas to the discussions that led to this paper.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling Dimensions of Self-Adaptive
Software Systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer, Heidelberg (2009)

2. Brake, N., Cordy, J.R., Dancy, E., Litoiu, M., Popescu, V.: Automating discovery of software
tuning parameters. In: Proceedings of the 3rd International Workshop on Software Engineer-
ing for Adaptive and Self-Managing Systems, Leipzig, Germany, pp. 65–72 (2008)

3. Brooks Jr., F.P.: The Design of Design: Essays from a Computer Scientist. Addison-Wesley,
New York (2010)



50 Y. Brun et al.

4. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Sys-
tems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

5. Buschmann, F., Henney, K., Schmidt, D.: Pattern-oriented software architecture: On patterns
and pattern languages, vol. 5. John Wiley & Sons Inc. (2007)

6. Checiu, L., Solomon, B., Ionescu, D., Litoiu, M., Iszlai, G.: Observability and controllability
of autonomic computing systems for composed web services. In: Proceedings of the 6th
IEEE International Symposium on Applied Computational Intelligence and Informatics, pp.
269–274 (2011)

7. Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Transactions
on Autonomous and Adaptive Systems (TAAS) 1, 223–259 (2006)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc. (1995)

9. Geihs, K., Reichle, R., Wagner, M., Khan, M.U.: Modeling of Context-Aware Self-Adaptive
Applications in Ubiquitous and Service-Oriented Environments. In: Cheng, B.H.C., de
Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525,
pp. 146–163. Springer, Heidelberg (2009)

10. Ghanbari, H., Litoiu, M.: Identifying implicitly declared self-tuning behavior through dy-
namic analysis. In: Proceedings of the 4th International Workshop on Software Engineering
for Adaptive and Self-Managing Systems, Vancouver, BC, Canada, pp. 48–57 (2009)

11. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback control of computing systems, pp.
378–384. Wiley Interscience (2004)

12. IBM: An architectural blueprint for autonomic computing. (June 2006),
http://www-01.ibm.com/software/tivoli/autonomic/
pdfs/AC Blueprint White Paper 4th.pdf

13. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architec-
ture tradeoff analysis method. In: Proceedings of the 4th IEEE International Conference on
Engineering of Complex Computer Systems, pp. 68–78 (1998)

14. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
15. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-

ware Engineering, pp. 259–268 (2007)
16. Lane, T.G.: Studying software architecture through design spaces and rules. Tech. Rep.

CMU/SEI-90-TR-18, Software Engineering Institute, Carnegie Mellon University (Novem-
ber 1990)

17. Litoiu, M.: Application performance evaluator and resource allocation tool (APERA) (May
2003), http://www.alphaworks.ibm.com/tech/apera

18. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control of soft-
ware systems. In: Proceedings of the Workshop on Design and Evolution of Autonomic
Application Software, St. Louis, MO, USA, pp. 1–7 (2005)

19. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adaptive systems.
In: Proceedings of the 5th International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, Cape Town, South Africa, pp. 49–58 (2010)

20. Shaw, M.: The role of design spaces. IEEE Software (Special Issue on Studying Professional
Software Design) 29(1), 46–50 (2012)

21. Smit, M.: Supporting Quality of Service, Configuration, and Autonomic Reconfiguration
using Services-Aware Simulation. Ph.D. thesis, University of Alberta (2011)

22. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A framework for eval-
uating quality-driven self-adaptive software systems. In: Proceeding of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, Waikiki,
Honolulu, HI, USA, pp. 80–89 (2011)

http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.alphaworks.ibm.com/tech/apera


Software Engineering Processes

for Self-Adaptive Systems

Jesper Andersson1, Luciano Baresi2, Nelly Bencomo3, Rogério de Lemos4,
Alessandra Gorla5, Paola Inverardi6, and Thomas Vogel7

1 Department of Computer Science, Linnaeus University, Växjö, Sweden
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

3 INRIA Paris, Rocquencourt, France
4 University of Kent, UK

5 Faculty of Informatics, University of Lugano, Switzerland
6 Dipartimento di Informatica, Università dell’Aquila, Italy

7 Hasso Plattner Institute at the University of Potsdam, Germany

Abstract. In this paper, we discuss how for self-adaptive systems some
activities that traditionally occur at development-time are moved to run-
time. Responsibilities for these activities shift from software engineers to
the system itself, causing the traditional boundary between development-
time and run-time to blur. As a consequence, we argue how the traditional
software engineering process needs to be reconceptualized to distinguish
both development-time and run-time activities, and to support designers
in taking decisions on how to properly engineer such systems.

Furthermore, we identify a number of challenges related to this re-
quired reconceptualization, and we propose initial ideas based on process
modeling. We use the Software and Systems Process Engineering Meta-
Model (SPEM) to specify which activities are meant to be performed
off-line and on-line, and also the dependencies between them. The pro-
posed models should capture information about the costs and benefits
of shifting activities to run-time, since such models should support soft-
ware engineers in their decisions when they are engineering self-adaptive
systems.

1 Introduction

Traditional software engineering research primarily focuses on development ac-
tivities for high-quality software, rather than maintenance or evolution [29].
Meanwhile, the software engineering community has accepted that software must
continuously adapt and evolve according to ever changing requirements to re-
main useful for the user [26,27]. This awareness has led to iterative, incremental,
and evolutionary software engineering processes [4,9,19,20,23,35,43], rather than
strictly sequenced phases of requirements engineering, design, implementation,
and testing, as perceived by the waterfall model [38].

However, such approaches to change software do not meet the requirements of
many modern context and self-aware, mission-critical, or ultra-large-scale soft-
ware systems [17,31]. Context and self-aware systems require timely changes in

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 51–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



52 J. Andersson et al.

response to changing environments, changes in the system itself, or in its goals.
The inherent delay in traditional change processes is for these systems unsat-
isfactory. Mission-critical systems have to operate continuously. In traditional
change processes, changes are deployed during scheduled down-times and, as a
consequence, continuous operation is not possible. Ultra-large-scale systems are
highly complex, which makes human-driven change activities difficult and ex-
pensive, or even infeasible in practice due to the size and inherent complexity
that impede a complete shutdown of the system in order to change it. Thus, we
may conclude that using a traditional change process for these kinds of systems
holds the risk of the system failing to meet its specification with respect to timely
reaction to changes and continuous operation.

These risks have led to the development of novel means of risk mitiga-
tion that change software in terms of self-adaptation [14]. Self-adaptive be-
havior implies that certain development and change activities are shifted from
development-time to run-time, while reassigning the responsibility for these
activities from software engineers or administrators to the system itself. The
new time-of-change timeline [11] that is, when a change takes place, covers
development-time, deployment-time and run-time. A consequence of this recon-
ceptualization of the time-of-change is that the traditional boundary between
development-time and run-time blurs, which requires a complete reconceptu-
alization of the software engineering process [3,7,21,22], where the traditional
perspective that separates development-time and run-time is revisited. The ra-
tionale is that for self-adaptive software systems the typical software-process
mapping from (1) software life-cycle phases [32] (e.g., development, deploy-
ment, operation, or evolution) and (2) software engineering disciplines [32]
(e.g., requirements engineering, design, implementation, verification, etc.), and
software-process activities (e.g., elicitation, prioritization and validation of re-
quirements), onto a, (3) time-of-change timeline is not valid anymore. As an
example, the disappearing boundary between development-time and run-time
does not allow software changes to be decoupled from the running system any-
more. Buckley et al. propose a taxonomy with a number of dimensions to
classify software change [11]. Even though the proposed taxonomy appears to
be sufficiently comprehensive, we argue that a more fine-grained perspective on
the timeline is required for the class of self-adaptive software systems. This new
perspective corresponds to a new dimension, which considers the blur and de-
scribes where, with respect to the self-adaptive system, change activities take
place. With respect to the self-adaptive system, we refer to activities performed
externally as off-line activities and to change activities performed internally as
on-line activities1.

The main contributions of this article is the identification and description of
a number of challenges related to the required reconceptualization of software
engineering processes for self-adaptive systems, and its impact on how to en-
gineer such systems. We propose software process modeling as a corner-stone

1 The notions of on-line and off-line we introduce are distinct from their traditional
notions in the field of algorithm theory.



Software Engineering Processes for Self-Adaptive Systems 53

component to be used in a modeling and evaluation framework for self-adaptive
software systems.

A reconceptualization of software engineering processes requires (1) the defi-
nition of abstractions for off-line and on-line activities, the identification of the
entities subject to change by these new activities and the dependencies in-between
such activities and, as a consequence, (2) the complete understanding of the im-
pact of design decisions related to off-line activities over on-line activities, and
vice versa. We argue that engineering self-adaptive software is about defining a
software process which defines the scope for a system’s self-adaptive behavior
(by means of on-line activities) and proposes new variants to the mapping afore
mentioned. However, scoping introduces a number of additional challenges.

We address these challenges with our second contribution, process modeling for
engineering self-adaptive software systems. We propose an approach based on the
Software & Systems Process Engineering Meta-Model Specification (SPEM) [32].
Explicit processes models manifest how a system is developed and evolved, which
promotes a better understanding of self-adaptive software systems and the re-
lationships to software engineering processes. In addition, it promotes commu-
nication, reuse, and reasoning that may in the long-term be automated [33].
Altogether this improves support for comprehension and decision making when
engineering self-adaptive systems. The adoption of process modeling for self-
adaptive software systems engineering involves a number of challenges: (1) The
new concepts (on-line and off-line activities, and their dependencies) have to be
supported by the process modeling language. (2) Likewise, concepts and models
must capture the relative value of activities (costs & benefits) since they in-
fluence the scoping of a self-adaptive system’s activities. Due to dependencies
between the engineering process (off-line activities) and the self-adaptive system
(on-line activities), we must develop and use (3) new integrative design and mod-
eling techniques [6] that support both, process and product engineering. These
techniques must support designers in scoping the self-adaptation mechanism,
decisions that should be based on value and balance costs and benefits.

The remainder of this article is organized as follows. In Section 2, we introduce
an illustrative example, which is used to define and motivate the problems this
article is targeting. Section 3 discusses a number of challenges related to the
problems in more depth. Based on these discussions, we outline a software process
modeling approach for engineering self-adaptive software systems in Section 4. In
Section 5, we discuss important challenges that remain to make process modeling
a viable tool in self-adaptive software systems engineering. We discuss related
work in Section 6, and conclude and outline a research agenda for the proposed
direction in Section 7.

2 Revising the System Life-Cycle

In this section, we introduce a specific perspective concerning self-adaptive soft-
ware systems, which is the characterization of their life-cycle and the challenges
to support this life-cycle by effective software processes. With self-adaptive



54 J. Andersson et al.

Fig. 1. A Conceptual Architecture for Self-Adaptive Software Systems [1]

software systems as our focal point, we revisit and revise the typical software sys-
tem’s life-cycle, pin-pointing explicit and implicit relationships between software
engineering processes and a deployed self-adaptive software system.

The essential characteristic of a self-adaptive software system is its ability to
autonomically evolve and adapt its behavior dynamically in response to changes
to system requirements, the system itself, or the system’s operational environ-
ment. The evolution and adaptation mechanisms should preserve the essence
of the system behavior by continuously providing an acceptable implementa-
tion of the system’s core requirements. The scope of this paper does not require
a distinction between evolution and adaptation, the focus is whether software
changes are enacted off-line or on-line and, as a consequence, a precise definition
of software evolution and software adaptation is beyond the scope of this paper.

To frame evolution and adaptation mechanisms, Figure 1 depicts a concep-
tual architecture for self-adaptive software systems [1]. An important property
of this architecture is the disciplined split, which promotes separation of con-
cerns. A Managing Subsystem implements the Adaptation Logic that manages
a Managed Subsystem, which implements the Domain Logic. The adaptation
logic implements a control loop in line with the monitor-analyze-plan-execute
(MAPE) loop [24], which evolves and adapts the domain logic. Domain func-
tionality and the system’s core requirements are implemented by the domain
logic. The self-adaptive system operates in a non-controllable environment that
may merely be observed by the adaptation logic, while the domain logic may
both observe and affect the environment. Moreover, the architecture allows for
additional managing subsystems that adapt adaptation logic in other managing
subsystems. This may be used to describe, for example, the goal management
layer in Kramer and Magee’s layered architecture [25] or hierarchical control in
autonomic computing [24]. This characterization of self-adaptive systems pro-
motes evolution and adaptation mechanisms realized by the adaptation logic to
first class computations that have to be supported side by side with domain logic
computations, while seamlessly interleaving with the running system.

In a typical software process for conventional software systems, evolution and
adaptation are performed after the initial development and deployment, and
they usually encompass all process disciplines from requirements engineering to



Software Engineering Processes for Self-Adaptive Systems 55

deployment. This indicates that timely changes are not prioritized. In a self-
adaptive software system the situation is different. The evolution and adapta-
tion activities realized by the adaptation logic are in place because requirements
change frequently and timely reactions are essential. Self-adaptive software sys-
tems autonomically perform activities on-line and at run-time that originally
have been carried out manually and off-line. This change to a process does not
affect all process activities, and thus, understanding relationships and depen-
dencies between (off-line) software process activities and (on-line) evolution and
adaptation activities is a great challenge. Before systematically analyzing chal-
lenges concerning life-cycles and software processes for self-adaptive systems and
the engineering of such systems, we present an illustrative example that we use
throughout paper.

2.1 Illustrative Example: Automatic Workarounds

Automatic Workarounds (AW) is a technique that enhances applications with
self-adaptation capabilities that deal with functional failures at run-time [12,13].
When applications fail, either because there is a fault in the application itself
or in one of the libraries used by the application, the AW technique attempts
to mask the fault and thus, to avoid the corresponding failures, while providing
the core domain functionality.

The technique is based on the hypothesis that software systems usually of-
fer several “equivalent operations” that provide the same core functionalities in
different realizations. If an operation fails, the AW mechanism exploits this in-
trinsic redundancy to automatically find workarounds and apply an alternative
equivalent sequence of operations. Consider for example a container component
that implements one operation to add a single element, and one operation to
add several elements. To add two elements, it is possible to add either one el-
ement after the other, or to add them both at the same time. If one of these
options causes a failure at run-time, the AW technique attempts to execute the
equivalent sequence of operations as the alternative option to mask the fault.

We depict the AW technique’s principal concepts and mechanisms in Figure 2.
An application component invokes an operation provided by another component
(caller and called component, respectively). If an invocation causes a failure, the
AW technique implemented by the adaptation logic handles this failure at run-
time by first looking for a sequence of operations which is equivalent to the fail-
ing invocation. Having found an equivalent sequence of operations, the adaptation
logic enacts an adaptation that automatically invokes this sequence of operations.
If the alternative execution does not cause a failure, a successful workaround has
been found and the application proceeds as if the original failure never occurred.
Otherwise, the adaptation logic continues testing other equivalent sequences until
an alternative is either successfully executed or until all equivalent sequences have
been tested unsuccessfully. In the latter case, the failure is reported to the caller
component. To address these reported failures, developers have to fix the fault ei-
ther by fixing the faulty component or bymanually identifying and providing valid
workarounds to the AW adaptation logic.



56 J. Andersson et al.

Fig. 2. The Automatic Workarounds technique

In a typical software process, the bug report filled by a user would be the
starting point of a long manual effort to deal with run-time failures. Developers
would need to identify and analyze the root causes of the problem, identify and
implement a patch for the fault, and finally deploy a patch or re-deploy the
complete application. The AW technique aims at automating and shifting these
activities at run-time to the adaptation logic. This will provide for more timely
responses to failures without the need to stop and re-deploy the application.

2.2 A Refined Life-Cycle Perspective

As mentioned above, a self-adaptive software system performs regular software
process activities while the system is running. In Figure 3, we illustrate how a
software process and its activities interact with a running self-adaptive software
system. The left-hand side of the figure depicts a staged life-cycle model inspired
by Rajlich and Bennett [35]. The stages cover the initial development of the self-
adaptive system and traditional evolution and adaptation activities performed
off-line. Off-line activities work on artifacts, such as design models or source code
in a product repository and not directly on the running system. The final stage,
Phaseout covers the shutdown and decommission of the self-adaptive system.

At first sight, and focusing on the left-hand side of the figure, this process
looks identical to a traditional software process. However, note it interacts with
the running self-adaptive system. This interaction takes place through on-line
activities associated with evolution and adaptation, which constitute the self-
adaptive system’s adaptation logic. Using run-time representations of the self-
adaptive system, on-line activities evolve and adapt the domain logic or other
adaptation logic while the system is operational in providing services (illustrated
by the right-hand side of Figure 3). Interactions and dependencies between off-
line and on-line activities, depicted by bidirectional arrows, are specific for life-
cycle models targeting self-adaptive systems.

In order to provide a more in-depth analysis of the interactions between
a software process and a running self-adaptive system, more detailed descrip-
tions of activities and their interactions are required. We introduce and discuss
a timeline, illustrated in Figure 4, which represents a life-cycle instance for a



Software Engineering Processes for Self-Adaptive Systems 57

Fig. 3. A Life-cycle Model for Self-Adaptive Software System

self-adaptive system that uses an automatic workaround (AW) approach for the
adaptation logic and its development process. The timeline view contains two
graphs and interaction points. The top-most graph depicts the activity level (y-
axis) in the development process and a number of specific off-line activities over
time (x-axis). We see how the activity level varies over the life-cycle. The life-
cycle is divided into the three distinct stages: initial development, evolution and
adaptation, and phaseout. The bottom-most graph depicts the service level for
the self-adaptive AW system over time (x-axis). The variations in the graph are
due to events, external or internal to the system. For example, on-line activities
initiated by the adaptation logic or the development processes (maintenance &
evolution activities). The timeline in Figure 4 suggests that the running system
acts as a stakeholder with a specific role in the development process, as it ac-
tively affects software development and maintenance [2]. However, for the case
of self-adaptive systems, this is also true for on-line activities. We may now iden-
tify and characterize a number of scenarios where off-line and on-line activities
interact, as depicted by the labeled situations in Figure 4.

The first stage, initial development, develops a first version of the self-adaptive
software system by a number of off-line activities. In the context of the AW ap-
proach, software engineers develop the application’s domain logic. To enhance
the application with the AW technique, they have to provide an initial list of
equivalent sequences for application operations with known workarounds, which
is an off-line development activity. This also exemplifies how self-adaptation ca-
pabilities influence the initial development. Having completed the initial develop-
ment, the system is ready for deployment. An initial deployment (cf. situation �1
in Figure 4) puts the system into operation, which is illustrated by the step in
the system’s service level. The initial deployment activity is captured by the
first interaction point. Interaction points indicate that off-line activities impact
on-line activities or vice versa.

When the system instance is running, the evolution and adaptation stage
starts. As we consider self-adaptive software systems, adaptations and evolu-
tion may be initiated and controlled by off-line (process) activities as well as



58 J. Andersson et al.

Fig. 4. Timeline View on a Process and a Running Self-Adaptive Software System

on-line (adaptation logic) activities. This is illustrated by six additional situa-
tions following initial deployment (situation �1 ) in Figure 4.

Situation �2 illustrates how changes by off-line evolution or adaptation activ-
ities are subsequently enacted to the running system by on-line activities. An
on-line update deploys new or updated domain logic components. For these com-
ponents, the lists of equivalent sequences and thus, the adaptation logic, have to
be updated by the developer to preserve AW behaviors. In the scenario we de-
scribe, the system’s service level is affected negatively after the new deployment
due to probable faults in the new components.

However, if corresponding failures occur, they are handled by the AW technique
as sketched by situation �3 , thanks to previous off-line efforts to maintain the list
of equivalent sequences. The AW technique monitors failures in the application,
and it is able to deal with them by successfully applying workarounds. This brings
the system into a state with improved service level. This situation exemplifies on-
line adaptations, which are often enabled by preceding off-line activities.

Nevertheless, the AW technique might not be able to cope with arbitrary
failures that continuously affect the system’s service level negatively (cf. sit-
uation �4 ). This is the case when the AW technique does not find a valid
workaround (first on-line activity in situation �4 ), i.e., all available equivalent
sequences have been tested without success, and as a consequence the failure
recurs. In this case, the second on-line AW activity in this situation notifies



Software Engineering Processes for Self-Adaptive Systems 59

developers who enact an off-line process to deal with the failures, e.g., by man-
ually correcting the fault and maintaining the list of equivalent sequences. This
situation shows how on-line activities interact with and trigger off-line activities.

If the application is re-engineered off-line, an on-line update may be too
complex, hence not feasible. Such radical changes to a system are captured in
situation �5 by off-line evolution activities followed by a deployment. In this
situation the running system is shutdown and the new release deployed (simi-
lar to situation �1 ), which affects the system’s availability and thus, its service
level. Situation �6 highlights the case when off-line activities evolve or adapt
on-line (adaptation logic) activities followed by enacting these changes to the
running system. In context of the AW adaptation logic, at any point in time de-
velopers may identify and specify new equivalent sequences, which is an off-line
activity that tunes the AW mechanism. Through on-line activities, these new
sequences are injected into the AW knowledge and these sequences may be used
in subsequent adaptations of the domain logic. Finally, situation �7 illustrates
the complete shutdown and decommission as part of the phaseout stage, since a
decision has been made to discontinue the system. The shutdown and decommis-
sion activities, which are planned and initiated off-line, terminate the life-cycle
of the system and with some delay the process life-cycle.

Evolution andadaptation activities performed in-between interactionpoints are
in general carried out on-line if they are controlled by the adaptation logic. In con-
trast, they are carried out off-line if they are controlled by human-driven process
activities onproduct repositoryartifacts fromthe initialdevelopment stage (cf.Fig-
ure 3). In this context, interaction points synchronize off-line and on-line activities
or artifacts. As an example, situation �6 illustrates that on-line activities can be
evolved and adapted off-line, and a subsequent dynamic update synchronizes these
off-line changes to the corresponding on-line activities in the adaptation logic.

3 Processes for Self-Adaptive Software Systems

As we discussed previously, software processes for self-adaptive systems have spe-
cial characteristics due to their integration with the running system by automat-
ing a set of process activities in the system’s adaptation logic. This automation
and integration define the self-adaptation scope, i.e., the self-adaptation capabil-
ities of the system. In the case of the automatic workarounds approach example,
this set covers activities that handle functional run-time failures, but not ac-
tivities that go beyond the specific idea of workarounds, such as repairing the
faults causing the failures (cf. Section 2.1). Therefore, we distinguish between
on-line activities, which are change activities realized and performed by the sys-
tem’s adaptation logic, and off-line activities, which are realized and performed
externally to the self-adaptive system (cf. Figure 3). Self-adaptation does not
make typical (off-line) activities redundant. In fact, a process has to support
both off-line and on-line activities. Furthermore, it has to consider dependencies
in between both kinds of activities.

Currently, software processes merely focus on the initial development and off-
line evolution and adaptation of the system. The automation and integration



60 J. Andersson et al.

require a dramatic change of the concepts associated with traditional software
processes. The software process reconceptualization is, therefore, the first of the
major challenges we have identified. We believe that a process reconceptual-
ization is essential to effectively and efficiently engineer self-adaptive software
systems. We provide a more detailed account for this challenge and its sub-
challenges below in Section 3.1.

The outcome of the reconceptualization of software processes should lead to
a life-cycle model that conveys a strong intertwining between the on-line and
off-line activities and thus, between the self-adaptive system and its engineering
process. We identify this as our second major challenge. Achieving effectiveness
and efficiency in both is indeed a challenge that for instance includes deciding
which activities should be performed on-line and which not. Design decisions of
having activities either off-line or on-line should be motivated by the costs and
the relative contribution to a product’s value. In Section 3.2, we discuss related
ideas and research challenges.

3.1 The Need of Reconceptualizing Software Processes

As mentioned above, traditionally software processes take the perspective that
process activities can be either performed at development-time or at run-time.
However, recently it has been advocated that due to the distinct features of self-
adaptive systems, these type of systems require a reconceptualization of their
software processes [3,7,21,22]. We already took the initial steps to modify the
perspective on process activities in Section 2 by distinguishing between on-line
and off-line activities rather than development-time and run-time activities.

Although on-line and off-line activities perform in different contexts, they
are not independent from each other, as it is illustrated by the interactions in
Figure 4. Therefore, an effective process for self-adaptive software systems should
support both kinds of activities together with the interactions and dependencies.

In order to consider on-line activities, they must be lifted to the abstrac-
tion level of software processes. Up to now, on-line activities are only explicitly
addressed by self-adaptive systems’ designs that describe the adaptation logic.
Thus, they are represented in software design models, but not in process models.
Hence, to fully capture a software process for self-adaptive systems, on-line activ-
ities must be first class entities of processes, and they must be explicitly reflected
in process models. It is therefore important to integrate the process models with
the self-adaptive system design models in order to seamlessly capture off-line
and on-line activities in a process.

Alongside on-line activities, on-line roles and work products need to be ad-
dressed by processes too. The adaptation logic of the self-adaptive system is
responsible for performing on-line activities, since it assigns on-line process roles
to the system. In a self-adaptive system, on-line activities will manipulate work
products that are representations of the executing system. Thus, the process has
to consider the running system, and more specifically the abstractions that reify
adaptation and domain logic as work products of a process.



Software Engineering Processes for Self-Adaptive Systems 61

Having a side by side process support for on-line and off-line activities requires
that work products and roles as well as dependencies between them are explicit.
For instance, this is required to use dependencies to enable interactions between
on-line and off-line activities or to synchronize on-line and off-line work products.
Neglecting dependencies would split the process into two subprocesses that may
drift apart, what could prevent controlled coevolution of the system and process.

3.2 Engineering Self-Adaptive Software System with Effective
Process Support

The application of a reconceptualized process, in the way we have proposed
above, requires support at the process level to effectively and efficiently engineer
self-adaptive software systems. In fact, one of the consequences is that software
engineers will have to face even more choices when engineering a self-adaptive
system, as they have to decide on how to assign activities to off-line or on-line.
Such engineering decisions have to be predictable and based on thorough value-
based analysis of decision alternatives with well-understood consequences. Thus,
we argue that decisions should be guided by models that represent both the costs
and the benefits of having an activity performed either on-line or off-line together
with the resulting dependencies. Such models should support engineers in making
optimal decisions. In self-adaptive systems, some design decisions regarding the
system’s domain logic are delayed or revisited at run-time. The rationale for this
delay is uncertainty, which in turn is a consequence of an information deficit [42].
For example, in the automatic workarounds approach, faults in the domain logic
are not known at development-time, and thus, adaptation logic is integrated to
cope with failures at run-time that are caused by such unknown faults. Thus,
self-adaptation promotes shifting the tasks of traditional off-line activities, such
as dealing with run-time failures, to on-line activities.

However, at the same time self-adaptation capabilities introduce additional
uncertainty. When engineers leave design decision open to be resolved or revis-
ited at run-time, it will be difficult to have all required information at hand
that is required to make decisions with predictable consequences when design-
ing a process and system. Thus, supporting the decision process and to deal
with this type of uncertainty requires means to understand, specify, and reason
about process activities, process roles, process work products, and dependencies.
Such means must be provided at the process level, since any design decision con-
cerning the self-adaptation scope affects the process, and any design decisions
concerning the process influences the self-adaptation scope. Concretely, such de-
cisions determine whether activities are performed on-line or off-line, and hence,
whether they will become part of the adaptation logic or be handled off-line.

Moreover, such decisions must be based on the contribution to the product’s
value as perceived by its stakeholder using well-defined criteria that refer to ac-
tivities, roles, work products, and dependencies. Such criteria specify costs and
benefits for different design alternatives and support software engineers in mak-
ing design decisions. For example in the automatic workarounds (AW) approach,
using the AW technique to automatically deal with run-time failures induces



62 J. Andersson et al.

additional costs for development (the equivalent sequences of operations must
be specified by software developers), but it leads to the benefit of a more robust
system, because the system is able to recover from run-time failures instead
of crashing. The technique also introduces a performance penalty at run-time.
Thus, a solid understanding of value, and useful ways to trade-off competing
costs or benefits for the process and system together are required.

Besides issues concerning the design of self-adaptive systems and their pro-
cesses, the supporting methods, techniques, and tools utilized by the activities
are an additional parameter in the equation. Shifting activities from off-line to
on-line requires that the underlying methods, techniques, and tools are adapted,
optimized, or newly developed in order to be applicable on-line. This will result
in a plethora of support alternatives for activities, and each alternative will have
an associated value, possibly unique, for every given project and stakeholder. For
example, an incremental solution to validation and verification can be efficient
enough to be used on-line, but it might not provide the same degree of accu-
racy as a solution designed for off-line usage. Effective and efficient engineering
requires that such value parameters are seamlessly integrated in the engineering
process that codesigns on-line and off-line activities to define a process and the
complementary adaptation logic in the managing system.

4 Process Modeling for Self-Adaptive Software Systems

In this section, we discuss a framework, based on software process modeling,
that may help in engineering self-adaptive software systems. This requires that
process modeling languages support the new concepts, like on-line and off-line
activities, that originate from the reconceptualization discussed above. Thereby,
process modeling also helps in grasping and understanding the reconceptual-
ization of processes because process models make these concepts explicit. In
addition, we discuss a number of remaining research challenges, primarily con-
cerned with the development and application of a process modeling language for
engineering self-adaptive software systems’ processes.

In general, a process is a mechanism to achieve a goal in a systematic way, like
following instructions to assemble a product, or following office procedures. Like-
wise, performing engineering activities to develop and evolve a software product
constitutes a process [33]. How a process is carried out is specified by a process
model that defines a partially ordered set of what is done when and where and by
whom [16,36]. Thus, assembly instructions, office procedures, or descriptions of
software engineering activities are process models, and such models materialize
the corresponding processes. This materialization enables human understanding,
coordination, and communication, and it supports the analysis, improvement,
reuse, execution, or in general the management of processes [16,33,36].

To leverage such benefits of process modeling in the software engineering
field, several modeling languages have been proposed to describe software pro-
cesses [16]. One example of such modeling languages is the Software & Systems
Process Engineering Meta-Model Specification (SPEM) [32]. In this paper, we



Software Engineering Processes for Self-Adaptive Systems 63

Role Activity WorkProductperforms >
*1..*

output >
**

input >
**

responsible for >
*1..*

Fig. 5. A Conceptual View on the SPEM Meta-Model

have adopted SPEM for illustrating the concepts being discussed due to its
flexibility, extensibility, and suitability for model-based engineering. The SPEM
specification explicitly defines a modeling language by means of a meta-model
for describing software development processes. Having an explicit definition of a
modeling language, it is possible to discuss and extend the language. As discussed
and demonstrated below, extending the language is required for addressing the
concepts that originate from the reconceptualization of processes for the case of
self-adaptive systems. We are not aware of any process modeling language that
supports these concepts as first class elements and provides a rigorous under-
pinning for model-based engineering approaches.

4.1 SPEM-Based Process Modeling

By defining a meta-model, SPEM provides a modeling language to specify soft-
ware development methods and processes, and offers an initial support for con-
figuring and enacting processes in concrete projects. However, the language is
generic, since it is meant to support the modeling of processes that span from the
waterfall model to agile approaches. Thus, the language supports only the basic
and abstract concepts that are present in any development approach. These ab-
stract concepts are depicted in Figure 5, which shows a conceptual and partial
view on the SPEM meta-model.

Using this meta-model, we are able to describe a workflow of Activities that
are performed by Roles and that have WorkProducts as input or output. Activ-
ities can be related to other activities by passing work products along activities,
i.e., an output of one activity is the input for another activity. Finally, responsi-
bilities for work products can be assigned to roles. Moreover, the SPEM language
provides several elements to represent phases, iterations, and milestones. Finally,
SPEM allows to specify different forms of dependencies, e.g., between activities
or between work products, primarily to cover relations between activities or
composition and impact relations between work products. However, we do not
further describe such advanced elements, as they are not critical for the specific
challenges that this paper is addressing.

Below, we discuss how we have extended the basic concepts defined by the
SPEM language with additional concepts that originate from the reconceptual-
ization of software processes for the specific case of self-adaptive systems. This
makes the additional concepts explicit in process models, and it helps to tackle
challenges in engineering self-adaptive software systems (cf. Section 5). In the
following section, we use our extended version of the SPEM language to model
the process of the automatic workarounds approach, and we show how these



64 J. Andersson et al.

Role Activity WorkProductperforms >
*1..*

output >
**

input >
**

responsible for >
*1..*

ProcessElement

<<Stereotype>>
On-line

<<Stereotype>>
Off-line

Dependency

2..*
*Cost

Benefit
1

*

*

Fig. 6. Extended SPEM Meta-Model for Processes of Self-adaptive Systems

models can support and manifest the reconceptualization of a software process
for self-adaptive systems.

4.2 Reconceptualization of SPEM-Based Process Modeling

As discussed above, the reconceptualization of software processes to address
self-adaptive systems requires a new dimension for classifying activities. This
dimension allows for a distinction between on-line and off-line situations, which,
however, requires to make dependencies between on-line and off-line situations
explicit and manageable. Moreover, costs and benefits of alternative on-line and
off-line activities must be considered, as they guide the engineering and influence
the designs of processes and systems. Therefore, as depicted in Figure 6, we ex-
tended the basic meta-model defined by SPEM with additional concepts. In the
scope of this paper, these extensions, as well as the meta-models should be con-
sidered at the conceptual level, and not at the technical level as a definitive and
fully specified modeling language. Thus, we do not discuss how the extensions
could be best implemented or realized within the complete meta-model defined
in the SPEM specification [32].

To keep the extensions to the original meta-model (cf. Figure 5) simple and
generic, we have added the ProcessElement as a common super meta-class for the
role, activity, and work product meta-classes. All further extensions refer to this
ProcessElement and thus, they refer to all three concepts of role, activity, andwork
product. First of all, theOn-line andOff-line stereotypes have beendefined for pro-
cess elements to clearly define whether any process element occurs on-line or off-
line. More precisely, if the stereotype is associated with a role, it indicates whether
the role is part of the self-adaptive system (on-line) or not (off-line). For a work
product, it indicates whether such a work product is produced or generally used
on-line or off-line. Likewise, applying the stereotypes to activities, process models
may clearly distinguish whether any activity is performed on-line or off-line.

Moreover, we extended the SPEM modeling language with the concept of
Dependency that relates two or more arbitrary process elements. This notion
of dependency is more amenable and flexible for conceptual discussions than
the specific possibilities provided by SPEM to cover, e.g., dependencies between



Software Engineering Processes for Self-Adaptive Systems 65

activities or between work products. However, to implement these extensions
within the SPEM meta-model, the already existing means to specify dependen-
cies should be considered. Providing a generic notion of such concepts makes
arbitrary dependencies, such as the different forms of interactions between on-
line and off-line activities shown in Section 2, explicit in process models. As an
example, being able to perform an activity on-line might require that another
activity is in place off-line, which constitutes a dependency.

Finally, Costs and Benefits can be associated with any process element. This
supports design decisions concerning the scoping of on-line and off-line activities,
and should give answers to questions such as: “What are the costs and benefits
of performing this activity on-line, in contrast to performing it off-line, and what
other activities are affected or even required for the on-line and off-line variants?”

We now provide an example of how the extended SPEM language can be
used to model the process of an application that relies on the AW approach for
achieving self-adaptation, as described in Section 2.1. Figure 7 provides a high-
level, structural view of the approach. This view includes all the core concepts of
the SPEM language, which are the Roles, the Activities, and the WorkProducts.

Roles are depicted by actor icons, activities by rounded rectangles, and work
products by document artifacts. As discussed above, these process elements can
be stereotyped with Off-line or On-line to mark whether they belong to the
off-line or on-line part of the process, respectively. Finally, dependencies are
represented by rectangles connected to the interdependent process elements.

As shown in Figure 7, there are two roles in the AW approach: the AW Layer
and the Developer. Both roles perform activities that have work products as
input or output. The AW layer as the adaptation logic is part of the running
self-adaptive system, and thus it is an on-line role. It monitors the execution
of the application, i.e., the Domain Logic, on-line. If a Failure occurs, and it
has been detected, the AW layer is in charge of either selecting a workaround,
if any is known from previous executions, or searching for equivalent sequences,
if no workaround is known. Thereby, the Application Code with workarounds is
either selected or created by integrating the promising Equivalent sequences into
the domain logic’s Application code. Finally, the AW layer enacts the adjusted
application code and thus the adaptation by executing a known workaround or
the equivalent sequences in an attempt to find a valid workaround.

The developer is an off-line role that maintains the list of equivalent sequences
for the components of the domain logic. If the AW layer does not manage to find a
valid workaround automatically, the developer fixes the related faults in the fail-
ing components and deploys the patched component to the running system. This
requires that the maintained list of equivalent sequences for this component is up-
dated in the AW layer for future on-line use. This update synchronizes the list of
Equivalent sequences maintained off-line by the developer with the list of Equiva-
lent sequences used on-line by the AW layer. This tackles the To be synchronized
dependency between these two work products. Instead of hiding such dependen-
cies in activities, they should be made explicit in the process models. Otherwise,
they might get lost when the process and its activities change or evolve.



66 J. Andersson et al.

Activity

WorkProduct

<<On-line>>
AW Layer

<<Off-line>>
Developer

<<On-line>>
Monitor failures

<<On-line>>
Select workaround

<<On-line>>
Search for
equivalent
sequences

Role

<<On-line>>
Execute

workaround

<<On-line>>
Execute

equivalent
sequence

performs >

input >
<<Off-line>>
Fix fault

<<Off-line>>
Maintain

equivalent
sequences

Deploy
patched

component

Update
equivalent
sequences

<<Off-line>>
Application

code

<<Off-line>>
Equivalent
sequences

<<On-line>>
Equivalent
sequences

<<On-line>>
Application

code
<<On-line>>

Application Code
With workarounds

<<On-line>>
Failure

output >

input >

input >

< input

< input output > < input

input/
output 

>

input/
output 

>
< input

< input

Dependency
To be synchronized

<<On-line>>
Domain Logic

Legend

output >

performs >

Fig. 7. Roles, Activities, and WorkProducts in the Automatic Workarounds approach

In addition to structural aspects, as depicted in Figure 7, the process behav-
ior also needs to be specified. The original SPEM language allows to integrate
external languages for behavior modeling, like UML Activity diagrams (cf. [32]).
Likewise, the extended SPEM language we are proposing does not define its
own behavior modeling formalism but uses UML activity diagrams. For our AW
approach, Figure 8 depicts a UML activity diagram representing the workflow
of activities for the case when a failure occurs and needs to be resolved.

The activity diagram represents the evolution and adaptation stage in the
process timeline (cf. Figure 4) for a system that relies on the AW approach. The
model consists of two partitions, one for each role, namely the AW layer and the
developer. Each partition contains the activities performed by the corresponding
role, and the model defines the workflow of activities within and across partitions
respectively roles. The roles and activities used in the activity diagram are the
same as in the structural process view depicted in Figure 7.

The AW layer monitors the status of the application to detect failures. When
a failure occurs, it selects a workaround if any is already available from previous
executions. If a workaround is available, the AW layer executes it immediately on-
line. If no workaround is known, then the AW layer looks for equivalent sequences,
and once it selects one, the selected sequence is executed. If the execution of the
workaround or the equivalent sequence causes another failure, the loop continues
until either one equivalent sequence does not cause any failure, or until there are
no more equivalent sequences to try. In the last case, the developer has to fix the
fault and maintain the list of equivalent sequences, which is followed by deploying
the patched component and updating the list of equivalent sequences to make the
off-line changes available to the AW layer in the running system.

In this section, we have shown that modeling processes for self-adaptive sys-
tems using an extended SPEM language lifts the concepts that originate from



Software Engineering Processes for Self-Adaptive Systems 67

<<On-line>>
AW Layer

<<Off-line>>
Developer

<<On-line>>
Monitor failures

<<On-line>>
Select workaround

[failure occurs]

known
workaround?

<<On-line>>
Search for
equivalent
sequences

no

<<On-line>>
Execute

workaround
yes

more equivalent
sequences?

<<On-line>>
Execute

equivalent
sequence

yes

<<Off-line>>
Fix fault

no

<<Off-line>>
Maintain

equivalent
sequences

Deploy
patched

component

Update
equivalent
sequences

Fig. 8. Workflow of Activities in the Automatic Workarounds approach

the reconceptualized life-cycle to the abstraction level of software processes.
This makes it possible to take a software process perspective on engineering
self-adaptive systems, which is helpful in tackling the challenges related to the
engineering of self-adaptive software systems.

5 Engineering Challenges

With the modeling aspect of the framework in place, we may shift focus to de-
sign, decision making, and reasoning. One of the key challenges we have identified
in the engineering of self-adaptive systems is to partition the process activities
effectively between off-line and on-line activities. As mentioned in the previ-
ous section, these activities may have costs and benefits associated to help in
defining a process for each specific self-adaptive system that brings value to its
stakeholders. Value here has a broad meaning that should encompass a num-
ber of aims: the system goals (quantitative and qualitative), the uncertainty
that characterizes the execution environment (that defines the scope of adap-
tation) [42], the resource constraints of the execution environment (to support
on-line activities), and the availability of accessing remote resources (to sup-
port off-line activities). This requires quantitative reasoning capabilities at the
process definition level that shall suitably be complemented with stochastic rea-
soning to properly take into account the uncertainty dimension of the problem.
As an illustration of the principles and practices in such reasoning support, we



68 J. Andersson et al.

use Value-Based Software Engineering (VBSE) [6]. Biffl et al. argue that VBSE
supports better software engineering decisions, providing an economic perspec-
tive where value bridges separation of concerns employed to manage complexity,
thus allowing for achieving global optimums. The output of a software engineer-
ing process, the software system, has a number of goals associated. The purpose
of an engineering process is to derive a solution, which optimizes the value (re-
lated to goals) of the product under current conditions. Engineering processes
are characterized by their predictable outcomes, i.e., decisions made in a process
have well-known consequences. Another characteristic is the continuous search
for alternative solutions and an exhaustive evaluation of alternative solutions to
provide sufficient knowledge on which decisions will be based.

The reconceptualization of software process activities, which allows some ac-
tivities to migrate from off-line to on-line, dissolves a previously crisp boundary
that separated software processes and the running system. This implies that the
two may not be treated as separate concerns by an engineering process. Ap-
plying a value-based perspective on engineering a self-adaptive software system
requires an understanding of value and that value is a main driver for the design
and implementation of software processes for self-adaptive software systems and
the systems themselves. Differently from how commonly intended in VBSE, cost
in our context mainly concerns the impact of the activity in terms of resource
consumption of the system’s execution environment, e.g., computational time,
memory use, etc. Benefit is the measure of the impact of the activity in terms
of the system’s goal, e.g., verification, graceful adaptation in presence of faults,
etc. Value is the measure of the degree of satisfaction of the system’s goals that
can be achieved with the defined costs/benefits process tradeoffs.

VBSE is centered around Theory W [8] that aims at making all stakeholders
in a project winners. VBSE suggests four supporting theories to “achieve and
maintain a win-win state” [6, p. 19]; dependency theory, utility theory, decision
theory, and control theory. Theory W and VBSE are developed with a process
model which maintains watertight partitions between software processes and the
running system. Our hypothesis is that the reconceptualization discussed above
will impact VBSE in a fundamental way. However, the proposed approach where
activities are modeled in a uniform way paves the way for customizing VBSE
for developing self-adaptive software systems.

The first step in VBSE and Theory W is the identification of success-critical
stakeholders (SCS). SCS are highly-important stakeholders and a project “will
succeed if and only if it makes winners of [the project’s] success-critical stake-
holders” [6, p. 18]. It should be clear from the above discussion that in engi-
neering a self-adaptive software system, the system itself is a SCS. Indeed, the
extension proposed to the process modeling framework supports that the sys-
tem is an SCS by making run-time roles, activities, and work-products explicit.
At the same time, the execution environment characteristics, its resources and
operational constraints, including its potential uncertain variability, represent
another SCS. Depending on the self-adaptive system, the users of the system
may represent another crucial SCS, they may, for example, define the acceptable



Software Engineering Processes for Self-Adaptive Systems 69

behavioral variability of the system. The next step in VBSE identifies what is
required to make a SCS a winner. Utility theory will play an important role here
and may be used to define value on a level of detail where individual activities
may define their win conditions. However, roles, activities, and work-products
are not for free. We discussed the issue of relative cost above, and annotating
process entities with costs will be essential in the next step where SCS should
agree upon realization plans that will make all SCS winners. Eventually these
plans will be implemented, a procedure which should be controlled to guarantee
that the final products make all SCS winners.

The research challenge in this area is to formulate a VBSE theory and process
for engineering self adaptive systems. We have described above some specific ex-
tensions to the SPEM meta-model that support value-based engineering. The
ProcessElement in Figure 6 are annotated with collections of Cost and Benefit
attributes. These concepts will represent the relative contribution of a specific
Role, Activity, or WorkProduct to a value. The underlying idea with assign-
ing costs and benefits to process elements is of course to use this knowledge in
engineering activities. With the extended SPEM language, engineers are pro-
vided with the means to model and reason about how to design evolution and
adaptation activities in a system. Distinguishing off-line activities and on-line
activities opens up a design space where engineers may have several alternatives
and eventually select the alternative that contributes relatively the most to the
stakeholders’ values. We illustrate some specific research challenges below using
references from the automatic workaround example.

The first research challenge is to provide the means for expressing value, that is
the costs and benefits. In the model we proposed, we describe off-line and on-line
activities in an analogous way including cost and benefit attributes. This is an
extremely simple approach to model value. We must develop ways for expressing
stakeholder specific values in a way that they are useful for reasoning, evalua-
tion, and eventually decision making. For example, the automatic workaround
mechanism replaces a number of roles, activities, and work products. However
it is not clear how to annotate these with costs, benefits, or any other type of
value, neither for the process elements in the automatic workaround nor for its
traditional, equivalent, off-line realization.

If we succeed in defining a value-framework for engineering self-adaptive soft-
ware systems, engineers can reason about design alternatives, evaluate, and make
predictable decisions about the relative contribution to the overall value. How-
ever, it is not clear how to reason about and evaluate alternatives in a structured
manner. This takes us to the second challenge, we need to design new reason-
ing and evaluation techniques, potentially based on the large body of existing
value-based design methods, for instance [15]. The design of a system’s adapta-
tion subsystem will require that engineers decide if and which activity should
be performed off-line or on-line. Consider for example the Maintain equivalent
sequences activity in Figure 7. It is performed by a Developer. However, it is
not unlikely that future evolution of the AW mechanism provides for additional
alternative realizations of this activity, for instance, by means of other automatic



70 J. Andersson et al.

on-line activities. In that situation, engineers have a selection of alternatives to
choose from in order to select the combination with the greatest relative contri-
bution to the stakeholders’ values.

Another challenge associated with processes for self-adaptive software systems
is the fact that processes need to be generated dynamically at run-time since
changes affecting the system, its context and goals may require their adaptation.
This may imply that depending on the system’s operational conditions, different
processes can be generated by changing their activities or workflows. Moreover,
since off-line and on-line activities might influence each other, it is important
to consider how the initial development-time design rationale can affect the
processes being generated at run-time, and vice versa. Finally, it is also crucial
to incorporate into off-line activities the decisions being made during run-time
since they would provide insightful knowledge about the operational profile of
the system.

6 Related Work

Different researchers like Finkelstein and Blair et al. [7] or Inverardi and
Tivoli [21,22] have also identified the need for new software engineering
paradigms suggesting a reconceptualization of software processes. Among oth-
ers, this is motivated by the blurring boundary between development-time and
run-time as discussed in [3,7]. This is inline with the motivation for our work
in this paper on revising the life-cycle and processes for self-adaptive software
systems.

Challenges for software evolution are also discussed by Mens et al. who specif-
ically state that “[I]t is important to investigate how the notion of software
change can be integrated into the conventional software development process
models” [30, p. 17]. They consider agile or in general iterative and incremental
development processes as promising approaches to integrate support for change
in the life-cycle. In contrast to this paper, they do not focus on life-cycle or
process issues related to changes by means of self-adaptation or related to the
blurring boundary between development-time and run-time. Likewise, Buckley
et al. [11] or McKinley et al. [28] clearly distinguish between changes performed
statically at development-time or dynamically at run-time. This is based on a
traditional view on a system life-cycle, while we promote a refined view that
primarily considers on-line and off-line changes or in general on-line and off-line
process activities. In this context, by on-line and off-line we refer to different
ways changes are carried out, but not whether the running system’s domain logic
provides service or not while being changed (cf. availability dimension in [11]).

Salehie and Tahvildari [39] discuss research challenges for the specific case
of self-adaptive software, but not from a process view. They briefly consider a
developing phase and an operating phase for self-adaptive systems, while the de-
veloping phase determines the adaptation capabilities in the operational phase.
However, these phases are not used for discussing the challenges and in partic-
ular, this distinction into these two phases is similar to the traditional view on
life-cycles exclusively separating development-time and run-time.



Software Engineering Processes for Self-Adaptive Systems 71

Gacek et al. [18] view evolution and adaptation as processes that include roles,
artifacts etc., which is similar to our work. They propose a self-adaptation ref-
erence process that consists of two iteratively interacting processes. The inner
adaptation process addresses the component control and change management
layers of the reference architecture by Kramer and Magee [25], while the outer
evolution process relates to the goal management layer. The authors conceptually
discuss how a manual or partially automated evolution process guides an auto-
mated adaptation process by interactions between these two processes. These
interactions seem to be similar to the interaction points between on-line and
off-line process activities that we discussed in the context of Figure 4. However,
Gacek et al. focus on discussing the co-existence of self-adaptation and tradi-
tional change management or evolution, but they do not discuss implications on
software engineering processes or system life-cycles as this paper does.

Other approaches investigating software processes for self-* systems and espe-
cially for adaptivemulti-agent systems cover only the development of such systems
and not the whole life-cycle [34,37]. This means that the adaptation mechanisms
are exclusively considered as part of the system to be developed, but not as a part
of the life-cycle process itself. Thus, both approaches [34,37] describe processes or
methodologies that specify the development of the systems including the develop-
ment of the adaptation mechanisms. In contrast, besides considering adaptation
mechanisms as part of a self-adaptive system, we also lift the adaptation mecha-
nisms to the process level by treating the adaptation logic as a process role and
the tasks performed by the adaptation logic as process activities. Consequently,
we address processes that describe the whole system life-cycle comprising the de-
velopment as well as the adaptation and evolution of the system. Nevertheless,
one commonality between our work and [34,37] is the usage of the same process
modeling language, namely SPEM, though we conceptually extended SPEM due
to the required reconceptualization of software processes.

Our work is also motivated by the fact that approaches to modern or self-
adaptive software systems do not design comprehensive software processes span-
ning on-line and off-line activities for their approaches, and they just shift specific
typical process activities to the system in order to be performed on-line. For ex-
ample, Brenner et al. [10] equips components with mechanisms to test them
on-line, which shifts typical validation and verification activities and efforts to
the run-time. Another example is the work of Bencomo et al. [5] who consider a
self-adaptive system as a dynamic software product line that determines prod-
uct configurations on-line and at run-time, while for traditional product lines
the configurations are determined off-line and usually before deployment. Such
approaches can benefit from our work since we provide initial means to model
and analyze processes that cover both on-line and off-line activities. This might
help other approaches to engineer their systems with effective process support.

Another initiative associated with processes for self-adaptive software systems
is the dynamic generation of plans at run-time [40,41]. A key factor motivating
this work was how to deal with the uncertainty related to changing goals, un-
expected resource conditions, and unpredictable environments when managing



72 J. Andersson et al.

the adaptation of software systems. This has shown particularly relevance when
applied to the generation of plans for managing the integration testing of self-
adaptive systems [41], which is a process that involves to calculate integration
order, generate stubs and test cases, and perform the actual tests. Although this
work is restricted to on-line activities, it would be interesting to consider how
off-line activities could affect the automatic generation of plans, and how cost
and benefit could be integrated with the decision making of selecting the most
appropriate plan.

7 Conclusion and Future Work

The actual support for self-adaptation throughout the entire life-cycle of
self-adaptive software systems requires a reconceptualization of the way they are
engineered. Therefore, we presented a first integrated view of the problem, suitable
abstractions for off-line and on-line process activities, and details of major chal-
lenges concerning the reconceptualization of software processes for self-adaptive
software systems. Moreover, for tackling the challenges related to the engineer-
ing of self-adaptive software systems, we proposed an approach based on process
modeling and value-based software engineering. An essential part of this approach
is the intertwining of a self-adaptive software system and its software process.

As future work, we plan to elaborate the reconceptualization of software
processes for self-adaptive systems, e.g., by investigating the impact of the on-
line/off-line perspective on state-of-the-art approaches, methods, and techniques
to design software processes and to engineer self-adaptive systems. Having more
profound knowledge about reconceptualized software processes, we can work on
formalizing the modeling language to fully capture a process and its system. A
formal language is the prerequisite for automated analysis that follows the the-
ory of value-based software engineering. Therefore, we have to adapt this theory
to address specifics of self-adaptive systems and processes for such systems. For
instance, we need to think about benchmarks and special-purpose metrics to as-
sess processes and the corresponding self-adaptive systems as well as their values
based on costs and benefits. How can we say that a given process is better than
another one at identifying, designing, implementing, and running the on-line and
off-line process activities for a system?

Besides these initial directions, a possible research agenda should in partic-
ular comprise the following elements. We need to better understand how to
elicit functional and non-functional requirements of self-adaptive systems, espe-
cially, on how these should be associated with on-line and off-line activities and
their dependencies. This could lead to a model-driven solution for the devel-
opment, deployment, adaptation, and evolution of these system. We also need
to better understand the dependencies between self-adaptation and software
evolution since the former does not imply replacing the latter. This requires
clear definitions of (self-)adaptation and evolution, and how both can be seam-
lessly integrated in a self-adaptive system’s process. For example, there might
be the need for understanding how to evolve the system based on its run-time



Software Engineering Processes for Self-Adaptive Systems 73

adaptations. Experiences from the adaptations performed in the past may offer
useful knowledge for the evolution of the system.

All these research directions promote our ultimate goal of effectively and effi-
ciently engineering self-adaptive systems with proper software process support.
Thereby, the process perspective should leverage systematic approaches to en-
gineering self-adaptive systems, which have predictable outcomes concerning ef-
fectiveness and efficiency.

Acknowledgment. This paper is the result of stimulating discussions among
the authors and other participants, especially Bojan Cukic, Oscar M. Nier-
strasz, Sooyong Park, and Dennis B. Smith, during the seminar on Software
Engineering for Self-Adaptive Systems at Schloss Dagstuhl in October 2010
(http://www.dagstuhl.de/10431).

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: Proc. of the ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2009), pp. 38–47. IEEE Computer
Society (2009)

2. Bai, X., Huang, L., Zhang, H.: On Scoping Stakeholders and Artifacts in Software
Process. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195,
pp. 39–51. Springer, Heidelberg (2010)

3. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proc. of the FSE/SDP Workshop on Future of Software Engineering
Research (FoSER 2010), pp. 17–22. ACM, New York (2010)

4. Beck, K.: Embracing Change with Extreme Programming. IEEE Computer 32(10),
70–77 (1999)

5. Bencomo, N., Sawyer, P., Blair, G., Grace, P.: Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability
of adaptive systems. In: Thiel, S., Pohl, K. (eds.) Proc. of the 12th International
Software Product Line Conference (SPLC 2008), Second Volume (Workshops), pp.
23–32. Lero Int. Science Centre, University of Limerick, Ireland (2008)

6. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based
Software Engineering. Springer (2006)

7. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduc-
tion. IEEE Computer 42(10), 22–27 (2009)

8. Boehm, B.W., Ross, R.: Theory-W Software Project Management Principles and
Examples. IEEE Trans. Softw. Eng. 15(7), 902–916 (1989)

9. Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE
Computer 21(5), 61–72 (1988)

10. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., Suliman, D.: Re-
ducing verification effort in component-based software engineering through built-in
testing. Information Systems Frontiers 9(2), 151–162 (2007)

11. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice 17(5), 309–332 (2005)

http://www.dagstuhl.de/10431


74 J. Andersson et al.

12. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: Proc. of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2010), pp. 237–246. ACM, New York
(2010)

13. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: Proc. of the ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS 2008), pp. 17–24. ACM, New York (2008)

14. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

15. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley, Boston (2001)

16. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9), 75–90
(1992)

17. Gabriel, R.P., Northrop, L., Schmidt, D.C., Sullivan, K.: Ultra-large-scale systems.
In: OOPSLA 2006: Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications, pp. 632–634. ACM,
New York (2006)

18. Gacek, C., Giese, H., Hadar, E.: Friends or foes?: a conceptual analysis of self-
adaptation and it change management. In: Proc. of the ICSEWorkshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), pp. 121–128.
ACM, New York (2008)

19. Gilb, T.: Evolutionary development. SIGSOFT Softw. Eng. Notes 6(2), 17 (1981)
20. Gilb, T.: Evolutionary Delivery versus the waterfall model. SIGSOFT Softw. Eng.

Notes 10(3), 49–61 (1985)
21. Inverardi, P.: Software of the Future Is the Future of Software? In: Montanari, U.,

Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007)

22. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 1–31.
Springer, Heidelberg (2009)

23. Jacobson, I., Booch, G., Rumbaugh, J.: The unified process. IEEE Software 16(3),
96–102 (1999)

24. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering (FOSE 2007), pp. 259–268. IEEE Computer Society (2007)

26. Lehman, M.M.: Software’s Future: Managing Evolution. IEEE Software 15(01),
40–44 (1998)

27. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego (1985)

28. McKinley, P., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive
Software. IEEE Computer 37(7), 56–64 (2004)

29. Mens, T.: Introduction and Roadmap: History and Challenges of Software Evolu-
tion. In: Software Evolution, ch.1. Springer (2008)



Software Engineering Processes for Self-Adaptive Systems 75

30. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri,
M.: Challenges in software evolution. In: Proc. of the 8th International Workshop
on Principles of Software Evolution (IWPSE 2005), pp. 13–22. IEEE Computer
Society (2005)

31. Northrop, L., Feiler, P.H., Gabriel, R.P., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Schmidt, D.: Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA (2006)

32. Object Management Group (OMG): Software & Systems Process Engineering
Meta-Model Specification (SPEM), Version 2.0 (2008)

33. Osterweil, L.J.: Software processes are software too. In: Proc. of the 9th Interna-
tional Conference on Software Engineering (ICSE 1987), pp. 2–13. IEEE Computer
Society, Los Alamitos (1987)

34. Puviani, M., Serugendo, G.D.M., Frei, R., Cabri, G.: Methodologies for self-
organising systems: A spem approach. In: Proc. of the IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT 2009), vol. 02, pp. 66–69. IEEE Computer Society (2009)

35. Rajlich, V.T., Bennett, K.H.: A Staged Model for the Software Life Cycle. IEEE
Computer 33(7), 66–71 (2000)

36. Rolland, C.: Modeling the requirements engineering process. In: Markus, A.F.,
Jaakkola, H., Tadahiro, K., Kangassalo, H. (eds.) Information Modelling and
Knowledge Bases V: Principles and Formal Techniques: Results of the 3rd
European-Japanese Seminar, Budapest, Hungary, May 31-June 3, pp. 85–96. IOS
Press (1994)

37. Rougemaille, S., Migeon, F., Millan, T., Gleizes, M.-P.: Methodology Fragments
Definition in SPEM for Designing Adaptive Methodology: A First Step. In: Luck,
M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 74–85. Springer,
Heidelberg (2009)

38. Royce, W.: Managing the Development of Large Software Systems: Concepts and
Techniques. In: Proc. IEEE WESTCON. IEEE Computer Society Press (1970);
Reprinted in Proc. of the 9th International Conference on Software Engineering
(ICSE 1987), pp. 328-338. IEEE Computer Society

39. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

40. da Silva, C.E., de Lemos, R.: Using dynamic workflows for coordinating self-
adaptation of software systems. In: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2009),
pp. 86–95. IEEE Computer Society, Washington, DC (2009)

41. da Silva, C.E., de Lemos, R.: Dynamic plans for integration testing of self-adaptive
software systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), pp. 148–157.
ACM, New York (2011)

42. Welsh, K., Sawyer, P.: Understanding the Scope of Uncertainty in Dynamically
Adaptive Systems. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, pp. 2–16. Springer, Heidelberg (2010)

43. Yau, S.S., Colofello, J.S., MacGregor, T.: Ripple effect analysis of software main-
tenance. In: Proc. of the 2nd International Conference on Computer Software and
Applications (COMPSAC 1978), pp. 60–65. IEEE Computer Society (1978)



On Patterns for Decentralized Control

in Self-Adaptive Systems

Danny Weyns1, Bradley Schmerl2, Vincenzo Grassi3, Sam Malek4,
Raffaela Mirandola5, Christian Prehofer6, Jochen Wuttke7,

Jesper Andersson1, Holger Giese8, and Karl Göschka9

1 Linnaeus University, Växjö, Sweden
2 Carnegie Mellon University, Pittsburgh, PA, USA

3 Università di Roma TorVergata, Italy
4 George Mason University, Washington DC, USA

5 Politecnico di Milano, Milan, Italy
6 LMU München and Fraunhofer ESK, Germany

7 University of Washington, WA, USA
8 Hasso Plattner Institute at the University of Potsdam, Germany

9 Technische Universität Wien, Austria

Abstract. Self-adaptation is typically realized using a control loop. One
prominent approach for organizing a control loop in self-adaptive systems
is by means of four components that are responsible for the primary func-
tions of self-adaptation: Monitor, Analyze, Plan, and Execute, together
forming a MAPE loop. When systems are large, complex, and hetero-
geneous, a single MAPE loop may not be sufficient for managing all
adaptation in a system, so multiple MAPE loops may be introduced. In
self-adaptive systems with multiple MAPE loops, decisions about how to
decentralize each of the MAPE functions must be made. These decisions
involve how and whether the corresponding functions from multiple loops
are to be coordinated (e.g., planning components coordinating to prepare
a plan for an adaptation). To foster comprehension of self-adaptive sys-
tems with multiple MAPE loops and support reuse of known solutions,
it is crucial that we document common design approaches for engineers.
As such systematic knowledge is currently lacking, it is timely to reflect
on these systems to: (a) consolidate the knowledge in this area, and (b)
to develop a systematic approach for describing different types of con-
trol in self-adaptive systems. We contribute with a simple notation for
describing interacting MAPE loops, which we believe helps in achieving
(b), and we use this notation to describe a number of existing patterns
of interacting MAPE loops, to begin to fulfill (a). From our study, we
outline numerous remaining research challenges in this area.

1 Introduction

Self-adaptive systems have the ability to adapt themselves to changes in their exe-
cution environment and internal dynamics, such as response to failure, variability
in available resources, or changing user priorities, to continue to achieve their goals.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 76–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On Patterns for Decentralized Control in Self-Adaptive Systems 77

Examples of self-adaptive systems are those that optimize their performance un-
der changing operating conditions, and systems that heal themselves when certain
components fail. Feedback control loops have been identified as crucial elements in
realizing self-adaptation of software systems [46,28,11]. One prominent approach
to organizing a control loop in self-adaptive sytems is bymeans of four components
that are responsible for the primary functions of self-adaptation:Monitor,Analyze,
Plan, and Execute, often referred to as the MAPE loop [28]. When systems are
large, complex, and heterogeneous, a single MAPE loop may not be sufficient for
managing adaptation [9,1]. In such cases, multiple MAPE loops may be employed
that manage different parts of the system. In self-adaptive systems with multiple
MAPE loops, the functions for monitoring, analyzing, planning, and effecting may
be made by multiple components that coordinate with one another. That is, the
functions may be decentralized throughout the multiple MAPE loops. An example
is a self-adaptive system in which multiple planning components coordinate with
one another to prepare a plan for adaptation.

Different patterns of interacting control loops have been used in practice by
centralizing and decentralizing the functions of self-adaption in different ways.
For example, in the Rainbow framework [17], monitoring and execution are del-
egated to the different nodes of the controlled system, whereas analyzing and
planning are centralized. The IBM architectural blueprint [25] organizes MAPE
loops hierarchically, where each level of the hierarchy contains instances of all
four MAPE components. In this setting, higher level MAPE loops determine the
set values for the subordinate MAPE loops. In fully decentralized settings, rel-
atively independent MAPE components coordinate with one another and adapt
the system when needed. An example of this approach is discussed in [18], in
which local component managers on different nodes coordinate with one another
to (re-)configure the structure of the managed system according to the overall
architectural specification.

The existing self-adaptive literature and research, in particular those with a
software engineering perspective, have by and large tackled the problem of man-
aging either local or distributed software systems in a centralized or hierarchical
fashion, e.g., [40,17,25]. While increasing attention is given to decentralized con-
trol of self-adaptive software, e.g., [12,18,36,5,56,48,53], we believe that there is
a dearth of practical and effective techniques to build systems in this fashion.
However, there is an opportunity to build on the work of decentralized self-
adaptation to understand the recurrent coordination patterns and trade-offs, so
that systematic design of self-adaptive systems can be acheived.

To foster comprehension of self-adaptive systems with multiple control loops,
and support reuse of known solutions in this area, it is crucial that we docu-
ment common design approaches for engineers [47]. However, systematic knowl-
edge about interacting control loops for self-adaptive systems is lacking.Therefore,
it is timely to reflect on these systems to: (a) consolidate the knowledge in this area,
and (b) develop a systematic approach for describing different types of control in
self-adaptive systems. In this chapter, we contribute with a simple notation for
describing multiple interacting MAPE loops, which we believe helps in achieving



78 D. Weyns et al.

(b), and we use this notation to describe a number of well-known patterns of in-
teractingMAPE loops, to begin to fulfill (a). Patterns are an established approach
for documenting systematic knowledge in a particular area. A pattern describes a
generic solution for a recurring design problem. The patterns we present are de-
rived from common knowledge in the field of self-adaptation and experiences of
the authors with building self-adaptive systems. In reflecting about these patterns
and the different ways of organizing self-adaptive control loops, we have identified
a number of further research challenges that together form a roadmap for achiev-
ing a more principled approach to designing decentralized self-adaptive systems.
This roadmap is outlined in the conclusion of this chapter.

2 Terminology

Before we elaborate on the notation for interacting MAPE loops and the pat-
terns, we first clarify terminology. In particular, we (1) explain the distinction
between managed and managing subsystems, the two constituent parts of a self-
adaptive system, and (2) clarify how we use the terms distribution and decentral-
ization in this chapter, two terms that are often mixed up by software engineers
in the community of self-adaptive systems, leading to a lot of confusion.

2.1 Managed and Managing Subsystem

As shown in Figure 1, a self-adaptive system is situated in an environment. We
use the general terms managed subsystem and managing subsystem to denote
the constituent parts of a self-adaptive software system. Other authors make
a similar distinction. For example, in the Rainbow framework [17], the man-
aged subsystem maps to the system layer and the managing subsystem to the
architecture layer. The authors in [43] use core function to refer to the man-
aged subsystem and adaptation engine to refer to the managing subsystem. In
FORMS [57], the managed subsystem corresponds to the base-level subsystem,
and the managing subsystem to the reflective subsystem.

The environment refers to the part of the external world with which the self-
adaptive system interacts, and in which the effects of the system will be observed
and evaluated [26]. The environment may correspond to both physical and soft-
ware entities. For example, the environment of a robotic system includes physical
entities like obstacles on the robot’s path and other robots, as well as external
cameras and corresponding software drivers. The distinction between the envi-
ronment and the self-adaptive system is made based on the extent of control. For
instance, in the robotic system, the self-adaptive system may interface with the
mountable camera sensor, but since it does not manage (adapt) its functionality,
the camera is considered to be part of the environment.

The managed subsystem comprises the application logic that provides the
system’s domain functionality. For instance, in the case of robots, navigation of
a robot or transporting loads is performed by the managed subsystem. To realize
its functionality, the managed subsystem monitors and affects the environment.



On Patterns for Decentralized Control in Self-Adaptive Systems 79

Fig. 1. Constituent parts of a self-adaptive software system

To support adaptations, the managed subsystem has to provide support for
monitoring and executing adaptations.

The managing subsystem manages the managed subsystem. The managing
subsystem comprises the adaptation logic that deals with one or more concerns.
For instance, a robot may be equipped with a managing subsystem that allows
adaption of its navigation strategy based on the changing operation conditions,
e.g., changing task load, or reduced bandwidth for communication. To realize
its goals, the managing subsystem monitors the environment and the managed
subsystem and adapts the latter when necessary.

Other layers can be added to the system where higher-level managing subsys-
tems manage underlying subsystems, which can be managing subsystems them-
selves. For instance, consider a robot that not only has the ability to adapt its
navigation strategy, but also to adapt the way such adaptation decisions are
made, e.g., based on remaining energy level of the battery. In such an instance,
the subsystem responsible for managing the battery level of the robot must co-
ordinate with the subsystem for managing navigation and other robotics tasks,
so that the robot does not fail entirely.

It is important to note that the managed and managing subsystems can be
interwoven, as is the case when adaptation logic is dispersed throughout the
functional logic the system. In such systems, it is not possible to easily reason
about adaptation logic separately from system logic, meaning it is difficult to
provide assurances or guarantees on the behavior of the system to changes in
the environment. Another emerging approach to self-adaptation is in the field
of self-organizing systems, where adaptation comes entirely from decisions made
locally by components of the system. In such systems, the global properties of the



80 D. Weyns et al.

adaptation (e.g., performance, utility to the user, or failure properties) are also
difficult to reason about, though there is some research that attempts to address
these concerns (for example, in [51], the authors present a statistical model that
allows the convergence of global system objectives based on local agent behaviors
to be analyzed, predicted, and controlled). In this chapter, we focus on how
to organize self-adaptive systems where both subsystems are separate entities,
following the principle of disciplined split [34] (or separation of concerns), which
has been a main focus in the self-adaptive research community [55].

2.2 Distribution and Decentralization

Textbooks on distributed systems, e.g., [49], typically differentiate between: (1)
centralized data in contrast to distributed, partitioned, and replicated data, (2)
centralized services in contrast to distributed, partitioned, and replicated ser-
vices, and (3) centralized algorithms in contrast to decentralized algorithms.

In this chapter, we use distribution to refer to the deployment of the software of
a self-adaptive system to hardware. As such, distribution of a self-adaptive system
refers to the deployment of the software of both the managed subsystem and the
managing subsystem. A distributed self-adaptive system consists of multiple soft-
ware components that are deployed onmultiple nodes connected via somenetwork.
The opposite of a distributed self-adaptive system is software that is deployed on a
single node. The managed and managing subsystems can be deployed on the same
or on different nodes. For example, the software components of a managed subsys-
tem may be deployed on a set of nodes, while the software of the managing system
may be deployed on one dedicated node. Thus, while the managed system may be
distributed, it is possible that the managing system is not.

With decentralization, we refer to how control decisions in a self-adaptive soft-
ware system are coordinated among different components, independent of how
those control components are physically distributed. In particular, we consider
decentralization at the level of the four activities of self-adaption: monitoring,
analyzing, planning, and execution. Decentralization implies a type of control in
which multiple components responsible for one of the activities of self-adaption
perform their functionality locally, but coordinated with with peers. Typically,
such decentralized coordination is organized as follows: monitoring components
coordinate with other monitoring components to collect the knowledge required
for subsequent analysis; analysis components coordinate to decide whether the
conditions for a particular adaptation hold; multiple planning components coor-
dinate to plan an adaptation; and multiple execution components coordinate to
execute an adaptation, e.g., they have to synchronize their adaptation actions.
Decentralized control contrasts with central control. In central control, a single
component exists (for one of the activities of self-adaptation) that performs its
function. For example, analysis and planning is centralized in a self-adaptive
system if this system has one analysis and one planning component that decides
about when and how to perform an adaptation.

From this perspective, the functions of adaptation in a self-adaptive system
(monitoring, analysis, planning, execution) can in principle be centralized or



On Patterns for Decentralized Control in Self-Adaptive Systems 81

decentralized, independently of how the software of the managed and managing
subsystems are deployed. However, in practice, when the managed software is
deployed on a single node, the managing software will often also be deployed on
that node and the adaptation functions are typically centralized. Similarly, fully
decentralized adaptation functions typically go hand in hand with distribution
of the software of the managed and managing subsystems. Between these two
extremes, a variety of different ways to organize the functions of adaptation
exist. The next two sections of this chapter elaborate on this.

3 A Notation for MAPE Patterns

As mentioned in the introduction, the adaptation logic (managed subsystem)
typically involves feedback control loops with four key activities: Monitor (col-
lect), Analyze (determine), Plan (prepare), and Execute (act), defining the clas-
sic MAPE control loop [28]. Given the central role control loops play in the way
we conceptualize, design, and implement self-adaptive systems, [9] argues that
“the design [of self-adaptive systems] must make the interactions of control loops
explicit and expose how these interactions are handled”.

Several authors, e.g. [46,38,9], have argued that existing approaches to describe
softwaremodels are not well suited to represent control loops in the design. In [23],
the authors introduce a UML profile for modeling control loops that extends UML
modeling concepts. This approach allows control loops to become first-class ele-
ments of the design. The proposed UML profile supports modeling and reasoning
about interactions between coarse-grained “controllers,”while in this workwe aim
to model finer-grained interactions between the components of control loops.

In this section, we introduce a graphical notation to explicitly capture inter-
acting MAPE loops by considering the control loop components M, A, P, and
E, and their interactions. We call a recurring structure of interacting MAPE
components a MAPE pattern.

In order to describe different MAPE patterns properly and overcome complex-
ity, we introduce a unified, simple graphical representation based on a condensed
notation of a MAPE loop as depicted in Figure 2. The key for this figure and the
other figures with interactingMAPE loops in this chapter is described in Figure 3.

We distinguish between a MAPE pattern and an instance of the pattern. The
former describes the abstract structure of the MAPE pattern in terms of abstract
groups ofMAPEcomponents, the type of interactions betweenMAPEcomponents
between groups, and the interactions with the managed subsystem. The latter de-
scribes the concrete structure of the pattern for one particular configuration.

A group of MAPE components expresses a logical collection of MAPE compo-
nents that may occur once or more in the pattern. The annotated cardinalities of
the interactions between the groups of MAPE components determine the allowed
occurrences of the different groups in the pattern. For the example pattern shown
in Figure 2, there is only one occurrence of the group with fourMAPE components
allowed, while there are many occurrences possible for the group with only the M
and E component (in the example shown at the bottom of Figure 2, there are two



82 D. Weyns et al.

Fig. 2. Top: An example of a MAPE pattern. Bottom: an instance of the pattern in
one concrete configuration.

Fig. 3. Key for patterns and instances

such occurrences). Notationally, groups partition a pattern so that it is easier to
see which parts of the MAPE loop are being decentralized.

We differentiate the following types of interactions:

– Managed-managing subsystem interactions: these are the interactions be-
tween M components and the managed subsystem for monitoring purposes,
and between E components and the managed subsystem for performing
adaptations. Managed subsystem is the application logic that provides the



On Patterns for Decentralized Control in Self-Adaptive Systems 83

system’s domain functionality, or it can be a group of MAPE components
that itself is subject of adaptation. Note that not every M and E component
has to interact with the managed system. For example, in the instance shown
in Figure 2, the M component in the top group is responsible for providing
the required information about the managed subsystem to allow the A com-
ponent to decide about adaptations. However, the actual collection of this
information is delegated to M components that may reside at the different
nodes where the managed subsystem is deployed.

– Inter-component interactions: these are the interactions between different
types of MAPE components. In a typical MAPE loop, M interacts with A,
A with P, and P with E. However, other interactions paths may be possible,
such as subloops within a MAPE loop as discussed in [53].

– Intra-component interactions: these are the interactions between MAPE
components of the same type, e.g., interactions between M components. Two
important subtypes of this kind of interactions are delegation (as in the ex-
ample pattern of Figure 2) and coordination. Coordination is used when
components of the same type, but from different MAPE loops, interact with
one another. Examples are two A components that have to coordinate to de-
cide whether an adaptation should be applied, and two E components that
have to synchronize the actions of an ongoing adaptation.

There are a number of important aspects of interacting MAPE loops that we do
not consider explicitly in the notation and the patterns described in this chap-
ter. First, we abstract away the knowledge aspect of MAPE components and
how this knowledge is used and shared by the MAPE components. It is clear
that knowledge exchange is an important design aspect of interacting MAPE
loops and may have an impact on the applicability of the pattern. Second, we do
not consider the distribution of the MAPE components and the communication
resulting from actual deployment based on a particular network topology and
supporting communication infrastructure (message oriented, publish-subscribe,
etc.). Different deployments of the MAPE components may be possible, com-
bined with different types of communication infrastructure, each with its par-
ticular benefits and trade-offs. We refrained from including these concerns in
the patterns for the following reasons: (1) the treatment of knowledge heavily
depends on the characteristics of the domain (e.g., the degree of cooperation or
competition in the system, the sensitivity of particular knowledge, etc.), (2) the
deployment of MAPE loops depends on constraints imposed by the underlying
infrastructure (e.g., type of network, use of a particular middleware, etc.), and
(3) including knowledge and deployment as first-class in the patterns would sig-
nificantly expand the design space for each pattern and increase the complexity,
and make less clear the interactions between the MAPE components, within and
across MAPE loops. We touch upon a number of aspects of knowledge storage
and exchange in section 6.



84 D. Weyns et al.

4 Patterns for Decentralized Control

We now present a selection of MAPE patterns that model different types of in-
teracting MAPE loops with different degrees of decentralization. These patterns
are not intended to be a complete enumeration of all possible configurations. In
fact, the presented patterns emerged from the experiences of the authors with
building self-adaptive systems, and discussions at a Dagstuhl seminar [44]. We
use a standard template to present the patterns, consisting of the following parts:
problem/motivation, solution, consequences, and examples.

We start by presenting two patterns, coordinated control and information
sharing, both based on a fully decentralized approach that represents the an-
tithesis with respect to a single centralized control loop. Both these patterns
are based on a “flat” distribution model, where a multiplicity of peer MAPE
loops operates in parallel to manage the overall system self-adaptation. Then,
we present three other patterns, master/slave, regional planning, and hierar-
chical control, that are based instead on a “hierarchical” distribution model,
where higher level MAPE components control subordinate MAPE components.
The hierarchy generally reflects a separation of concerns among different control
loops. These three patterns can be considered as intermediate points between
fully decentralized and centralized control, as the root of the hierarchy basically
constitutes a centralization point.

4.1 Coordinated Control Pattern

Problem/Motivation. In many cases, centralizing control for self-adaptation
is simply not feasible. Among the possible reasons for this include: a) an
inherent distribution of information in the system makes it too costly or even
infeasible to collect all the data required for adaptation; b) due to the scale
of the system the cost to process all the information at one place may be too
high; and c) the system spans multiple ownership domains with no trustworthy
authority to control adaptations. However, support for adaptation to achieve
certain quality attributes is still desired. For example, multiple data centers
still require guarantees that service-level agreements and legal regulations can
be met, or control systems for managing traffic in a metropolitan area must
coordinate to grant passage to emergency vehicles. In such cases, there may be
no obvious way to organize control so that one part of the system has authority
over another. In such a case, each control loop must coordinate with its peers
to reach some joint decision about how to adapt.

Solution. A possible solution to overcome these problems is to decentralize
the four MAPE activities. A MAPE loop is associated with each part of the
managed system that is under its direct control. What characterizes this pattern
is that basically all the M, A, P and E components of each loop coordinate their
operation with corresponding peers of other loops. For example, A components
exchange information to make a decision about the need for an adaptation,
E components exchange messages to synchronize adaptation actions, etc. The



On Patterns for Decentralized Control in Self-Adaptive Systems 85

Fig. 4. Top: coordinated control pattern. Bottom: a possible instance.

interactions are typically localized, so that each component directly interacts
with only a subset of its peers.

Figure 4 shows the decentralized control pattern and illustrates it for a con-
crete configuration. The pattern consists of one abstract group of MAPE compo-
nents that contains all four components. The abstract group can be instantiated
an arbitrary number of times. The pattern uses the standard sequence of inter-
actions between the components within a MAPE loop, but variations may be
possible. MAPE components of different MAPE loops can interact with peers to
share particular information or coordinate their actions. The cardinalities of the
intra-component interactions define the connectivity among MAPE components
of the same type, that is, each component can interact with an arbitrary number
of components of its own type.

The instance diagram at the bottom of Figure 4 shows a concrete instantia-
tion of the pattern with four groups of MAPE components. Even if the pattern
allows for a full connection among all peers, in a typical scenario, interactions
among the same type of MAPE components will be localized.

Consequences. Decentralized control has the potential of good scalability
with respect to communication and computation, depending on the coupling
degree among peer components, and the number of other peers each MAPE
component has to explicitly interact with. For systems in which adaptations
can be performed based on local interactions between MAPE components, the
communication overhead is limited to interactions with local peers. Further-
more, the computational burden is spread over the nodes. Decentralization
may also contribute to improving robustness as there is no single point of
failure. Decentralization of control may be the only option in cases where no
single entity has the knowledge or authority to coordinate adaptations across
a set of managed subsystems. There are a number of potential downsides of



86 D. Weyns et al.

decentralized control as well. When coordination is required between MAPE
components of many nodes, scalability may be compromised. The cost for
reaching consensus about suitable adaptation actions may be high (in terms
of communication and/or timing). Decentralized control may cause prob-
lems with ensuring consistency of adaptations. Furthermore, it may lead to
sub-optimal adaptation decisions and actions, from the overall system viewpoint.

Examples. An example application that can be characterized as an implemen-
tation of the coordinated control pattern is presented in [18]. A component
manager located at each node of a distributed application implements a logical
control loop. The set of component managers cooperate to preserve some ar-
chitectural constraints under certain events. All component managers rely on a
group membership service and reliable broadcast to achieve a consistent view of
the knowledge accumulated by their local M and A activities. Moreover, adap-
tation actions planned and executed by local P and E activities are globally
coordinated by means of a totally ordered broadcast that implements a dis-
tributed locking scheme. As pointed out by the authors, the adopted mechanism
to achieve global coordination requires explicit interaction among all MAPE
loops. The resulting overhead thus limits the scalability of the proposed control
architecture.

4.2 Information Sharing Pattern

Problem/Motivation. A software system consisting of a (potentially large)
set of loosely connected components requires support for adaptation to maintain
a particular concern or quality attribute. The components of the system are
deployed on different nodes. Each part of the system can adapt locally, but
requires information about the state of other nodes in the system because a
local adaptation may impact these other nodes (e.g., on some quality attribute
of those operations). However, apart from information sharing, nodes do not
need to coordinate other adaptation activities. For example, in a sensor network
for environmental monitoring (e.g., habitat monitoring), certain nodes may be
equipped with sensors to detect a fire. In case a node detects a fire, it produces
an alarm signal that can be spread effectively through the network using a
smart gossip algorithm. Upon receiving the signal, nodes can activate a local
adaptation procedure to anticipate disaster.

Solution. In contrast to the coordinated control pattern, the information shar-
ing pattern restricts the inter-component type interactions of decentralized con-
trol to monitor (M) components only, as depicted in Figure 5. In particular, in
this pattern only M components communicate with one another, while the A,
P, and E components of each loop operate independently of their peers. The
interactions are typically localized, that is, M components exchange informa-
tion only with nodes in their (physical or logical) context. Thus, some infor-
mation collected about the status of the managed systems is shared among the
MAPE loops that allows local analysis, planning, and execution of adaptations



On Patterns for Decentralized Control in Self-Adaptive Systems 87

Fig. 5. Top: information sharing pattern. Bottom: concrete instance of the pattern.

without further coordination. Information sharing about the system state may
be realized by explicit interactions among peer M components, or by implicit
interactions where each M component independently monitors state information
that is affected by the behavior of other nodes.

Figure 5 shows the information sharing pattern and illustrates it for a concrete
configuration. The pattern consists of one abstract group of MAPE components
containing all four components that can be instantiated an arbitrary number of
times. At the inter-loop level, only M components can interact with an arbitrary
number of peers to share particular information.

The instance diagram at the bottom of Figure 5 shows a concrete instanti-
ation of the pattern with four groups of MAPE components. In this particular
example, two M components interact with two peers (top left and bottom
right), while the two other M components only interact with one peer.

Consequences. From a scalability perspective, information sharingmay produce
potentially higher benefits than coordinated control. Indeed, the less stringent in-
teraction requirements (limited to M components only) may result in solutions
that scale even better with respect to communication. However, this requires that
the traffic between M components, in particular in case of explicit interactions,
is limited in scope and volume. Another potential benefit is that since P, A, and
E components can act locally without the need for coordination, this may lead
to more timely decisions and execution of adaptations. On the other hand, the
reduced coordination may increase locally optimal objectives, but at the cost of
globally optimal ones. In the worst case, local decisions may conflict with one an-
other, resulting in perpetual adaptation of the system, thus wasting resources and
having adverse effect on the system’s availability and stability.

Information sharing can be considered a special case of the coordinated
control pattern discussed above, where the interactions among peer A, P and
E components have been completely dropped. However, while the coordinated



88 D. Weyns et al.

control pattern aims at directly achieving some regional or global objective
through explicit cooperation among all types of MAPE components, the
information sharing pattern adopts a different perspective, where achieving the
global objective is less direct, because decisions are made locally rather than in
a coordinated fashion. For this reason we prefer to give a “first-class citizen”
status to this pattern in our list of alternative patterns.

Examples. The self-healing traffic monitoring system presented in [56] is an ex-
ample in which the information sharing pattern is used to support self-healing in
a traffic monitoring system by means of explicit state information sharing. The
overall system consists of a set of cameras distributed along roads that are used
to detect and report traffic jams (for example to a traffic light control system).
A local traffic monitoring system deployed on each camera (i.e., the managed
subsystem) monitors the traffic conditions in its viewing range. When a traffic
jam is detected the local traffic monitoring systems form a dynamic organiza-
tion with neighboring local traffic monitoring systems that span the range of the
traffic jam. One of the monitoring systems is responsible for reporting the traffic
jam to interested clients. To make the system resilient to camera failures, a self-
healing subsystem is added to each local traffic monitoring system. To this end,
the self-healing subsystems exchange information with self-healing subsystems
on local cameras about their status using a ping-echo protocol. When a failure
is detected (one of the self-healing subsystems does not respond with an echo
message), the self-healing subsystem locally performs some analysis and plan-
ning activities that trigger local adaptation actions. Examples are removing the
reference to a failed camera from the set of neighbors, and changing the dynamic
organization of a set of monitoring cameras.

Another example of information sharing is described in [48] that aims to tackle
the scalability problem of the group membership service and reliable broadcast
used to preserve architectural constraints among distributed nodes as described
in [18]. In this work, a gossip protocol is used to exchange information between
nodes to support local adaptations. The authors show that the approach achieves
a fault-tolerant and scalable solution to exchange information regarding the com-
ponent configuration.

The two patterns identified and described so far are characterized by the
introduction of different degrees of decentralization, but are both driven by a
flat separation of concerns model, which places the different MAPE loops at the
same conceptual/abstraction level. In other words, they play analogous roles on
the different parts of the overall managed system they are directly responsible
for. In the following we describe three hierarchical control patterns, where MAPE
loops at different levels play different roles, with different responsibility levels.

4.3 Master/Slave Pattern

Problem/Motivation. There is a need to adapt a distributed software system
for some concern. Monitoring and adaptations of the software needs to be
done locally at each node, for example because of the high cost of transferring



On Patterns for Decentralized Control in Self-Adaptive Systems 89

monitored data or because of the specificity of local adaptations. On the
other hand, there is a need to provide global guarantees, predictability, and
consistency about the state of the distributed system and its adaptations. For
example, a central controller in an automated logistic systems (with cranes,
conveyor belts, etc.) may rely on locally collected knowledge of machine software
or their environment (which may include complex processing performed by M
components) to trigger some of the machines to change their work mode (which
may involve complex manipulations of the machine software performed by E
components).

Solution. This pattern organizes the adaptation logic by creating a hierarchi-
cal relationship between one (centralized) master component that is responsible
for the analysis and planning of adaptations (A and P activities) and multiple
slave components that are responsible for monitoring and execution (M and E
activities), see Figure 6. The pattern consists of two abstract groups of MAPE
components. There is a single instance of the group with a P and an A compo-
nent, and there can be an arbitrary number of instances of the group with an M
and an E component. Each M interacts with the A component and P interacts
with each E component. As such the pattern supports the typical flow of inter-
component interactions of a MAPE loop, but with multiple instances of M and
E components.

The M components of the slaves monitor the status of the local managed
subsystems and possibly their execution environment and send the relevant in-
formation to the A component of the master. A, in turn, examines the collected
information and coordinates with the P component, when a problem arises that
requires an adaptation of local managed systems. The P component then puts
together a plan to resolve the problem and coordinates with the E components
on the slaves to execute the actions to the local managed subsystems.

The instance diagram at the bottom of Figure 6 shows a concrete instantia-
tion of the pattern with three slaves.

Consequences. The master/slave pattern is a suitable solution for application
scenarios in which slave control components need to process monitored infor-
mation to derive the required data allowing centralized decision making, and
execute local adaptation (probably based on higher-level adaptation instruc-
tions). On the positive side, centralizing the A and P components facilitates
the implementation of efficient algorithms for analysis and planning aimed
at achieving global objectives and guarantees. However, sending the collected
information to the master component and distributing the adaptation actions
may impose a significant communication overhead. Moreover, the solution may
be problematic in case of large-scale distributed systems where the master may
become a bottleneck. Finally, the master component continues to represent a
single point of failure.



90 D. Weyns et al.

Fig. 6. Top: master/slave pattern. Bottom: concrete instance of the pattern.

Examples. The control architecture proposed in the RESERVOIR project
[50,16] is an example of the master/slave pattern. The architecture is proposed
in the context of a virtualized data center, where virtual execution environments
are offered on top of a set of distributed physical servers. To meet the SLAs nego-
tiated with the data center users, the control system monitors the system status
(e.g., utilization degree of physical resources) through a set of monitors located
at the different servers. A central master controller collects and analyzes these
data, and plans suitable adaptation actions (that include, for example, changing
the balance of the time slice among different virtual environments hosted by the
same server, or live-migrating processes among physically separated servers).

The master/slave pattern is also at the basis of the control architecture for the
Znn.com example system [10], developed according to the Rainbow framework
[17]. The Znn.com system implements a news service that provides multimedia
news content to its users, and is architected as a dynamically variable number of
servers that serve clients requests by accessing a backend database. According
to the Rainbow framework, the control system of Znn.com uses a distributed set
of probes and gauges to monitor the system status. Collected data is centrally
analyzed by an architecture evaluator that detects possible problems, while an
adaptation manager decides on the best adaptation whose goal, in this example,
is to keep the response time within a given threshold. The execution of adap-
tation actions (that include changing the number of active servers, and varying
the “fidelity” of the provide responses) is then delegated to a set of distributed
effectors driven by a strategy executor.



On Patterns for Decentralized Control in Self-Adaptive Systems 91

4.4 Regional Planning Pattern

Problem/Motivation. Different loosely coupled parts of software (regions) of
a complex integrated software system want to realize local adaptations (within
a region) as well as adaptations that cross the boundaries of the different parts
(between regions). A typical scenario is a federated cloud infrastructure where
adaptations within regions may aim to optimize resource allocation, while the
objective of adaptations between regions may be delegation of certain loads
under particular conditions (that owners of regions may not want to expose).
Another setting is a supply chain management system where partners in the
chain have certain local adaptation objectives, while adaptations between part-
ners or system-wide adaptations may aim to achieve some global utility objective.

Solution. Regional planning provides one P component (a regional planner) for
each region. A regional planner collects the necessary information from the un-
derlying subsystems under its supervision to plan adaptations. Regional planners
interact with one another to coordinate adaptions that span multiple regions.

Figure 7 shows the regional planner pattern and illustrates it for a concrete
configuration. The pattern consists of two abstract groups of MAPE components,
which both can occur an arbitrary number of times. The first group contains M,
A, and E components. The second group contains only a P component. Inter-
component type interactions follow the logical flow of a MAPE loop. Intra-
component type interactions are restricted to P components.

The instance diagram at the bottom of Figure 7 shows a concrete instan-
tiation of the pattern with two regional planners. For each region, the M
components monitor the status of local managed subsystems and possibly
the execution environment, the local A components analyze the collected
information, and report the analysis results to the associated regional planner.
The regional planner may then decide to perform a local adaptation (i.e.,
within the region), or regional planners may interact with one another to plan
adaptations that span the two regions. Once the planners agree on a plan
they can put the adaptations to action by activating the E components of the
respective component groups involved in the adaptation.

Consequences. Regional planner enables a layered separation of concerns
among different MAPE loops within a single ownership domain, where several
MAPE loops delegate the planning function to a higher level component. For
systems that cross the boundaries of ownership domains, regional planner en-
ables a further (flat) separation of concerns for the planning function, where
each planner is responsible for the planning of adaptations in its region. Local
analysis of monitored data may reduce the amount of data and frequency of
interactions with the planner. A downside of regional planner may be a lack
of efficient adaptations. Aggregating the results of local analysis and coordinat-
ing the planning of adaptations may incur considerable overhead. Moreover, the
pattern may require very detailed planning of the execution of adaptations as it
does not support runtime coordination between E components.



92 D. Weyns et al.

Fig. 7. Top: regional planner pattern. Bottom: concrete instance of the pattern with
two regions.

Examples. The MOSES framework [8] is an example that instantiates the re-
gional planner pattern. Within the context of service-oriented systems, the goal of
MOSES is to provide a brokering service that supports runtime adaptation of com-
posite services offered to multiple users with different service levels. The MOSES
framework consists of a set of distributed monitoring components (WS Monitor
and QoS Monitor components) that collect data about the availability and qual-
ity of service of different pools of candidate services that can be used to build the
composite service managed by MOSES. Collected data are locally analyzed. The
result of the analysis can trigger the calculation of a new plan by a centralized plan-
ning component (Optimization engine) that calculates a new abstract-to-concrete
services binding policy, that is then realized at the endpoints.

The Deployment Improvement Framework [35] provides the ability to deter-
mine the optimal deployment of a software system at runtime and effecting it
through runtime redeployment and adaptation of its components. This frame-
work has been realized using a regional planner pattern, supporting redeploy-
ment in mobile and pervasive computing environments. In this particular case,



On Patterns for Decentralized Control in Self-Adaptive Systems 93

each host has a decentralized planner (i.e., a regional planner) that only man-
ages a single instance of a group of M, A, E components. Furthermore, each
host has a local monitor, local analyzer, and local effector that are responsible
for the monitoring, assessing changes in the monitored parameters, and rede-
ployment of the components on the host they reside. Each host has a model
that contains some subset of the system’s overall model, populated by the data
received from the local monitor and the model of the hosts to which this host
is connected. The local analyzer on each host determines when the conditions
for an improved deployment architecture occur, based on the local model. The
decentralized planner then synchronizes with its remote counterparts to find a
common solution. If the planners agree, the improved deployment architecture
is effected by the local effectors.

4.5 Hierarchical Control Pattern

Problem/Motivation. The control architecture for a complex distributed
system may itself become a complex system that needs to be adapted. In this
case it is often necessary to consider multiple control loops within the same
application. The loops can work at different time scales and manage different
kind of resources, and resources with different localities. However, in this
context, control loops need to interact and coordinate actions to avoid conflicts
and provide certain guarantees about adaptations. The problem is then how
to separate concerns to manage this complexity? Examples of such systems
are: a) within a single data center, higher level control loops are responsible for
achieving power consumption or workload goals, whereas local control loops
manage workflow distribution between localized subsets of the nodes, and
b) adaptation in pervasive computing environments could be organized into
controllers that manage adaptation of human tasks as a user’s goals change (in
the order of minutes) and controllers that manage particular instances of these
tasks to provide fault tolerance (in the order of seconds).

Solution. The hierarchical control pattern provides a layered separation of con-
cerns to manage the complexity of self-adaptation. This pattern structures the
adaptation logic as a hierarchy of MAPE loops. Different layers typically focus
on different concerns at different levels of abstraction, and may operate at differ-
ent time scales. Loops at lower layers operate at a short time scale, guaranteeing
timely adaptation concerning the part of the system under their direct control.
Higher levels operate at a longer time scale with a more global/strategic vision.
MAPE loops at the bottom layer are directly concerned with different parts of
the managed subsystem. MAPE loops at intermediate layers are concerned with
the adaptation layers beneath. Finally, the MAPE loop at the top is concerned
with the overall adaptation objectives of the system.

Figure 8 shows the hierarchical control pattern and illustrates it for a concrete
configuration. The pattern is shown for a hierarchy of three layers, but more
intermediate layers are possible. The M and E components of abstract groups
at the bottom layer directly interact with the managed subsystem. M and E



94 D. Weyns et al.

Fig. 8. Top: hierarchical control pattern. Bottom: concrete instance of the pattern.

components of abstract groups of higher-level layers interact with groups at the
layers beneath.

The instance diagram at the bottom shows a concrete instantiation of the
hierarchical control pattern. In this particular example, the hierarchy consists
of three layers with two intermediate MAPE loops, one of them managing two
subordinate loops, the other one managing a single loop.

Consequences. The hierarchical control pattern enables adaptation logic to
be structured so that the complexity of self-adaptation can be managed. The
hierarchical structure allows bottom layer control loops to focus on concrete
adaptation objectives while higher level control loops can take increasingly
broader perspectives. This corresponds to the layered organization of self-
adaptation as proposed in [31]. However, there are a number of potential
trade-offs with hierarchical control. The hierarchical decomposition of the
adaptation concerns and the allocation of these concerns to different control
loops might be difficult to achieve, in particular when goals interfere with one
another. Moreover, it is known from behavior-based architectures [2] that the
design and management of hierarchies with multiple layers can become very
complex. As a result, there might be no guarantee that the overall solution
meets the specifications.



On Patterns for Decentralized Control in Self-Adaptive Systems 95

Examples. A classic example of hierarchical control of adaption is the IBM
architectural blueprint [25]. This approach consists of autonomic managers that
add self-* properties to resources and these managers are, in turn, managed
by other autonomic managers. At the highest level a manager takes high-level
policies from users and delegates these throughout the hierarchy of autonomic
managers. [4] discusses how the Autonomic Computing Reference Architecture
(ACRA) can be used to orchestrate a set of autonomic managers that share
knowledge sources to realize adaptations of managed resources.

The use of multiple control loops is proposed also in [33], where Litoiu et
al. propose a hierarchical framework to deal with autonomic systems where it is
possible to consider different time scales and different kind of managed resources.

Another example of the application of the hierarchical pattern can be found
in [27]. In this work, the authors present Mistral, a multi-level hierarchical self-
adaptive system. Specifically, Mistral is presented for a large data center envi-
ronment and deployed in the form of a hierarchical control scheme with multiple
instances of Mistral controllers managing different subsets of hosts and applica-
tions and operating at different time-scales. The controllers at the lower level
manage a small number of machines and the applications hosted on them, while
at the next higher level, a controller manages machines owned by multiple lower
level controllers. Mistral reconfigures the system when variations in the moni-
tored workload are detected and the adaptation actions are selected according
to a predefined utility function.

5 Drivers for Selecting Control Schemas for Adaptation

So far we have outlined a set of patterns for decentralizing self-adaptive control
loops, discussed forces that express conflicts among concerns when applying the
patterns, and described how the patterns have been used by existing self-adaptive
systems. Based on these insights, we discuss some of the drivers that should be
considered by designers of self adaptive systems when choosing a MAPE pattern.
As with any design, it is not possible to fulfill all requirements of all stakeholders
with any one pattern. This means that choosing a pattern will depend on the
relative importance of the requirements that stakeholders place on the managed
system.

In the literature, it is usually quality concerns such as fault handling, efficiency,
resource consumption, and load balancing that are the main goal of, and thus
the main drivers for, self-adaptive solutions [24,52,55]. Due to the variability of
domains and requirements, we cannot give an exhaustive list of how requirements
may influence the choice of control mechanisms. Rather, we discuss in a few
examples how certain kinds of requirements may impact this choice.

Optimization of one or more system properties is easier in centralized ap-
proaches where all measurement data is collected in one place, and only one
entity makes control decisions based on that data. In decentralized approaches
where several entities make local control decisions likely it will be more difficult
to find a global optimum for system reconfiguration, since it is possible for con-
trol decisions to adversely influence each other, leading to frequent antagonistic



96 D. Weyns et al.

adaptations. Ensuring other global properties is also easier to achieve with a
centralized controller, when all data relevant to decision making is directly ac-
cessible. However, ensuring that this data is consistent in a distributed system
poses significant challenges in itself [15,19].

The scalability of systems with respect to communication can be impacted
significantly by the choice of a centralized or decentralized solution for self-
adaptation. The larger and more complex an adaptive system becomes, the more
data has to be processed to make control decisions. This data may also have to
be transmitted from the node in the network where it is gathered to the node
that hosts the decision logic. Scalability is thus impacted by at least two factors:
the amount of data that has to be processed to make control decisions, and the
amount of data that has to be transmitted across networks. In both cases, the
more data there is, the less scalable the system will be. Decentralized systems
can improve scalability if decisions can be made locally, based on data collected
from the local context, or possibly subsets of the global monitoring data. Thus
decentralization of self-adaptation functions may reduce the amount of data that
has to be transmitted, and the amount of data that has to be processed to make
decisions about adaptations. Effectively, this parallelizes adaptation decisions at
the cost of making it hard to ensure global optima.

Robustness against node and link failure is the classical domain of distributed,
replicated systems. A system with centralized control has a central control node
as a bottleneck and potential single point of failure. Decentralized systems on
the other hand will still be able to function even when some nodes and links
fail. Only the nodes affected directly by link failures or controlled by a crashed
controller will be affected in this scenario.

Responsiveness to changes needs to be considered. Different MAPE patterns
have different reaction characteristics and MAPE loops in particular patterns
may work at different time scales. For example, Rainbow (master/slave) can act
on a system within seconds, but in some cases reactions in less than a second may
be needed. To soundly organize MAPE loops hierarchically means that a loop
must act at a time scale greater than its subordinate loops. Decentralizing control
may make an adaptive system more responsive, but at the cost of producing
subobtimal adaptations.

Different administrative domains may force particular types of adaptation
control on a designer. For example, building a centralized model of the entire
system may be infeasible if the knowledge of parts of the system has to be
kept hidden (e.g., for strategic reasons). Similarly, an adaptive system may not
be able to exercise control over some parts of the system. Consider a globally
distributed data center network, where each data center may control itself, but
cannot request reconfiguration in sibling centers because they are owned by
different companies, or are under regulations of different governments. In such a
case, the particular patterns that can be used for decentralization of control will
be affected by the amount of information that is shared between the domains,
and the amount of control that one domain can influence on another.



On Patterns for Decentralized Control in Self-Adaptive Systems 97

Domain constraints may also impose restrictions on the choice of a MAPE
pattern for controlling adaptation. For example, in certain domains (e.g. bank-
ing), security or confidentiality requirements might prevent the sharing of data
needed for control decisions with a central entity. In such a case, it might be
feasible for subsystems to summarize and filter data so that no confidential data
leaks, and then pass that data on to a centralized controller. Alternatively, a re-
gional planning solution where each part of the overall system only deals with its
own confidential data is conceivable. In some domains, for example mobile net-
work applications, network interruptions and topology changes are so frequent
that centralized solutions would be infeasible. In both the above scenarios it is
infeasible or at least impractical to collect all relevant data at a central node and
thus in these scenarios a decentralized solutions are more likely to be effective.

6 Discussion

The focus of the patterns described in this chapter is on the structures of MAPE
loop components and their interactions. We have abstracted away the representa-
tion of knowledge in the patterns, how this knowledge is used and shared among
the MAPE components, and how the system components are actually deployed
on hardware. However, the ways in which knowledge is stored in the system and
exchanged among MAPE components and the actual deployment of the system
are important design concerns that will affect the applicability of the patterns.
As explained in Section 3, we have refrained from including these concerns in
the patterns since the way knowledge is treated and components are deployed
heavily depend on the characteristics of the domain. Considering these con-
cerns explicitly would increase the complexity of the descriptions of the patterns
significantly. Instead, we consider the way knowledge is stored and exchanged
between MAPE components and the distribution of the various components as
two different views in the design of a self-adaptive system, complementary to the
structured, interaction-oriented view of the patterns presented in this chapter.

In this section, we touch upon some aspects of knowledge in the design of
MAPE loops of self-adaptive systems. It is our aim to give some initial ideas
about such design decisions and their implications. Clearly, extensive research
is required to treat the aspects of knowledge and deployment in a systematic
manner. Concretely, we will look at two alternative approaches to deal with
knowledge in the hierarchical control pattern.

As we explained in Section 4, one particular objective of the hierarchical control
pattern is to manage complexity of self-adaptation by separating concerns of the
adaptation logic in the form of a hierarchy of MAPE loops. Figure 8 shows the
interactions amongMAPE loops in consecutive layers. Here, we show two possible
approaches to share knowledge among MAPE components in this pattern.

Figure 9 shows an instance of the hierarchical control pattern with individual
knowledge repositories for each MAPE loop. In this configuration, knowledge can
only be exchanged via the interactions of MAPE loops of consecutive layers. Fig-
ure 10 shows an alternative configuration with additional knowledge repositories
that are shared among MAPE loops within layers.



98 D. Weyns et al.

Fig. 9. Instance of the hierarchical control pattern with knowledge repositories per
MAPE loop

Fig. 10. Instance of the hierarchical control pattern with additional shared knowledge
repositories within layers

In the first approach, each MAPE loop maintains knowledge in a local reposi-
tory. This approach restricts the exchange of knowledge between MAPE loops of
consecutive layers. Such knowledge exchange is important, for example, to enable
higher level MAPE loops to make decisions about adaptations at lower levels.
In the second approach, MAPE loops can also exchange knowledge with siblings
using a shared knowledge repository. This approach enables MAPE loops at one
layer to coordinate adaptations without direct interference of MAPE loops at the



On Patterns for Decentralized Control in Self-Adaptive Systems 99

layer above. Shared knowledge in the form of a shared tuple space, for example,
creates a loose coupling between MAPE loops at one layer. Such an organization
may be a solution to situations where adaptations have to be realized between
managed subsystems that are connected in a very dynamic manner, e.g., in a
mobile setting.

These two example scenarios illustrate that the aspect of knowledge can be
treated in (potentially many) different ways for this particular pattern, resulting
in specific variants of the pattern that are useful for different domains with
different characteristics and specific requirements. Study of these variants for
different types of MAPE patterns is an interesting area of future research.

7 Related Work

The work on software architecture and design patterns is extensive. The series on
Pattern-Oriented Software Architecture (POSA) by Buschmann et al. [7,45,29,6],
covers fundamental patterns [7], like Reflection and patterns specific for a do-
main, e.g., resource management [29], concurrency [45], and distribution [6].
These patterns provide concrete strategies and mechanisms to address specific
architectural or implementation problems. The patterns proposed and described
in this chapter are different in that they are considering the structure and in-
teraction of MAPE loops and their components at an abstract level. On a more
concrete level, various POSA patterns are premier candidates to realize such
patterns.

Research in self-organizing systems have brought forward a number of pat-
terns for distributed decentralized computing, for instance to support replication,
which are inspired from biology [3]. Compared to the architecture-centric per-
spective presented in this chapter, the biology inspired patterns are described
from an algorithmic perspective with more precise behavioral semantics. Such
patterns are more related to the aspect of knowledge (see section 6), and are
candidates to realize particular types knowledge exchange in some of the MAPE
patterns.

There is a large body of work in designing and implementing self-adaptive
systems, and subsequent recent reflection by researchers to develop advice and
patterns for them. Gomaa and Hussein [21] have developed several software
reconfiguration patterns for dynamic evolution of software architectures. They
define a reconfiguration pattern to be a set of recurring sequences of adapta-
tion steps (e.g., stopping/starting, (un)linking, adding/removing) necessary for
ensuring consistent adaptation of a software system. To ensure the dynamic re-
placement of a component does not jeopardize the systems consistency, a recon-
figuration pattern first places the component in the quiescent state [30], before
replacing it at runtime. Subsequent to this work, several approaches have shown
the utility of reconfiguration patterns to achieve consistency during adaptation.
In [22], Gomaa et al. employ reconfiguration patterns in the context of self-
managed service-oriented software systems, while in [14], Esfahani et al. show
their utility in the design of architecture-based middleware solutions. The pat-
terns described in this chapter are different, as we have aimed to distill patterns



100 D. Weyns et al.

that result from the different compositions of MAPE components in the manag-
ing system, while reconfiguration patterns deal with ensuring the consistency of
the managed system during adaptation.

Ramirez and Cheng [42] describe a set of design patterns for building dynamic
software systems. Their patterns are at the level of software design, and aim
to facilitate the construction of a self-adaptive software system. The purpose
of patterns proposed in their work is to help engineers to better understand
alternative means of achieving runtime adaptation in the system’s design. The
patterns proposed in this chapter are at a higher level of granularity, as we
adopt an architecture-centric perspective with the aim of better understanding
the impact of decentralization on self-adaptive software systems.

Some of the co-authors have defined a formal reference model (FORMS) that
can be used to understand and reason about self-adaptive systems, formally
defining the relationships among the environment, managing system, and man-
aged system [57]. This model provides three perspectives of self-adaptive systems,
among one is a distribution perspective that offers an abstract representation
of interacting MAPE loops in terms of coordination mechanisms. Work in this
chapter concentrates on the relationships between MAPE components (which
refines the discussion in FORMS), and does not really consider in detail the
relationship between these elements and the managed system and environment.

Explicit representation of control loops in self-adaptive systems has been dis-
cussed in [23]. A UML profile for modeling control loops is presented which
allows the modeling of sensors, actuators, controller, and their interactions as
parts of the adaptation logic. They are able to model a variety of instances of
self-organizing systems with mutliple control loops. The work in this chapter
translates the abstract concept of controller in [23] into concrete patterns of in-
teracting MAPE loops, and provides a platform for discussing the trade-offs of
applying different patterns.

8 Conclusions and Challenges Ahead

In this chapter, we have laid the groundwork for consolidating knowledge on de-
centralized control in self-adaptive systems in the form of patterns of interacting
MAPE loops. We derived these patterns from their use in practice, introduced a
notation for describing them, and discussed their ramifications with respect to
certain quality attributes. This work can be used as a basis for understanding
different patterns of decentralized control by software engineers of self-adaptive
systems, and for comparing work in the field.

As this chapter represents only the start of the work on decentralization of con-
trol in self-adaptive systems, we conclude this chapter with a number of research
challenges ahead, to contribute to the research road-map in the field. We start
with more concrete challenges and move towards long term visions at the end.

Include state/knowledge. Currently, the patterns cover only structural aspects
of decentralization of control in self-adaptive systems. As an important future



On Patterns for Decentralized Control in Self-Adaptive Systems 101

challenge, data/knowledge aspects should also be covered in the patterns, includ-
ing the differentiation between global and local knowledge. In particular, different
forms of partitioning and/or (full/partial/lazy) replication of knowledge should be
seamlessly included in the MAPE patterns, as they provide another path of indi-
rect interaction between the MAPE elements. For example, one could let the com-
ponents in a hierarchical MAPE loop interact by shared knowledge as described
in section 6 or by introducing a new hybrid control pattern by using the coor-
dinated control pattern in the middle layer of the hierarchical control pattern for
achieving a similar interaction. One particularly interesting approach to including
knowledge in the patterns for decentralized control is by defining a complementary
view of the managed system that focuses on the knowledge concern.

Adding behavior and communication. The patterns presented in this chapter
focus on centralization vs. decentralization of the primary functions of self-
adaptation with MAPE loops. Future research should focus on identifying
and classifying (i) the behavior of each MAPE component (for example, fil-
tering or preprocessing monitored information to minimize data exchange; us-
ing decentralized or self-organized planning algorithms), (ii) the communication
paradigms used for the various interactions in the patterns (for example, direct
message exchange; use of a blackboard for coordination), and (iii) the specific
protocols used for communication between the MAPE components (for exam-
ple, push-pull, request-reply, negotiation). The pattern notation introduced in
this chapter could be improved by adding different connector types between the
elements to take care of items (ii) and (iii).

MAPE activities beyond sequence. In this chapter, we assume the activities in
the MAPE loop follow in sequence (i.e., Monitoring followed by Analysis, Plan-
ning, and finally Execution). It is conceivable that there may be interactions
that do not follow this logical sequence. For example, analysis and planning may
coordinate, or analysis might coordinate with monitoring to insert new monitors
or request information more or less frequently. [53] is an example in which coordi-
nation between MAPE components organized in sub-loops within a MAPE-loop
is studied. Nested loops [20] are another approach where the managed system of
the outer loop comprises the managing inner loop plus the system managed by
the inner loop. A systematic study of MAPE activities beyond a traditional se-
quence is an interesting area that should be studied further. A related challenge
is to study how the style of the managed system might have implications on the
architecture of the managing system.

Extending the architectural expressiveness of our patterns. The notation used in
this paper could be extended with a formal foundation. This would enhance the
expressiveness of the patterns and allow precise expression and reasoning about
different configurations of the patterns. Additionally, a formal model would en-
able analysis of certain properties of systems modeled with the patterns. Such
analysis is particularly important for decentralized self-adaptive systems in which



102 D. Weyns et al.

global properties are often a critical aspect of the design. One effort in this di-
rection is FORMS [57] that provides formally defined modeling elements (in the
Z language) to specify architectures of managing subsystems, allowing to rea-
son about the architectural characteristics of distributed self-adaptive software
systems. However, this approach does not support fine-grained specifications of
interacting MAPE loops.

Dealing with uncertainty. To perform proper adaptations, the managing sub-
system needs runtime models, including models of (the relevant parts) of the
managed subsystem and the environment in which the self-adaptive system is
deployed. Such models may introduce uncertainty, for example caused by non-
determinism in the environment, inconsistencies between the managed subsystem
and its runtime representation, etc. Tackling the problems related to uncertainty is
challenging [13], as the causes of uncertainty are often not under control of the de-
signer. The situation is exacerbated in decentralized self-adaptive systems, where
there is no central authority, and adaptation decisions have to taken based on par-
tial knowledge. Dealing with uncertainty in self-adaptive systems that have mul-
tiple control loops is a challenging area for future research.

Standardization. So far, the research community has focused on standardizing the
notification interfaces of sensors and effectors of managed subsystems, but ignored
communication within the MAPE loop. For instance, the Oasis standard [39] de-
fines events that are broadly understood by vendors of system management tools.
Our position of making the decentralization of control loops explicit underlines
the need for standardizing the interactions between the MAPE loop components.
That includes interactions among MAPE components within a control loop as
well as interactions between MAPE loop components of the same type of differ-
ent control loops. This will comprise interface definitions (signatures and APIs),
message formats, and protocols. The necessity of this standardization has already
been appreciated in the past, e.g., in [32] the authors standardize the communi-
cation from the A to the P component by using a standard data exchange format
(e.g., SOAP), but no comprehensive approach exists so far.

Control Theory. There are substantial theoretical foundations for understanding
control systems in other engineering domains, embodied in control theory. In this
chapter, we have defined patterns for how to assemble a particular kind of control
loop (i.e., MAPE), but we have not discussed how theories and techniques from
control theory apply to the control of self-adaptative systems. For example, it
would be desirable to describe the transfer function of a managed system. A
transfer function defines the relation between a controlled system’s input and
output, in particular how effectors affect subsequent sensor readings. Having
such a function for the control loops of self-adaptive systems would mean that
we could reason about the properties (such as stability) of the control loop being
designed. Even more so, if the transfer function is available during run-time in a
machine-processable way, this reasoning can be subject to run-time adaptation
as well. The forms that a transfer function takes in different software domains



On Patterns for Decentralized Control in Self-Adaptive Systems 103

has received scant attention. In the context of service-oriented computing, the
transfer function could relate to service level agreements (SLA): sensor readings
would be mapped to SLA values, so that the transfer function describes how
the generic control loop needs to be controlled at the effector in order to result
in the desired SLA behavior. This will probably include the mapping of certain
SLAs to particular MAPE patterns that are proven to be effective with respect
to these SLAs. Investigating how research from the models@runtime community
can inform the definition of transfer functions for software would be a good
starting point.

Adaptive coupling with mutable control patterns. Complexity theory [37] shows
that the overall properties of a complex software system are largely determined
by the internal structure and interaction of its parts and less by the function of
its individual constituents [54]. Even more so, the internal structure of a system
is formed by relationships of differing strengths between constituents. Compo-
nents with tighter connections (or coupling) cluster to sub-systems, while other
components may remain more loosely-coupled. Hence, a complex software sys-
tem provides a mixture of tightly and loosely coupled parts. As an important
consequence, the overall system properties (e.g., scalability) are determined not
only by the structure but even more so by the strength of coupling of its re-
lationships [20]. Our control patterns support different forms of coupling. For
example, the information sharing pattern provides a much looser form of cou-
pling compared to the decentralized control pattern, thus the former potentiality
scales much better than the latter.

In order to use the full potential of the extended architectural expressiveness,
e.g., with nested control loops, the outer loop should be able to control the
strength of coupling of the inner loop. This means nothing else than “switch-
ing” from one pattern to the other during operation. Future research should
investigate approaches like [41] to allow for mutable control patterns.

Pattern enumeration and application. The patterns described in the chapter do
not fully enumerate all possible decentralization patterns, and in fact the patterns
could potentially be combined in any number of ways (for example, in federated
data centers the information sharing pattern could be used to manage adaptation
between data centers, while a hierarchical pattern could be used within a data
center). Future work should look at a broader range of self-adaptive systems to
enumerate all the patterns that have been used successfully in practice.

Furthermore, understanding when it is best to use one pattern over another
should be an active area of future research. We conceive of at least three dimen-
sions that will affect the choice of pattern:

1. The desired quality attributes and the level of guarantee required for them.
For example, it may be easier to prove that global quality attributes such as
performance will be achieved in the master/slave pattern, but that scalability
would be difficult to achieve.

2. The architecture of the managed system will likely influence which patterns
are applicable. For example, a hierarchical pattern will be unlikely to work



104 D. Weyns et al.

if there is no obvious hierarchy of authority in the managed system, or ap-
plying the information sharing pattern will likely be influenced by how much
information about the managed subsystems can be shared.

3. Domain constraints may affect the choice of a particular pattern. For exam-
ple, centralizing adaptation decisions may not be possible for confidentiality
reasons or because of dynamics in the network topology. In such scenarios,
a decentralized solution may be preferable.

We expect that a better understanding of how the drivers relate to the patterns,
and how the architecture of the managed system restricts the patterns that can
be employed to manage it, will lead to more principled design of self-adaptive
systems in the future.

Acknowledgments. This chapter is based on the results of a collaborative
effort of a breakout group for and the Dagstuhl Seminar on Software Engineer-
ing or Self Adapative Systems, October, 2010. The authors would like to thank
the other participants in the breakout session for their contributions to the dis-
cussion: Schahram Dustdar, Jeff Kramer and Rick Schlichting, as well as other
attendees of the seminar.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling Dimensions of Self-
Adaptive Software Systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer,
Heidelberg (2009)

2. Arkin, R.: Bahavior-Based Robotics (1998)
3. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F.,

Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.,
Urnes, T.: Design patterns from biology for distributed computing. ACM Trans.
Auton. Adapt. Syst. 1, 26–66 (2006)

4. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: It service management architecture and autonomic computing. IBM Syst. J. 46,
565–581 (2007), http://dx.doi.org/10.1147/sj.463.0565

5. Brun,Y.,Medvidovic,N.:Anarchitectural style for solving computationally intensive
problemson largenetworks. In:ProceedingsofSoftwareEngineering forAdaptiveand
Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (May 2007)

6. Buschmann,F.,Henney,K., Schmidt,D.C.:Pattern-Oriented SoftwareArchitecture,
A Pattern Language for Distributed Computing, vol. 4. Wiley, Chichester (2007)

7. Buschmann,F.,Meunier,R.,Rohnert,H., Sommerlad,P., Stal,M.: Pattern-Oriented
Software Architecture, A System of Patterns, vol. 1. Wiley, Chichester (1996)

8. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive Management of
Composite Services under Percentile-Based Service Level Agreements. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp.
381–395. Springer, Heidelberg (2010)

http://dx.doi.org/10.1147/sj.463.0565


On Patterns for Decentralized Control in Self-Adaptive Systems 105

9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

10. Cheng, S.W., Garlan, D., Schmerl, B.R.: Evaluating the effectiveness of the rainbow
self-adaptive system. In: SEAMS, pp. 132–141 (2009)

11. Dobson, S., Denazis, S., Fernndez, A., Gati, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

12. Dowling, J., Cahill, V.: The K-Component Architecture Meta-model for Self-
Adaptive Software. In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp.
81–88. Springer, Heidelberg (2001)

13. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: SIGSOFT FSE, pp. 234–244 (2011)

14. Esfahani, N., Malek, S.: On the Role of Architectural Styles in Improving the
Adaptation Support of Middleware Platforms. In: Babar, M.A., Gorton, I. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 433–440. Springer, Heidelberg (2010)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

16. Gambi, A., Pezzè, M., Young, M.: SLA protection models for virtualized data
centers. In: Proc. of the Int. Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS (2009)

17. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.:
Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer 37, 46–54 (2004)

18. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: 1st Workshop on Self-Healing Systems. ACM, New York
(2002)

19. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33, 51–59 (2002),
http://doi.acm.org/10.1145/564585.564601

20. Goeschka, K.M., Froihofer, L., Dustdar, S.: What soa can do for software depend-
ability. In: Workshop on Architecting Dependable Systems (WADS 2008), Sup-
plemental Proceedings of the 38th IEEE International Conference on Dependable
Systems and Networks (DSN 2008), pp. D4–D9. IEEE Computer Society (2008)

21. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of
software architectures. In: Proceedings of Fourth Working IEEE/IFIP Conference
on Software Architecture, WICSA 2004, pp. 79–88 (2004)

22. Gomaa, H., Hashimoto, K., Kim,M., Malek, S., Menascé, D.A.: Software adaptation
patterns for service-oriented architectures. In: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, SAC 2010, pp. 462–469. ACM, New York (2010)

23. Hebig, R., Giese, H., Becker, B.: Making control loops explicit when architecting
self-adaptive systems. In: Proceeding of the Second International Workshop on
Self-organizing Architectures, SOAR 2010, pp. 21–28. ACM, New York (2010)

24. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing–degrees, mod-
els, and applications. ACM Computing Surveys 40, 7:1–7:28 (2008),
http://doi.acm.org/10.1145/1380584.1380585

http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1380584.1380585


106 D. Weyns et al.

25. IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM (Jan-
uary 2006)

26. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997),
http://dl.acm.org/citation.cfm?id=590564.590577

27. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral:
Dynamically managing power, performance, and adaptation cost in cloud infras-
tructures. In: Proceedings of the 2010, IEEE 30th International Conference on
Distributed Computing Systems, ICDCS 2010, pp. 62–73 (2010)

28. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

29. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture. Patterns for Re-
source Management, vol. 3. Wiley, Chichester (2004)

30. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Trans. Softw. Eng. 16, 1293–1306 (1990),
http://dl.acm.org/citation.cfm?id=93658.93672

31. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society,
Washington, DC (2007)

32. Leymann, F.: Combining Web Services and the Grid: Towards Adaptive Enter-
prise Applications. In: Castro, J., Teniente, E. (eds.) First International Workshop
on Adaptive and Self-Managing Enterprise Applications (ASMEA 2005) - CAiSE
Workshop, pp. 9–21. FEUP Edi cões (June 2005)

33. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control
of software systems. In: Proceedings of the 2005 Workshop on Design and Evolution
of Autonomic Application Software, DEAS 2005, pp. 1–7. ACM (2005)

34. Maes, P.: Computional reflection. Ph.D. thesis, Vrije Universiteit (1987)
35. Malek, S., Beckman, N., Mikic-Rakic, M., Medvidov́ıc, N.: A Framework for En-

suring and Improving Dependability in Highly Distributed Systems. In: de Lemos,
R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS,
vol. 3549, pp. 173–193. Springer, Heidelberg (2005)

36. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algo-
rithm for improving the availability of distributed systems. In: 3rd International
Conference on Component Deployment, Grenoble, France (November 2005)

37. Manson, S.M.: Simplifying complexity: a review of complexity theory. Geofo-
rum 32(3), 405–414 (2001)

38. Müller, H., Pezzè, M., Shaw, M.: Visibility of control in adaptive sys-
tems. In: Proceedings of the 2nd International Workshop on Ultra-large-scale
Software-intensive Systems, ULSSIS 2008, pp. 23–26. ACM, New York (2008),
http://doi.acm.org/10.1145/1370700.1370707

39. OASIS, http://www.oasis-open.org
40. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G.,

Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems 14, 54–62 (1999),
http://dx.doi.org/10.1109/5254.769885

41. Pereira, J., Oliveira, R.: The mutable consensus protocol. In: Proceedings of the
23rd IEEE International Symposium on Reliable Distributed Systems, pp. 218–227.
IEEE Computer Society (October 2004)

42. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adaptive
systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2010, pp. 49–58. ACM, New York
(2010)

http://dl.acm.org/citation.cfm?id=590564.590577
http://dl.acm.org/citation.cfm?id=93658.93672
http://doi.acm.org/10.1145/1370700.1370707
http://www.oasis-open.org
http://dx.doi.org/10.1109/5254.769885


On Patterns for Decentralized Control in Self-Adaptive Systems 107

43. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

44. Schloss Dagstuhl Seminar 10431, Wadern, Germany: Software Engineering for Self-
Adaptive Systems (October 2010),
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=10431

45. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Chich-
ester (2000)

46. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

47. Shaw, M., Clements, P.: The golden age of software architecture. IEEE Softw. 23,
31–39 (2006), http://dl.acm.org/citation.cfm?id=1128592.1128707

48. Sykes, D., Magee, J., Kramer, J.: Flashmob: distributed adaptive self-assembly.
In: Proceeding of the 6th International Symposium on Software Engineering for
Adaptive and Self-managing Systems, SEAMS 2011, pp. 100–109. ACM, New York
(2011), http://doi.acm.org/10.1145/1988008.1988023

49. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

50. Toffetti, G., Gambi, A., Pezzè, M., Pautasso, C.: Engineering Autonomic Con-
trollers for Virtualized Web Applications. In: Benatallah, B., Casati, F., Kappel,
G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 66–80. Springer, Heidelberg
(2010)

51. Van Dyke Parunak, H., Brueckner, S.A., Sauter, J.A., Matthews, R.: Global con-
vergence of local agent behaviors. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp.
305–312. ACM, New York (2005)

52. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A frame-
work for evaluating quality-driven self-adaptive software systems. In: Proceed-
ings of the 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2011, pp. 80–89. ACM, New York (2011),
http://doi.acm.org/10.1145/1988008.1988020

53. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: Proceedings of Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2011), Honolulu, Hawaii (2011)

54. Wegner, P.: Why interaction is more powerful than algorithms. Commun.
ACM 40(5), 80–91 (1997)

55. Weyns, D., Iftakhir, M.U., Malek, S., Andersson, J.: Claims and supporting evi-
dence for self-adaptive systems: A literature review. In: Proceedings of the 7th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2012. ACM, New York (2012)

56. Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In: Proceedings of the 2010 ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2010, pp. 84–93. ACM, New York (2010),
http://doi.acm.org/10.1145/1808984.1808994

57. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for for-
mal specification of distributed self-adaptive systems. ACM Transactions on Au-
tonomous and Adaptive Systems, Special Issue on Formal Methods for Pervasive,
Self-Aware, and Context-Aware Systems 7(1) (2012)

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=10431
http://dl.acm.org/citation.cfm?id=1128592.1128707
http://doi.acm.org/10.1145/1988008.1988023
http://doi.acm.org/10.1145/1988008.1988020
http://doi.acm.org/10.1145/1808984.1808994


Towards Practical Runtime

Verification and Validation
of Self-Adaptive Software Systems

Gabriel Tamura1, Norha M. Villegas2, Hausi A. Müller3, João Pedro Sousa4,
Basil Becker5, Gabor Karsai6, Serge Mankovskii7, Mauro Pezzè8,

Wilhelm Schäfer9, Ladan Tahvildari10, and Kenny Wong11

1 University of Lille 1-LIFL-INRIA, France,
Los Andes University and Icesi University, Colombia

gabriel.tamura@inria.fr
2 University of Victoria, British Columbia,
Canada, and Icesi University, Colombia

nvillega@cs.uvic.ca
3 University of Victoria, British Columbia, Canada

hausi@cs.uvic.ca
4 George Mason University, USA

jpsousa@gmu.dot.edu
5 Hasso Plattner Institute at the University of Potsdam, Germany

basil.becker@hpi.uni-potsdam.de
6 Vanderbilt University, USA
gabor.karsai@vanderbilt.edu

7 CA Inc., Canada
serge.mankovskii@ca.com

8 University of Milano Bicocca, Italy and University of Lugano, Switzerland
mauro.pezze@unisi.ch

9 University of Paderborn, Germany
wilhelm@upb.de

10 University of Waterloo, Canada
ltahvild@uwaterloo.ca

11 University of Alberta, Canada
kennyw@ualberta.ca

Abstract. Software validation and verification (V&V) ensures that soft-
ware products satisfy user requirements and meet their expected quality
attributes throughout their lifecycle. While high levels of adaptation and
autonomy provide new ways for software systems to operate in highly
dynamic environments, developing certifiable V&V methods for guaran-
teeing the achievement of self-adaptive software goals is one of the major
challenges facing the entire research field. In this chapter we (i) analyze
fundamental challenges and concerns for the development of V&V meth-
ods and techniques that provide certifiable trust in self-adaptive and
self-managing systems; and (ii) present a proposal for including V&V
operations explicitly in feedback loops for ensuring the achievement of
software self-adaptation goals. Both of these contributions provide valu-
able starting points for V&V researchers to help advance this field.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 108–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Towards Practical Runtime Verification and Validation 109

1 Introduction

Software validation andverification (V&V) concerns the quality assessment of soft-
ware products throughout their lifecycle. Its goal is to ensure that the software
product satisfies its functional requirements and expected quality attributes [1–3].
Over the past decade, many self-adaptive approaches and systems have been pro-
posed by researchers from the software engineering for adaptive and self-managing
systems (SEAMS) community, withmultiple adaptationpurposes [4, 5]. Certainly,
many of the proposed self-adaptive software (SAS) systems have been designed to
operate in highly dynamic socio-technical ecosystemswhere requirements,models,
and contexts change at runtime [6]. This wide spectrum of system types, adapta-
tion concerns, and dynamic goals has made it difficult to develop general runtime
V&Vmethods. Unsurprisingly, V&V of SAS systems running in safety-critical en-
vironments is particularly challenging [7].

For inherently non-adaptive systems, that is, systems based on stable and well-
known system execution conditions, many V&V methods, techniques and tools
have been developed to be applied at design time. However, the quality assess-
ment of SAS systems is challenging, not only because their adaptation objectives
may vary according to environmental conditions at runtime, but also because the
systems evolve to satisfy their evolving dynamic requirements. In this realm, V&V
tasks—traditionally applied at design-time—are required to certify structural and
behavioral aspects in the different phases of the adaptation process. In addition,
these tasks must be performed at runtime in the two essential parts of a SAS sys-
tem, namely, the adaptation mechanism, and the target system.

Besides the SEAMS community, there are several other communities dealing
with runtime V&V, although not necessarily for SAS systems. During the past
decade, the real-time verification (RV) community has run a workshop concerned
with the monitoring and analysis of system executions.1 The longer term goal of
RV, already stated at RV 2001, is to investigate whether the use of lightweight
formal methods applied during the execution of programs is a viable complement
to the current heavyweight methods proving programs’ correctness always be-
fore their execution, such as model checking and theorem proving, among others.
Dynamic analysis, or the analysis of data gathered from a running program, has
great potential for self-adaptive systems because it relies on direct monitoring
mechanisms that expose the system’s actual behavior [8]. The Models@runtime
workshop, which emerged from the model-driven software development commu-
nity, aims to use model-driven techniques for validating and monitoring runtime
behavior. The Requirements@runtime workshop—collocated with the Require-
ments Engineering (RE) conference—aims to explore the potential of runtime
abstractions and models of requirements, to be used as a practical means to ad-
dress the challenges posed by volatile or poorly-understood environmental con-
texts.2 In many ways, these workshops and conferences focus on different aspects

1 International Conference on Runtime Verification
http://runtime-verification.org/

2 http://www.comp.lancs.ac.uk/~bencomo/RRT/

http://runtime-verification.org/
http://www.comp.lancs.ac.uk/~bencomo/RRT/


110 G. Tamura et al.

of runtime V&V such as requirements, models, properties, instrumentation, and
dynamic analysis.

Naturally, for the non-adaptive parts of a self-adaptive system, the traditional
V&Vmethods can be used effectively. For the adaptive parts, runtime V&Vmeth-
ods are needed to guarantee self-adaptation objectives, independently of what is
adapted. In general, SAS systems featuremechanisms based on the idea of the feed-
back loop [9].We aptly termed the foundational science for runtime V&Vmethods
control science. Control science can be defined as a systematic way to study cer-
tifiable V&V methods and tools to allow humans to trust decisions made by self-
adaptive systems. In a 2010 report,Dahm identified control science as a toppriority
for the US Air Force (USAF) science and technology research agenda for the next
20 years [10]. Certifiable V&Vmethods and tools are critical for the success of au-
tonomous, autonomic, smart, self-adaptive and self-managing systems.

One systematic approach to control science for adaptive systems is to study
V&V methods for the mechanisms that sense the dynamic environmental con-
ditions and the target system behavior, and act in response to these conditions
by answering the questions what, when and how to adapt. In this paper we use
the answers to these questions as key factors to determine when and where to
perform V&V activities in the context of feedback loops—the common core of
SAS systems.

This roadmap chapter focuses on research challenges concerning runtime V&V
for the adaptive parts of self-adaptive systems in highly dynamic environments.
In particular, we (i) analyze the cases in which the objectives, the system, or the
monitoring infrastructure of a SAS system must be adapted; and (ii) propose how
to make V&V tasks explicit in the feedback loop model elements, using results
obtained by the aforementioned communities in this research field. Our goal is
to provide researchers with a vision of open challenges in V&V for SAS systems,
and discuss opportunities not only for proposing new runtime V&V techniques,
but also for building on top of existing ones. In addition, our proposal for the
explicitness of V&V tasks provides solid starting points for V&V researchers from
other communities to deploy different techniques and methods for improving the
trustworthiness of self-adaptive and self-managing systems.

The remaining sections of this chapter are organized as follows. Section 2 de-
scribes a concrete industrial case study that we use to illustrate the concepts,
concerns and challenges discussed in this chapter. Section 3 outlines several chal-
lenges that arise from the differences in V&V requirements between software
developed with traditional methods and self-adaptive software, and presents se-
lected V&V drivers for self-adaptive software. Section 4 presents a refinement of
the general feedback adaptation loop to propose a model that explicitly involves
V&V tasks to address some of the previously identified challenges. This section
also presents approaches from SEAMS-related research communities that pro-
vide valuable contributions for the assessment of SAS systems. Finally, Section 5
concludes the chapter.



Towards Practical Runtime Verification and Validation 111

2 Application Example

This section introduces our concrete industrial case study.3 In this application
example, self-adaptation is exploited to implement SOA governance mechanisms
to enforce service level agreements (SLAs), such as those on performance, avail-
ability and confidentiality, in a cloud computing infrastructure [11]. In SOA and
cloud-based systems QoS are highly affected by, and dependent on changing
situations. On the one hand, SLAs may be violated at any time during sys-
tem execution due to changes in the situation of relevant context entities such
as computational infrastructure components and users. On the other hand, as
businesses and users’ requirements are evolving continuously, contracted QoS
conditions (i.e., adaptation goals) may be frequently re-negotiated.

In this example, a performance SLA has been negotiated in terms of three
throughput service level objectives (SLOs) to guarantee three different levels of
system capacity in a cloud-based e-commerce platform: normal, medium and high
load. These SLOs are observed on the bottleneck-operation of the system,Process-
ingPurchaseOrders, and measured in terms of number of transactions per time
unit. A normal capacity is required for a regular load of the shopping platform. A
medium capacity is required when special offers are placed on social networks pro-
moting them. A high capacity must be guaranteed to deal with the highest peak
load of the platform caused by shopping seasons such as “Black Friday”.

Governing the efficiency of the service-oriented infrastructure to optimize
operational costs is a major concern for the retailers of this example. Hence,
a self-adaptive mechanism based on service component architecture (SCA) re-
configuration was implemented to ensure quality of service (QoS) requirements
in the service-oriented system. The adaptation goal for this dynamic service-
oriented infrastructure is the contracted system capacity, in terms of the perfor-
mance SLA. Short settling time and consistency correspond to the adaptation
properties to be preserved. Adaptation properties in this application example are
borrowed from the catalog proposed by researchers from the SEAMS commu-
nity [5]. Settling time is defined as the time required for the adaptive system to
achieve the desired state. Consistency guarantees the structural and behavioral
integrity of the managed system with respect to the respective SCA integrity
constraints [12], after its adaptation.

Use Case 1: Controlling the Elasticity of the E-Commerce Platform. As efficiency
is a major concern, the capacity of the system must be either increased, or
decreased according to the context situations that determine the expected load
of the system. To accomplish this, context monitors must keep track of the
popularity of special offers placed on social networks, as well as the day of the
year to determine the applicable shopping season.

3 This example is based on the IBM Centre for Advanced Studies (CAS) Canada
project: “Managing Dynamic Context to Optimize Smart Interactions and Smart
Services” https://www-927.ibm.com/ibm/cas/cassis/viewReport?REPORT=747.

https://www-927.ibm.com/ibm/cas/cassis/viewReport?REPORT=747.


112 G. Tamura et al.

Use Case 2: Re-negotiating Adaptation Goals at Runtime. After the e-commerce
platform has been in operation, a new set of SLOs is added to the performance
SLA. These new SLOs define different thresholds of response time that must
be guaranteed according to the classification of the e-commerce platform’s cus-
tomers. Customers are classified as regular and premium users. A particular
maximum response time threshold applies to regular customers. For premium
customers, the maximum response time must correspond to 90% of the thresh-
old defined for regular customers. Response time thresholds can be re-negotiated
at runtime.

This example is used in the following sections to discuss runtime V&V con-
cerns and research challenges in SAS systems, and illustrate the need for applying
V&V tasks at runtime.

3 V&V Drivers for Self-Adaptive Software Systems

In this section we analyze and discuss drivers or key factors to consider when
performing V&V tasks for SAS systems. We identify these drivers by (i) com-
paring how V&V for software that is adaptable at runtime differs from V&V
for software that is immutable at runtime; and (ii) analyzing concerns that arise
when dealing with three types of context changes that have been addressed by
SAS systems, namely, in the objectives, the system, and the monitoring infras-
tructure to be adapted.

The goal of this section is twofold. First, it analyzes the classic V model for
software development, and in particular its V&V activities, from the perspective
of SAS systems. Second, it presents V&V drivers that we identified by analyzing
three foundational questions concerning assurances for SAS systems: when to
perform V&V tasks? what must V&V tasks validate and verify? and where in the
adaptation cycle must these V&V tasks be performed? In light of these drivers,
we identify research avenues in the form of research problems and opportunities
to integrate V&V methods and techniques into the engineering of self-adaptive
software systems.

3.1 The Classic V Model for System Development

Figure 1 illustrates how V&V activities are enacted in traditional software engi-
neering to ensure that, at the different levels of system development, the software
satisfies a given set of requirements.

This set of requirements is usually specified in advance of system development,
allowing the definition of the corresponding complete problem space. From these
requirements, a solution space is delimited and a solution derived and conceived in
the form of a software architecture, which is refined into a software design. Both,
architecture and design, are expressed asmodels (formal, semi-formal or informal),
which canbeverifiedatdesign timeon their functional properties (e.g., correctness)
with respect to the initial set of requirements. From this design, the software is
materialized as units of code, which are gradually integrated, verified and tested



Towards Practical Runtime Verification and Validation 113

Software
System

Requirements
Specification

Architecture

Coding Unit Testing

Integration,
Testing and 
Verification

System
Verification and 

Validation

Design

Operation and 
Maintenance

Development
Activities

V&V Activities

Fig. 1. The classic V model for system development (adapted from [13]). Each de-
velopment phase is subject to a corresponding V&V phase—horizontal layers—as the
software is built and integrated.

until the final system is obtained. Finally, this system is verified and validated as a
whole before its deployment in production environments [14].

In this general lifecycle, the software quality is guaranteed by different V&V
strategies applied in its different phases, even though several variations may pro-
vide additional assurances. For instance, despite the described flow of activities
following the solid arrows in the depicted V-model, the dashed arrows allow V&V
to be performed on the artifacts produced by any of the development activities
(e.g., requirements or design models).

Among the V&V strategies that have been used, the software testing meth-
ods are the ones most commonly used in industry. Software testing methods
can be very effective both in revealing failures and assessing the reliability of
software systems, but cannot provide evidence of the absence of faults [13, 15].
More rigorous and effective strategies to reason about the program correctness
employ model checking, graph-based, and other model-based software testing
and verification methods [16–19]. However, these V&V methods have focused
generally on design time. Therefore, the assessment and certification of system
properties after changes occurring during system execution, either for ensuring
the satisfaction of changing requirements, or for re-certifying system properties
after adaptation, require not only traditional V&V methods adjusted to be ap-
plied at runtime, but also the adoption of non-traditional ones to be applied in
the different adaptation phases of SAS systems.

Another important difference between these two types of software systems is
the lifecycle phases in which V&V tasks are performed. In the classic V model,



114 G. Tamura et al.

V&V tasks are performed by software developers before deployment into produc-
tion environments. However, in the adaptation process, the system architecture,
design and implementation are evaluated, reconsidered and reconfigured at run-
time by the system itself, according to relevant context changes. Hence, V&V
tasks must be performed by the adaptation mechanism during the adaptation
process. This has three important consequences. First, after the software initial
release is in execution, the software development lifecycle phases (i.e., architec-
ture, design and implementation) are in fact “absorbed”, at least to some extent,
by the adaptation (i.e., self-reconfiguration) process. Second, the boundaries be-
tween these phases, now amalgamated in the adaptation process, are blurred [20].
Third, the target system may be adapted and reach a state that was unforeseen
at design time, and thus, the system has not been verified for that state. In
simple (“switching”) systems with a few possible adaptation results, this can be
verified at design-time, but for a system with a very large number of resulting
states this is unfeasible. Therefore, for SAS systems, in addition to the V&V
tasks performed at design time, the system itself needs to apply different V&V
methods at runtime. At this point, two questions arise: (i) what V&V meth-
ods are the most adequate to be applied at runtime? and (ii) at which specific
moments in the adaptation process should these methods be applied?

These are certainly challenging questions, given that, additionally, many as-
pects of self-adaptive systems are impossible to assess at design time, due to their
strong dependency on the actual execution environments. A recent US Air Force
research agenda posits that developing certifiable V&V methods for highly adap-
tive systems is one of the major challenges facing the entire field. Understanding
the inherent properties of adaptation mechanisms for software systems, and the
ways in which these properties can be guaranteed may require a large part of the
decade, if not more [10]. In the following sections we address these questions.

3.2 The Viability Zone of Self-Adaptive Software Systems

We define the viability zone of a SAS system as the set of possible system states
in which the system operation is not compromised [21]. That is, the set of states
where the SAS system’s requirements and desired properties (i.e., adaptation
goals) are satisfied. Viability zones can be characterized in terms of relevant
context attributes and corresponding desired values. These context attributes
correspond to either measurements of internal variables of the target system
or the adaptation mechanism, or environmental variables whose variations can
take the system outside its viability zone. A particular SAS system may have
more than one associated viability zone (e.g., one for each adaptation goal). The
global viability zone of a SAS system thus results from the composition of these
partial viability zones. Moreover, existing viability zones can be added, replaced
or adjusted by adding or removing variables of interest at runtime.

In the case of our application example, the initial viability zone is defined in
terms of the performance SLA, and the three throughput SLOs (normal, medium
and high capacity—cf. Use Case 1 in Sect. 2). These three SLOs constitute three
different levels of system capacity that can been interpreted as three viability



Towards Practical Runtime Verification and Validation 115

sub-zones. The variables that characterize the e-commerce platform’s viability
zone correspond to the actual throughput of the ProcessingPurchaseOrders op-
eration, the popularity of special offers placed in a social network (including
whether an offer has been placed), and the shopping season, all of them to
be monitored at runtime. Seasons are characterized in three groups: regular,
medium (e.g., Valentine’s Day), and high seasons (e.g., Christmas and Black
Friday). Another associated viability zone in this example is used to control the
short settling-time adaptation property. This zone is defined by a single-variable
that is monitored to keep track of the time the e-commerce platform takes to
reconfigure the system to obtain the desired throughput. Furthermore, after the
re-negotiation of the performance SLA, a new viability zone must be computed
at runtime to control the response time SLOs (cf. Use Case 2).

V&V under Viability Zone Dynamics. It can be argued that our definition of
viability zone coincides with that of the solution space used in traditional (i.e.,
non-adaptive) software systems. However, from the previous examples it is clear
that the viability zone can change with context changes, as opposed to the
solution space concept, which is assumed to be fixed.

In effect, the viability zone of a target system under adaptation constantly
varies along adaptation dimensions. These variations take place every time the
adaptation operation modifies either the target system architecture (e.g., adding
or removing components and connectors) or the controller itself (e.g., modifying
its parameters or replacing the control algorithm), thus introducing new, or
removing existing variables and associated domain types.

Therefore, not only are runtime V&V methods required to cope with the
viability zone dynamics problem, but these V&V methods also need to be au-
tomatically generated according to the modifications that result from dynamic
adaptation. Thus, to extend the V&V coverage of the expanded viability zone,
runtime models are required for the incremental derivation of software artifacts
for V&V monitoring and checking.

In the aforementioned example, understanding its viability zone dynamics is
crucial for the self-adaptive e-commerce platform V&V tasks. In fact, the adapta-
tionmechanism together with its V&V tasks can be interpreted as an optimization
problem, where the optimal solution is chosen among those within the viability
zone, based on the system capacity policies, as proposed by Balasubramanian et
al. [22]. First, transitions between viability sub-zones are associated to an adap-
tation policy (adaptation strategy). For instance, when the system is approach-
ing the threshold between a lower and a higher load—going from the lower to the
higher, the corresponding adaptation task must be triggered to increase the sys-
tem processing capacity accordingly (e.g., by deploying new components for scal-
able processing). Similarly, the system capacitymust be reducedwhen it goes from
a higher load to a lower one. In both cases, as the software component structure is
modified as a result of the adaptation, the SCA structural conformance property
must be verified at runtime on the resulting system. Second, changes in viability
zones (e.g., changes in variables’ thresholds, and addition or replacement of vari-
ables in adaptation dimensions) may affect not only the adaptation strategy, but



116 G. Tamura et al.

also the monitoring infrastructure, since these changes are caused by changes in
adaptation goals. Finally, runtime V&V tasks aim to keep the adaptive system in-
side its viability zone, even when viability zones are subject to changes at runtime.
The way how V&V tasks contribute to achieve this goal depends on the nature
of the system and its requirements. For instance, for safety-critical applications,
runtime V&Vmust check if the system will trespass the boundaries of its viability
zone as a result of an adaptation, before instrumenting it in the running system. In
those cases where self-adaptation is interpreted as an optimization problem, V&V
tasks can be used both, before the adaptation, and after it. Before the adaptation,
to restrict the alternatives to consider, to those within the viability zone. After the
adaptation, to ensure that the solution is satisfying the new requirements under
possibly changed context situations.

3.3 What: Requirements and Adaptation Properties

We identified the underlying V&V questions in the domain of SAS systems as
what, where, and when to validate. This subsection focuses on the what to vali-
date question. The answer to this question relates to the identification of adapta-
tion goals (e.g., non-functional requirements of the target system) and adaptation
properties (e.g., desired characteristics of the adaptation mechanism). Explicit
adaptation goals and properties are crucial for the specification of suitable V&V
models for SAS systems, and the identification of corresponding metrics. More-
over, having an explicit mapping between adaptation goals and properties, and
relevant context is required to ensure the coherence between V&V tasks and the
relevant context variables that characterize the system’s viability zone. In our ap-
plication example, we address this mapping by defining context-driven SLAs [11].
As proposed in [11], context-driven SLAs are machine readable specifications of
SLAs, in the form of contextual resource description framework (RDF)4 graphs,
that not only state contracted conditions explicitly (e.g., the throughput and re-
sponse time SLOs), but also the context variables, and context monitoring strate-
gies required to keep track of the system behavior and its viability zone (e.g,
sensors and monitoring conditions to measure throughput, response time, settling
time, and the popularity of special offers, as well as identify shopping seasons).

Properties and Metrics. V&V concerns for self-adaptation certification can
be classified according to the two constitutive parts of a SAS system. The first re-
lates to the certification of the target system, while the second to the certification
of the adaptation mechanism [5]. After the 2010 Dagstuhl Seminar on Software
Engineering for Self-Adaptive Systems, researchers from the SEAMS community
conductedanextensive analysis of self-adaptive approaches anddevelopeda frame-
work for evaluating self-adaptive systems, where desired properties of the target
system (i.e., adaptation goals) and the adaptation mechanisms (i.e., adaptation
properties) are identified explicitly and defined in terms of quality attributes [5].

4 http://www.w3.org/RDF/

http://www.w3.org/RDF/


Towards Practical Runtime Verification and Validation 117

Several of the identified adaptation properties were borrowed from control the-
ory [9, 23] and re-interpreted for self-adaptive software. Moreover, they classified
adaptation properties according to how and where these properties are observed
(cf. Table 1). Concerning how they are observed, some properties can be evaluated
using static verification techniques, while others require dynamic verification and
runtimemonitoring (i.e., runtimeV&V).With respect to where they are observed,
properties can be evaluated on either the target system, or the adaptation mecha-
nism. However,most properties can only be observed directly on the target system
even when they are used to evaluate the adaptation mechanism.

Table 1. Classification of adaptation properties according to how and where they are
observed [5]

Property Where the
Adaptation Verification Property is
Property Mechanism Observed

Stability Dynamic Target system
Accuracy Dynamic Target system

Settling Time Dynamic Both
Small Overshoot Dynamic Target system

Robustness Dynamic Adaptation Mechanism
Termination Static Adaptation Mechanism
Consistency Both Target system
Scalability Dynamic Both
Security Dynamic Both

Having no well defined and explicit metrics that can be used to assess prop-
erties, it is impossible to realize the vision of runtime V&V. Nevertheless, even
though the importance of having such explicit metrics seems obvious, an im-
portant barrier for the assessment of dynamic software systems is the lack of
accurate metrics to evaluate adaptive software [4]. Therefore, more research
is required on the definition of applicable domain-specific metrics that effec-
tively provide the means for evaluating relevant properties of dynamic software
systems. Some examples of metrics and corresponding mappings to adaptation
properties used in actual self-adaptive implementations and research initiatives,
where non-functional requirements are a major concern, are summarized in the
evaluation framework for self-adaptive software proposed by Villegas et al. [5].

An important challenge for V&V of SAS is to investigate innovative mecha-
nisms that enable the application of techniques such as model checking, com-
positional verification, program synthesis, and dynamic analysis and monitoring
to asses these properties at runtime. Another important research concern is
the management of trade-offs that may arise from the need to ensure multiple
properties—trade-offs among multiple viability zones.

Dependency on Runtime Monitoring. Besides using different representa-
tion models for target system behaviour, traditional V&V also uses controlled
simulation environments. However, given the difficulties for building models to



118 G. Tamura et al.

predict self-adaptive system behavior for every possible operational situation,
and the impossibility of characterizing these situations in simulation environ-
ments, V&V of context-dependent properties requires information gathered at
runtime. For instance, in mission-critical systems, only with actual runtime mea-
surements it is possible to determine confidently whether the target system is
within its viability zone [24]. Understanding and characterizing which proper-
ties of self-adaptive software are critically dependent on runtime information is
crucial for realizing V&V in SAS effectively.

Uncertainty in Self-Adaptation. Context dependent requirements usually involve
uncertainty. Uncertainty can be both a challenge and an opportunity. In safety-
critical systems uncertainty is a tough challenge that exacerbates verification
tasks significantly [19, 24]. In other scenarios such as e-commerce applications,
uncertainty is an opportunity, since the system can provide better service to
customers by leveraging the context information that arise from the interactions
between the users and the system, as well as from users’ situations [25].

The adaptive nature of the execution environment in SAS systems makes un-
certainty one of the most difficult challenges to be addressed by V&V researchers.
An interesting research opportunity is to tailor feedback loop-based mechanisms
used to manage uncertainty in modern control theory to context-aware SAS
systems [26]. Similarly, the rich literature on engineering adaptive mechanisms
for flight control systems inspires many researchers. In particular, Schumann
and Gupta proposed a V&V method to calculate safety regions for adaptive
systems around the current state of operation based on a Bayesian statistical
approach [27]. With this approach, they can provide a confidence measurement
on the probable accuracy of the system’s model under a particular situation.

We argue for the exploitation of viability zones as useful mechanisms to man-
age uncertainty in the assurance of SAS systems. From this perspective, the man-
agement of uncertainty problem focusses on determining explicit boundaries for
the SAS system’s viability zones and controlling the target system accordingly
(cf. Sect. 3.2).

3.4 Where: Separation of Concerns

We distinguish two system levels in SAS systems: the target system to be dy-
namically adapted according to context changes, and the adaptation mechanism.
For runtime V&V it is critical to understand the extent of the separation of these
two levels. This separation of concerns allows us to characterize, investigate, and
analyze V&V research problems for self-adaptive software effectively, by focusing
specifically on the respective concerns of each level.

Although the discussion in this chapter is applicable to both feedback and
feedforward control in computing systems [9], we focus on feedback control since
runtime V&V depends on online measurements from the target system and the
adaptationmechanism.That is, measured outputs are important for making adap-
tive system quality decisions at runtime. Moreover, as feedforward control takes
also environmental disturbances—external context—into account, subsequently



Towards Practical Runtime Verification and Validation 119

we use the terms feedback loop and control loop interchangeably. Following the
feedback loop abstraction from the V&V perspective, the target system is an open
loop for which the adaptation mechanism provides the elements to close the loop.
In other words, the target software system itself is unaware of both context condi-
tions and self-performance, with respect to the satisfaction of its own functional
and non-functional (context-dependent) requirements. Thus, given that the objec-
tive of V&V is to guarantee the quality of a system, and this quality is expressed
as the fulfillment of its requirements, in SAS systems V&V tasks must be incorpo-
rated as part of the adaptation loop. This implies that, in addition to the common
context monitoring elements considered in feedback adaptation loops, additional
components dedicated to verification and testing of the target system itself are
required. At runtime, these components could, for instance, perform partial and
incremental model checking on the next most probable states with respect to the
current system state. Referred to our application example, the property to be ver-
ified could be the structural conformance of the reconfigured software application,
with respect to the SCA structural constraints.

In addition, the separation of concerns between the target system and the
adaptation mechanism implies different possible V&V interactions among these
two system levels. Each of these interactions affects, in different ways, the ulti-
mate goal of self-adaptation: the continued and effective operation of the target
system services under varying context conditions. Of course, a general require-
ment is that the adaptation mechanism executes as unobtrusively and indepen-
dently as possible from the target system. This observation has two implications.
First, the target system functionalities must execute uninterruptedly for as long
as possible while the adaptation mechanism performs the required adaptations
on these functionalities. Moreover, the target system is expected to remain func-
tional even if the V&V fails (i.e., if it indicates that the new system state is
invalid). This implies that the adaptation mechanism must also run without
interruptions. Second, unavailability of the adaptation mechanism should not
cause unavailability of the target system. However, at some point, it is reason-
able to expect that the adaptation mechanism, and even the target system itself,
will require a shut down for maintenance or correcting system failures.

3.5 When: V&V in the Adaptation Process

Traditional V&V strategies involve checking and testing before system deploy-
ment under presumably well-defined conditions of system operation. This process
of checking and testing is often automated using model checking, theorem prov-
ing, and testing tools. For context-dependent requirements, traditional V&V
activities and certification techniques, designed to be applied before system de-
ployment on fully specified requirements, are neither sufficient nor applicable.
On the one hand, these formal V&V methods are often too expensive to be exe-
cuted regularly at runtime when the system adapts due to their time and space
complexity. On the other hand, context-dependent variables are unbound at de-
sign time, but bound at runtime. Thus, performing V&V on these variables at
runtime is valuable to reduce the verification space significantly, even when the



120 G. Tamura et al.

SAS system viability zone varies with context changes. From this perspective,
it is crucial to determine precisely when in the adaptation process these V&V
operations are to be performed to guarantee the system properties and prevent
unsafe operation. As previously mentioned, the lack of effective runtime V&V
methods is considered one of the biggest obstacles and major challenges for the
wide adoption of self-adaptive software applications in industry [10].

In addition, the considerations discussed in the previous section (i.e., the
where) require the analysis of at least the following questions with respect to
when to perform V&V tasks:

i. What properties can be exclusively verified at design time (executing
neither the target system nor the adaptation mechanism)?

ii. What properties can be exclusively verified or tested at system configu-
ration time?

iii. What properties can be exclusively verified or tested at runtime?
iv. What properties can be verified or tested either at design time, configu-

ration time, or at runtime?

For instance, a machine-learning-based adaptive mechanism, such as the one
proposed by Elkhodary et al. [28], could be checked for training coverage with
respect to pre-defined adaptation cases at configuration time, before its deploy-
ment in production. However, the effectiveness of learned adaptations should
be verified at runtime, based on information gathered from the actual adapted
system behavior.

The answers to these questions are highly interdependent. For example, an
approach aimed at verifying stability (what)—a behavioral adaptation property
of the adaptation mechanism—may require the assessment of performance qual-
ity factors such as latency, throughput and capacity [5]. These factors assume
runtime (when) monitoring on the target system (where). Stability is defined as
the convergence of the subject system behavior toward a desired state. Moreover,
many of the design concerns, such as availability, performance, survivability, fault
tolerance and security, are highly interdependent and evolve at discrete points
in time. It is critical to separate these concerns at design as well as at runtime.

In our application example, the performance SLA and its SLOs (throughput
and response time—cf. Use Case 1 andUse Case 2 in Sect. 2), as well as the settling
time and SCA structural conformance properties constitute the what to validate.
Regarding thewhere question, throughput and response time must be observed on
the target system, settling time must be observed on both the adaptation mech-
anism and the target system, whereas the SCA structural conformance, on the
target system. Finally, concerning the when question, V&V tasks to ensure these
requirements and properties must be performed at runtime.

In the following section we give some answers to the when and where questions
by extending the feedback-loop elements with V&V responsibilities.



Towards Practical Runtime Verification and Validation 121

4 Making V&V Explicit in the Self-Adaptation Loop

So far, we have analyzed four key V&V drivers for SAS systems that pose major
research challenges for SEAMS-related communities: (i) the viability zone and
its dynamics; (ii) what to validate and verify, and its dependency on context
information; (iii) where to validate—closely related to the separation of concerns
between the target system and the adaptation mechanism; and (iv) when to
perform V&V in SAS with respect to the adaptation loop.

To advance SAS goal assurance, we argue for the integration of runtime V&V
tasks in the adaptation process. Accordingly, this section presents our proposal
for making V&V tasks explicit in the elements of feedback adaptation loops,
as for example in the MAPE-K loop [29]. Moreover, we discuss runtime V&V
enablers (i.e., requirements at runtime, models at runtime, and dynamic con-
text monitoring), which provide effective support to materialize V&V assurances
for self-adaptation. Our proposal, depicted in Fig. 2, clearly answers when and
where concrete V&V tasks can be implemented in the adaptation loop, using
these enablers. The V&V enablers—dashed boxes in this figure—also provide
a guide for other SEAMS-related research communities to contribute with run-
time V&V methods for SAS systems. With this proposal we contribute to the
convergence of these research communities towards the realization of suitable
assurance mechanisms for SAS systems.

Applying this proposal to our application example, we use requirements at
runtime to represent machine-readable specifications of the performance SLA,
and its throughput and response-time SLOs. In this way, runtime validators and

Requirements
@runtime

Target
Software
System

Context Monitors

Adaptation
Monitors

V&V
Monitors

Analyzer

Runtime
Validator
&Verifier

Planner Executor

Dynamic Context 
Monitoring

External Context

Models and 
Requirements@runtime

Models
@runtime

V&V Tasks

V&V Enablers

Legend

Adaptation
Goals

Internal ContextContext Facts

Adaptation
Request

Verified
Adaptation

Plan
Adaptation

Actions

Fig. 2. Runtime V&V tasks made explicit as common elements in the engineering of
self-adaptive software systems. Dashed boxes represent runtime V&V enablers.



122 G. Tamura et al.

verifiers can have access to the requirements and properties defined as adaptation
goals that must be ensured by the adaptation process. Then, we use models at
runtime to represent, the software architecture of the e-commerce platform to
be adapted, the adaptation strategies, and the context monitoring strategies.
Throughout the adaptation process, planners, runtime validators and verifiers,
and executors use service component architecture (SCA) models to manipulate
and adapt the system’s software architecture, as well as to verify properties
such as the SCA structural conformance, as realized in [30]. Similarly, we use
models at runtime to represent the information gathered by context monitors as
contextual RDF graphs. We exploit this form of representing context information
to characterize the e-commerce platform state with respect to its viability zone,
and perform inferences on this information to ensure SLAs at runtime [11].

4.1 Runtime V&V Tasks

We identify two particular elements in the adaptation loop that initiate runtime
V&V tasks: runtime validators & verifiers (associated to the Planner element),
and V&V monitors (associated to Context Monitors elements).

The Runtime Validator & Verifier. The responsibility of the runtime val-
idator & verifier elements is to verify each of the outputs (i.e., adaptation plans)
produced by the adaptation planner with respect to the properties of interest.
The instrumentation of an adaptation plan on a given system execution state
implies a change of the system state. Thus, the verification of these properties
can be performed before or after instrumenting the plan.

In the case of our application example, concerning the SCA structural confor-
mance property, the produced reconfiguration plans modify the target system’s
software architecture to obtain a new software structure to satisfy the agreed
SLOs. To prevent execution failures, these plans must be verified, before instru-
menting them, in such a way that the resulting structures satisfy the SCA in-
tegrity constraints (e.g., components, connectors, wires, and bindings). However,
if the adaptation plan is for affecting the performance SLO, the corresponding
verification should be performed after its instrumentation, with the new system’s
performance measurements. Moreover, on the new target system structure, par-
tial and incremental verification could be performed also in advance on the most
probable states that are immediately adjacent to the one generated by the adap-
tation plan. These states could be computed with statistical approaches such as
the proposed in [27]. In addition, similar verification could be performed on the
controller algorithm, if this is object of adaptation, such as in self-tuning control
approaches [31, 32].

Nonetheless, different performance and synchronization issues between the
executor and the runtime validator & verifier elements may appear. An example
of this occurs when considering the previously introduced in advance partial and
incremental V&V of the structural conformance property. In this case, the idea is
to perform V&V not only on the state produced by the adaptation plan, but also
on the most probable states that can immediately follow it, as a result of further



Towards Practical Runtime Verification and Validation 123

adaptation processes. Thus, runtime V&V elements could verify the property of
interest on these states either at the same time, or after instrumenting the plan to
reach the produced state. In other words, if the function computing the next most
probable states is correct, the system structure to be obtained with the produced
adaptation plan had to be verified in the previous adaptation. Alternatively,
the execution of this “advance” runtime verification can be delayed, and even
scheduled for later execution, for instance if this verification is highly time-
consuming and can compromise the performance SLO of the target system.

Finally, in those cases in which the system state is represented and maintained
explicitly (i.e., having a stateful representation via, for example, reflection or
models at runtime), and the system is modified by an adaptation, this explicit
state has to be transformed or updated accordingly. This is especially critical if
the state is maintained in a volatile data structure, whose layout changes when
the system is reconfigured. That is, if system information is represented in one
form in its state variables, and then the system is reconfigured such that this
information is represented in a different form, then the old values from the old
structure must be mapped into new values in the new structure. Moreover, for
the system operation to continue safely and uninterruptedly, it is crucial to (i)
make the new state (information and structure) persistent (e.g., for recovery
purposes); and (ii) be able to initialize the new system with the old information
mapped into the new state. Hence, in these cases V&V must be performed not
only on the adaptation process, but also on the state-mapping from the old
structure to the new one.

The V&V Monitors. V&V monitors are responsible for monitoring and en-
forcing the V&V tasks performed by the runtime validator & verifier elements.
Referring to the V&V tasks assigned to the runtime validator & verifier elements
in the example of the previous subsection, we could use the V&V monitors to
perform the aforementioned “advance” runtime verification. As outlined in the
previous subsection, this is a verification task that can be scheduled by the run-
time validator & verifier elements for later execution, to be performed on the
most probable states to the current one in execution.

Assurance of Runtime V&V Tasks. Derived from the previous discussion,
we identify the following questions, which pose additional challenges for ensuring
the effectiveness of V&V tasks.

What if V&V fails or provides a negative answer? To prevent the target system
from reaching inconsistent states and avoid catastrophic situations, one first
strategy is to guarantee the atomicity property in the adaptation process, as
defined in [5, 33]. That is, to guarantee that the adaptation process is an atomic
operation that finishes and successfully modifies the target system, or it fails and
the target system is left unmodified in its previous safe state. The verification
of the atomicity and termination properties is a challenging problem, given that
they should be guaranteed internally by the planner, and possibly requiring
interactions with the executor. The use of models at runtime for modeling the



124 G. Tamura et al.

target system is crucial for guaranteeing these properties, for instance as realized
by Tamura et al. [30].

How to validate “snapshots” and transitions between states without affecting the
target system? V&V tasks must not affect the desired behaviour of the adaptive
system. Therefore, we identify another kind of properties—properties of runtime
V&V methods, intended to support the safe integration of traditional V&V
techniques and mechanisms into the adaptation loop. These properties include
sensitivity, isolation, incrementality, and composability.

As stated by González et al., sensitivity and isolation refer to the level of run-
time validation that a particular SAS system can support [34]. On the one hand,
sensibility defines the degree to which V&V tasks (e.g., runtime testing oper-
ations) interfere with the running target system. That is, the degree to which
runtime V&V may affect the satisfaction of system requirements and adapta-
tion goals. Instances of factors that can affect runtime test sensitivity are (i)
component state—not only because runtime validation tasks are influenced by
the actual state of the system, but also because the state of the system can
be altered as a result of V&V operations; (ii) component interactions—as the
runtime testability of a component may depend on the testability of the com-
ponents it interacts with; (iii) resource limitations—because runtime V&V may
affect non-functional requirements on the target system, such as performance at
undesirable levels; and (iv) availability—as runtime validation can be performed
depending on whether testing tasks require exclusive usage of components with
high availability requirements.

On the other hand, they also define isolation as the means to counteract run-
time test sensitivity. Techniques for implementing test isolation include (i) state
separation (e.g., blocking the component operation while testing takes place
or performing testing on cloned components); (ii) interaction separation (e.g.,
blocking component interactions that may be propagated due to results of test
invocations); (iii) resource monitoring (e.g., indicating that testing must be post-
poned due to resource unavailability); and (iv) scheduling (e.g., planning V&V
executions when the target system and involved components are less used).

4.2 Runtime V&V Enablers

Runtime V&V techniques for SAS systems require special support to deal with
the dynamic nature of this kind of systems in the assurance of adaptation goals.
We classify this support in three main categories, as follows:

i. Enablers for the management of adaptation properties and requirements
at runtime;

ii. Enablers for the exploitation of models at runtime; and
iii. Enablers for dynamic context monitoring.

Clearly, these categories correspond to challenges of the Models@runtime [35]
and Requirements@runtime [36] communities, rather than research challenges of



Towards Practical Runtime Verification and Validation 125

V&V communities. Nevertheless, given that runtime V&V tasks for SAS rely on
this support, with this categorization we aim to provide valuable guidance, not
only for V&V researchers to understand the support that runtime V&V for SAS
requires, but also for SEAMS-related researchers to visualize how could they
attack runtime V&V challenges.

Requirements and Adaptation Properties at Runtime. The first category
of support required for runtime V&V concerns the specification of what must be
validated and verified. That is, the specification of the adaptation properties and
system requirements the adaptation process must guarantee. In either case, V&V
methods and techniques must determine whether the software product satisfies its
requirements, especially after performing adaptation operations. These require-
ments and properties, expressed using different notations and formalisms, consti-
tute the actual reference specifications for V&V tasks to accomplish their mission.
Thus, requirements and adaptation goalsmust be available asmachine-processable
specifications (cf. Requirements@runtime in Fig. 2) to be used by adaptation an-
alyzers, monitors, validators and verifiers. Furthermore, to minimize the impact
of runtime V&V tasks on the adaptive system, support for tracing changes on re-
quirements and properties is also required to identify what to validate and verify
incrementally. Manipulating requirements and adaptation properties during the
adaptive system execution poses interesting research questions such as the ones
being addressed by the Requirements@run.time research community [36].

Models at Runtime. Having machine-processable models at runtime of the
target system provides adaptation controllers, monitors, validators and verifiers
with up-to-date structural and behavioral representations of the target system,
and their relationships with adaptation properties and goals. Recalling our ap-
plication example, after the renegotiation of the performance SLA (cf. Use Case
2 in Sect. 2), the runtime representations of the system and its requirements
must change accordingly. That is, a new requirement is added to the context-
driven SLA specification, as well as the corresponding monitoring strategy, using
a contextual RDF graph. As a result, not only adaptation components, but also
V&V tasks and monitors will have up-to-date representations of the new goals
that must be ensured, and the corresponding context entities to be monitored.

Classifications of models at runtime vary from coarse-grained to fine-grained
models, from structural to behavioural models, from dynamic to static mod-
els [35]. In this endeavor, researchers from the Models@run.time community are
tackling important challenges [37, 38]. An instance of these challenges is model
evolution, which concerns with the management of changes in models over time.

Model Evolution. Having an explicit representation of the target system, the
properties to be preserved, and the relationships between these properties and
adaptation mechanisms is critical for the assessment of SAS systems at runtime.
At design time, models provide a meta-level representation of these concerns. At
execution time, instances of these design time models, models at runtime, pro-
vide up-to-date representations of the system to V&V operations. These online



126 G. Tamura et al.

representations support decision making on the preservation of desired proper-
ties. Since SAS systems are continuously changing, the effectiveness of runtime
V&V tasks depends on the timely coherence between the actual system state and
its runtime models. Model evolution support is therefore required to preserve the
coherence of runtime models with respect to the system and its environment.

Model evolution for SAS systems can borrow relevant ideas from control-
based approaches. These approaches include model reference adaptive control
(MRAC) and model identification adaptive control (MIAC) [31, 39]. MRAC and
MIAC not only separate adaptation models from adaptation controllers, but
also V&V models from V&V tasks. As illustrated in Fig. 3, MRAC and MIAC
enable a basic level of model evolution by modifying the adaptation and V&V
models at runtime. The main difference between MRAC and MIAC, from the
perspective of runtime V&V, is that in MRAC changes in models are controlled
by users, whereas in MIAC changes in models are managed by executors as
defined by runtime validators and verifiers. Changes in models (cf. label ChM:
Change model) may cause changes not only in adaptation controllers, but also in
V&V tasks (cf. labels SCh: Send changes, and AC: Adapt controllers). Therefore,
runtime support is required to adapt runtime validators and verifiers accordingly
(cf. label AC-VV). Changes in V&V models could be triggered by adaptation
mechanisms. In any case, these changes must be subject to V&V operations.
From a software engineering perspective, the probabilistic approach to model
synchronization proposed by Epifani et al. constitutes a good MIAC approach
to model evolution [32].

Different model evolution mechanisms can be applied depending on the model-
ing technique used. For example, to synchronize UML models with corresponding
systems, the model-driven engineering community provides model transforma-
tion techniques applicable at runtime [40]. In systems relying on probabilistic
models, synchronization of models is realized by changing the model’s parame-
ters at runtime. One key challenge in probabilistic models is to synchronize the
measured probabilities with the probabilities used in the model [32].

Dynamic Context Monitoring. The third category of V&V support corre-
sponds to runtime context monitoring. Context monitoring is crucial to optimize
the assessment of dynamic software systems as the effectiveness of V&V meth-
ods is highly dependent on the information provided by context sources [41].
These context information sources must be consistent with the actual system
adaptation properties and requirements. Thus, for V&V tasks to succeed in the
assessment of a SAS system, it must understand the situations of relevant con-
text entities and their implications for the preservation of system properties and
requirements, even when these requirements and properties vary over time.

Context is any information useful to characterize the state of individual enti-
ties and the relationships among them. An entity is any subject that can affect
the behaviour of the system and/or its interaction with the user. Context in-
formation must be modeled in such a way that it can be pre-processed after
its acquisition from the environment, classified according to the corresponding
domain, handled to be provisioned based on the system’s requirements, and



Towards Practical Runtime Verification and Validation 127

Requirements
@runtime

Target
Software
System

Context Monitors

Adaptation
Monitors

V&V
Monitors

Analyzer

Runtime
Validator
&Verifier

Planner Executor

Models and 
Requirements@runtime

Dynamic Context 
Monitoring

External Context

SCh: Send changes

Adaptation
Model V&V ModelController

Adaptation
V&V Tasks
Adaptation

Realizing Model Evolution
with MRAC and MIAC

ChM: Change 
model

AC: Adapt controllers

Models
@runtime

AC-P AC-VV AC-E

Adaptation
Goals

ChM: Change 
model

Fig. 3. MRAC and MIAC [31, 39] reinterpreted to realize model evolution in self-
adaptation with explicit V&V tasks

maintained to support its dynamic evolution [42]. Based on this definition, and
from the perspective of runtime V&V, runtime monitoring must support context
representation and monitoring to characterize the system’s state with respect to
its viability zone, taking into account the dynamic nature of viability zones. Re-
garding context representation, operational specifications of context information
must be able to represent semantic dependencies among properties and require-
ments to be satisfied, V&V strategies, and the environmental situations that
have impact on the system behaviour and the assessment tasks. Hence, an im-
portant challenge refers to context representation such that these specifications
can adapt dynamically, according to changes in V&V concerns. With respect to
context management, several challenges arise from the perspective of the con-
text information lifecycle, that is context acquisition, handling, provisioning,
maintenance, and disposal [42]. One of these challenges is the instrumentation
of monitoring infrastructures with dynamic capabilities to deploy new monitor-
ing strategies at runtime according to changes in V&V concerns (e.g., to deploy
new sensors or reasoning strategies based on changes in adaptation goals and
properties dynamically [11, 25, 43]). In our application example, the monitoring
infrastructure must be adapted at runtime to deploy new context sensors and
monitoring conditions provided with the new response time SLO that resulted
from contract re-negotiation (cf. Use Case 2 in Sect. 2).



128 G. Tamura et al.

Runtime monitoring could help alleviate issues concerning the application of
traditional V&V techniques at runtime. An instance of such issues is the state
explosion problem inherent in model checking techniques. In adaptive software
systems, the uncertainty of the execution environment, the dynamic nature of
system requirements, and the continuous adaptation of systems exacerbate the
problem. From this perspective, we hypothesize that if we are able to characterize
the current state of a system at a specific time during its execution, the number
of system states to be checked could be significantly smaller. At design time many
variables are free or not bounded, thus all of their possible significant values must
be checked. In contrast, at runtime, variables are bound using the actual system
state and the situation of relevant environmental (internal and external) entities.
In other words, the number of possible states for the system to maintain within its
viability zone is considerably reduced by the current and next most probable con-
text situations. This is precisely where context monitoring plays a crucial role in
the assessment of self-adaptive software systems. Nevertheless, due to the uncer-
tainty inherent in dynamic software systems, it is infeasible to specify context re-
quirements in advance exhaustively. Moreover, since context is evolving over time,
monitoring requirements—entities to be monitored and monitoring conditions—
are also continuously evolving. Therefore, the application of traditionalV&V tech-
niques to the assessment of self-adaptive systems at runtime depends on the dy-
namic capabilities of the runtime monitoring instrumentation.

5 Conclusions

In this roadmap chapter we (i) discussed key challenges for the development
of certifiable runtime V&V methods that can certify adaptation mechanisms
in the achievement of their adaptation goals; and (ii) presented how to make
explicit and integrate runtime V&V methods as concrete tasks to be performed
by elements of the adaptation process. Certifiable V&V methods and tools are
critical for the success of autonomous, autonomic, smart, self-adaptive and self-
managing systems.

We defined control science as a systematic way to study certifiable runtime
V&Vmethods and tools to allow humans to trust decisions made by self-adaptive
systems. For the first contribution, we analyzed critical differences between SAS
systems and non-adaptive ones. From these differences, we identified and dis-
cussed key factors and challenges to consider when tailoring existing V&V meth-
ods, or developing new ones, to be applied at runtime in SAS systems. For the
second, we discussed and illustrated different possibilities to integrate these V&V
methods as responsibilities for the adaptation process elements. To enable this
integration, we analyzed how to exploit some of the foundational ideas devel-
oped by SEAMS-related research communities to support the application of
V&V methods at runtime.

While self-adaptation confers obvious benefits to systems with high levels of
adaptability and autonomy, its wide adoption by industry is still limited due
to a lack of self-applicable validation and verification methods at runtime. The
positive impact that self-adaptive software can have on our society is potentially



Towards Practical Runtime Verification and Validation 129

huge. Nevertheless, without the necessary and sufficient trustworthy certification
methods the negative impact can be potentially huge too. Consequently, research
and development in runtime assurance techniques is critical to guarantee that
adaptation mechanisms will not cause the target system to produce undesired,
nor catastrophic results.

Therefore, our motivation for this chapter was to provide researchers with
a vision of open challenges in V&V for SAS systems, and discuss opportuni-
ties not only for proposing new runtime V&V techniques, but also for building
on top of existing ones. In addition, our proposal for making V&V tasks ex-
plicit in the adaptation loop provides solid starting points for V&V researchers
from other communities to deploy different techniques and methods for improv-
ing the trustworthiness of self-adaptive and self-managing systems. For this, we
analyzed runtime assessment concerns from the perspective of when in the adap-
tation process, and in which of the two parts of an adaptive system (i.e., the
where)—the target system or the adaptation mechanism—the V&V tasks must
be implemented and performed.

The questions discussed in this chapter have uncovered key research problems
that require collaborative efforts among different software engineering research
communities. In particular, models at runtime, requirements at runtime, valida-
tion and verification, and context monitoring have in the assessment of adaptive
software a unique opportunity to advance the state-of-the-art software engineer-
ing for self-adaptive systems. With our contributions in this chapter we aim
to provide researchers from various runtime V&V communities with research
avenues that can shape the development of certifiable assurance techniques, as
required for the engineering of trustworthy SAS systems.

Acknowledgments. This chapter was motivated by stimulating discussions
during Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Sys-
tems at Schloss Dagstuhl in October 2010. This work was funded in part by the
National Sciences and Engineering Research Council (NSERC) of Canada under
the Strategic Networks Grants Program (NETGP 397724-10) and Collaborative
Research and Development program (CRDPJ 320529-04 and CRDPJ 356154-
07), IBM Corporation, CA Inc., Icesi University (Cali, Colombia), and Ministry
of Higher Education and Research of Nord-Pas de Calais Regional Council and
FEDER under Contrat de Projets Etat Region (CPER) 2007-2013.

References

1. IEEE: 1012-1998: IEEE Standard for Software Verification and Validation. Tech-
nical report, Institute of Electrical and Electronics Engineers (2005)

2. IEEE: Industry Implementation of International Standard ISO/IEC 12207:95,
Standard for Information Technology-Software Life Cycle Processes. Technical re-
port, IEEE (1996)

3. Bourque, P., Dupuis, R.: Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Computer Society (2005)



130 G. Tamura et al.

4. Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4, 14:1–14:42
(2009)

5. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A Frame-
work for Evaluating Quality-Driven Self-Adaptive Software Systems. In: 6th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2011), pp. 80–89. ACM, New York (2011)

6. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

7. Schafer, W., Wehrheim, H.: The Challenges of Building Advanced Mechatronic
Systems. In: 2007 Future of Software Engineering (FOSE 2007), pp. 72–84. IEEE
Computer Society, Washington, DC (2007)

8. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A System-
atic Survey of Program Comprehension through Dynamic Analysis. IEEE Trans-
actions on Software Engineering (TSE) 35, 684–702 (2009)

9. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

10. Dahm, W.J.A.: Technology Horizons a Vision for Air Force Science & Technology
During 2010-2030. Technical report, U.S. Air Force (2010)

11. Villegas, N.M., Müller, H.A., Tamura, G.: Optimizing Run-Time SOA Governance
through Context-Driven SLAs and Dynamic Monitoring. In: 2011 IEEE Inter-
national Workshop on the Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA 2011), pp. 1–10. IEEE (2011)

12. Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O., et al.: Service Compo-
nent Architecture, Assembly Model Specification. Specification Version 1.0, Open
Service Oriented Architecture (OSOA) Collaboration (2007)

13. Thayer, R.H., Bailin, S.C., Dorfman, M.: Software Requirements Engineering, 2nd
edn. IEEE Computer Society Press, Los Alamitos (1997)

14. Dorfman, M.: System and Software Requirements Engineering, pp. 7–22. IEEE
Computer Society Press Tutorial, IEEE Computer Society Press (1990)

15. Pezzè, M., Young, M.: Software Test and Analysis: Process, Principles and Tech-
niques. John Wiley and Sons, Hoboken (2008)

16. Gat, E.: Autonomy Software Verification and Validation might not be as Hard as
it Seems (AeroConf 2004). In: 2004 IEEE Aerospace Conference, pp. 3123–3128
(2004)

17. Bucchiarone, A., Pelliccione, P., Vattani, C., Runge, O.: Self-Repairing Systems
Modeling and Verification Using AGG. In: 8th IEEE/IFIP Joint Working Interna-
tional Conference on Software Architecture (WICSA) and 3rd European Confer-
ence on Software Engineering (ECSA), pp. 181–190. IEEE (2009)

18. Bose, P., Quilling, M.: Model-Based Analysis of Autonomous Self-Adaptive Co-
operating Robots. In: 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2008), pp. 57–63. IEEE Computer Society, Wash-
ington, DC (2008)



Towards Practical Runtime Verification and Validation 131

19. Murray, R.M. (ed.): Control in an Information Rich World: Report of the Panel on
Future Directions in Control, Dynamics, and Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2003)

20. Baresi, L., Ghezzi, C.: The Disappearing Boundary between Development-time and
Run-time. In: FSE/SDP Workshop on Future of Software Engineering Research
(FoSER 2010), pp. 17–22. ACM, New York (2010)

21. Aubin, J., Bayen, A., Saint-Pierre, P.: Viability Theory: New Directions. Springer,
Heidelberg (2011)

22. Balasubramanian, S., Desmarais, R., Müller, H.A., Stege, U., Venkatesh, S.: Char-
acterizing Problems for Realizing Policies in Self-Adaptive and Self-Managing Sys-
tems. In: 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2011), pp. 70–79. ACM, New York (2011)

23. Jacklin, S.A., Lowry, M.R., Schumann, J.M., Gupta, P.P., Bosworth, J.T., Zavala,
E., Kelly, J.W.: Verification, Validation, and Certification Challenges for Adaptive
Flight-Critical Control System Software. In: American Institute of Aeronautics and
Astronautics AIAA Guidance Navigation and Control Conference and Exhibit.
American Institute of Aeronautics and Astronautics, pp. 1–10 (2004)

24. Crum, V.W., Buffington, J.M., Tallant, G.S., Krogh, B., Plaisted, C., Prasanth,
R., Bose, P., Johnson, T.: Verification & Validation of Intelligent and Adaptive
Control Systems. In: IEEE Aerospace Conference (AeroConf. 2004), pp. 68–77.
IEEE Computer Society (2004)

25. Villegas, N.M., Müller, H.A., Muñoz, J.C., Lau, A., Ng, J., Brealey, C.: A Dynamic
Context Management Infrastructure for Supporting User-driven Web Integration
in the Personal Web. In: 2011 Conference of the Center for Advanced Studies
on Collaborative Research (CASCON 2011), pp. 200–214. IBM Corp, Markham
(2011)

26. Murray, R.M., Ȧström, K.J., Boyd, S.P., Brockett, R.W., Stein, G.: Future Direc-
tions in Control in an Information Rich World. IEEE Control Systems 23, 20–33
(2003)

27. Schumann, J., Gupta, P.: Bayesian Verification & Validation Tools for Adaptive
Systems: Report on Principle of Operation and Prototypical Implementation of
Bayesian Envelope Tool for Neural Networks. Technical report, National Aeronau-
tics and Space Administration, NASA (2006)

28. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A Framework for Engineering
Self-Tuning Self-Adaptive Software Systems. In: 18th ACM International Sympo-
sium on Foundations of Software Engineering, FSE 2010, pp. 7–16. ACM, (2010)

29. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

30. Tamura, G., Casallas, R., Cleve, A., Duchien, L.: QoS Contract-Aware Reconfigu-
ration of Component Architectures Using E-Graphs. In: Barbosa, L.S. (ed.) FACS
2010. LNCS, vol. 6921, pp. 34–52. Springer, Heidelberg (2010)

31. Dumont, G., Huzmezan, M.: Concepts, Methods and Techniques in Adaptive Con-
trol. In: 2002 IEEE American Control Conference (ACC 2002), Anchorage, AK,
USA, vol. 2, pp. 1137–1150 (2002)

32. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model Evolution by Run-
Time Parameter Adaptation. In: 31st International Conference on Software Engi-
neering (ICSE 2009), pp. 111–121. IEEE (2009)

33. Léger, M., Ledoux, T., Coupaye, T.: Reliable Dynamic Reconfigurations in a Re-
flective Component Model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)



132 G. Tamura et al.

34. González, A., Piel, E., Gross, H.G.: A Model for the Measurement of the Run-
time Testability of Component-Based Systems. In: 2009 International Conference
on Software Testing Verification and Validation Workshops (ICSTW), pp. 19–28.
IEEE (2009)

35. Bencomo, N., Blair, G., France, R., Muñoz, F., Jeanneret, C.: 4th Interna-
tional Workshop on Models@run.time. In: Ghosh, S. (ed.) MODELS 2009. LNCS,
vol. 6002, pp. 119–123. Springer, Heidelberg (2010)

36. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems. A Research Agenda for RE For Self-Adaptive Systems. In: 18th
International Requirements Engineering Conference (RE 2010), pp. 95–103. IEEE
(2010)

37. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42, 22–27
(2009)

38. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 2007 Future of Software Engineering (FOSE 2007). IEEE
Computer Society (2007)

39. Müller, H.A., Kienle, H.M., Stege, U.: Autonomic Computing Now You See It, Now
You Don’t. In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413,
pp. 32–54. Springer, Heidelberg (2009)

40. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MODELS
2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010)

41. Goldsby, H., Cheng, B., Zhang, J.: AMOEBA-RT: Run-Time Verification of Adap-
tive Software. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 212–224.
Springer, Heidelberg (2008)

42. Villegas, N.M., Müller, H.A.: Managing Dynamic Context to Optimize Smart In-
teractions and Services. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The
Smart Internet. LNCS, vol. 6400, pp. 289–318. Springer, Heidelberg (2010)

43. Villegas, N.M., Müller, H.A.: Context-driven Adaptive Monitoring for Supporting
SOA Governance. In: 4th International Workshop on a Research Agenda for Main-
tenance and Evolution of Service-Oriented Systems (MESOA 2010). CMU/SEI-
2011-SR-008, Pittsburgh: Carnegie Mellon University (2011)



Awareness Requirements�

Vítor E. Silva Souza1, Alexei Lapouchnian1,
William N. Robinson2, and John Mylopoulos1

1 Department of Inf. Engineering and Computer Science, University of Trento, Italy
{vitorsouza,lapouchnian,jm}@disi.unitn.it

2 Department of Computer Information Systems, Georgia State University, USA
wrobinson@gsu.edu

Abstract. The functional specification of any software system opera-
tionalizes stakeholder requirements. In this paper we focus on a class
of requirements that lead to feedback loop operationalizations. These
Awareness Requirements talk about the runtime success/failure of other
requirements and domain assumptions. Our proposal includes a language
for expressing awareness requirements, as well as techniques for elicita-
tion and implementation based on the EEAT requirements monitoring
framework.

1 Introduction

There is much and growing interest in software systems that can adapt to changes
in their environment or their requirements in order to continue to fulfill their man-
date. Such adaptive systems usually consist of a system proper that delivers a
required functionality, along with a monitor-analyze-plan-execute (MAPE [18])
feedback loop that operationalizes the system’s adaptability mechanisms. Indica-
tions for this growing interest can be found in recent workshops and conferences
on topics such as adaptive, autonomic and autonomous software (e.g., [7,23,14]).

We are interested in studying the requirements that lead to this feedback loop
functionality. In other words, if feedback loops constitute an (architectural) so-
lution, what is the requirements problem this solution is intended to solve? The
nucleus of an answer to this question can be gleamed from any description of
feedback loops: “... the objective ... is to make some output, say y, behave in a
desired way by manipulating some input, say u ...” [10]. Suppose then that we
have a requirement r = “supply customer with goods upon request” and let s be
a system operationalizing r. The “desired way” of the above quote for s is that it
always fulfills r, i.e., every time there is a customer request the system meets it
successfully (here, the notion of “success” depends on the type of system: for soft-
ware systems, it means completing the transaction without errors or exceptions,
whereas for socio-technical systems “success” could involve the participation of
human actors, e.g., goods are properly delivered to the customer). This means
� This is an extended version of the paper titled “Awareness Requirements for Adap-

tive Systems" published in the proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS ”11), pages
60–69. ACM, 2011.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 133–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



134 V.E. Silva Souza et al.

that the system somehow manages to deliver its functionality under all circum-
stances (e.g., even when one of the requested items is not available). Such a
requirement can be expressed, roughly, as r1 = “Every instance of requirement
r succeeds”. And, of course, an obvious way to operationalize r1 is to add to the
architecture of s a feedback loop that monitors if system responses to requests are
being met, and takes corrective action if they are not. We can generalize on this:
we could require that s succeeds more than 95% of the time over any one-month
period, or that the average time it takes to supply a customer over any one week
period is no more than 2 days. The common thread in all these examples is that
they define requirements about the run-time success/failure/quality-of-service of
other requirements. We call these self-awareness requirements.

A related class of requirements is concerned with the truth / falsity of domain
assumptions. For our example, we may have designed our customer supply sys-
tem on the domain assumption d = “suppliers for items we distribute are always
open”. Accordingly, if supplier availability is an issue for our system, we may
want to add yet another requirement r2 = “d will not fail more than 2% of the
time during any 1-month period”. This is also an awareness requirement, but it
is concerned with the truth/falsity of a domain assumption.

The objective of this paper is to study Awareness Requirements (hereafter re-
ferred to as AwReqs), which are characterized syntactically as requirements that
refer to other requirements or domain assumptions and their success or failure
at runtime. AwReqs are represented in an existing language and can be directly
monitored by a requirements monitoring framework. Although the technical con-
tribution of this paper is focused on the definition and study of AwReqs and their
monitoring at runtime, we do provide a discussion on how to go from AwReqs to
adaptive systems, giving an overview of subsequent steps in this process.

Awareness is a topic of great importance within both Computer and Cognitive
Sciences. In Philosophy, awareness plays an important role in several theories of
consciousness. In fact, the distinction between self-awareness and contextual re-
quirements seems to correspond to the distinction some theorists draw between
higher-order awareness (the awareness we have of our own mental states) and
first-order awareness (the awareness we have of the environment) [29]. In Psy-
chology, consciousness has been studied as “self-referential behavior”. Closer to
home, awareness is a major design issue in Human-Computer Interaction (HCI)
and Computer-Supported Cooperative Work (CSCW). The concept in various
forms is also of interest in the design of software systems (security / process /
context / location / ... awareness).

As part of our proposal’s evaluation, which we detail in section 5, we have
analyzed, designed and developed a simulation of a real-world system: an Am-
bulance Dispatch System (ADS), whose requirements have been documented by
students of the University of Texas at Dallas [28]. We will use this application
as running example throughout this paper.

The rest of the paper is structured as follows. Section 2 presents the re-
search baseline; section 3 introduces AwReqs and talks about their elicitation;
section 4 discusses their specification; section 5 talks about AwReqs monitoring



Awareness Requirements 135

implementation and presents evaluation results from experiments with our pro-
posal; section 6 summarizes related work; section 7 discusses the role of AwReqs
in a systematic process for the development of adaptive systems based on feed-
back loops; finally, section 8 concludes the paper.

2 Baseline

This section introduces background research used in subsequent sections of this
paper: Goal-Oriented Requirements Engineering (§2.1), feedback loops (§2.2)
and requirements monitoring (§2.3).

2.1 Goal-Oriented Requirements Engineering

Our proposal is based on Goal-oriented Requirements Engineering (GORE).
GORE is founded on the premise that requirements are stakeholder goals to
be fulfilled by the system-to-be along with other actors. Goals are elicited from
stakeholders and are analyzed by asking “why” and “how” questions [8]. Such
analysis leads to goal models which are partially ordered graphs with stakeholder
requirements as roots and more refined goals lower down. Our version of goal
models is based loosely on i� strategic rationale models [37]. Figure 1 shows a
goal model for an Ambulance Dispatch System (ADS).

Fig. 1. Example goal model for an Ambulance Dispatch System

In our example, the main goal of the system is to support ambulance dispatch-
ing. Goals can be AND/OR refined. An AND-refinement means that in order
to accomplish the parent goal, all sub-goals must be satisfied, while for an OR-
refinement, only one of the sub-goals has to be attained. For example, to receive



136 V.E. Silva Souza et al.

an emergency call, one has to input its information, determine its uniqueness
(have there been other calls for the same emergency?) and send it to dispatch-
ers, all on the assumption that “Communication networks [are] working”1. On the
other hand, periodic update of an ambulance’s status can be performed either
automatically or manually.

Goals are refined until they reach a level of granularity where there are tasks
an actor (human or system) can perform to fulfill them. In the figure, goals are
represented as ovals and tasks as hexagons. Note that we represent AND/OR
refinement relations, avoiding the term decomposition as it usually carries a part-
whole semantic which would constrain its use among elements of the same kind2

(i.e., goal to goal, task to task, etc.). A refinement relation, on the other hand,
can be applied between a goal and a task or a goal and a domain assumption
and indicate how to satisfy the parent element: the goal is satisfied if all (AND)
or any (OR) of its children are satisfied. In their turns, tasks are satisfied if they
are executed successfully and domain assumptions are satisfied if they hold (the
affirmation is true) while the user is pursuing its parent goal.

Softgoals are special types of goals that do not have clear-cut satisfaction cri-
teria. In our example, stakeholders would like ambulance dispatching to be fast,
dispatched calls to be unambiguous and prioritized, and selected ambulances to be
as close as possible to the emergency site. Softgoal satisfaction can be estimated
through qualitative contribution links that propagate satisfaction or denial and
have four levels of contribution: break (- -), hurt (-), help (+) and make (++).
E.g., selecting an ambulance using the software system contributes positively to
the proximity of the ambulance to the emergency site, while using manual am-
bulance status update, instead of automatic, contributes negatively to the same
criterion. Contributions may exist between any two goals (including hard goals).

Softgoals are obvious starting points for modeling non-functional require-
ments. To make use of them in design, however, they need to be refined to
measurable constraints on the system-to-be. These are quality constraints (QCs),
which are perceivable and measurable entities that inhere in other entities [17].
In our example, unambiguity is measured by the number of times two ambu-
lances are dispatched to the same location, while fast assistance is refined into
two QCs: ambulances arriving within 10 or 15 minutes to the emergency site.

Finally, domain assumptions (DAs) indicate states of the world that we as-
sume to be true in order for the system to work. For example, we assume that
communication networks (telephone, Internet, etc.) are available and functional.
If this assumption were to be false, its parent goal (“Receive emergency call”)
would not be satisfied.

1 These requirements are for illustrative purposes and, thus, are quite simple. Real-
world systems would probably have multiple domain assumptions, one for each level
of communication service, or even have assumptions parameterized by control vari-
ables that can be tuned at runtime — see §7.1 for a discussion on control variables.

2 One could argue that it makes no sense to consider a task or a domain assumption
a part of a goal. In effect, we have received such criticism in the past, in more than
one occasion.



Awareness Requirements 137

2.2 Feedback Loops

The recent growth of software systems in size and complexity made it increas-
ingly infeasible to maintain them manually. This led to the development of a
new class of self-adaptive systems, which are capable of changing their behavior
at runtime due to failures as well as in response to changes in themselves, their
environment, or their requirements. While attempts at adaptive systems have
been made in various areas of computing, Brun et al. [6] argue for systematic
software engineering approaches for developing self-adaptive systems based on
the ideas from control engineering [15] with focus on explicitly specified feed-
back loops. Feedback loops provide a generic mechanism for self-adaptation. To
realize self-adaptive behavior, systems typically employ a number of feedback
controllers, possibly organized into controller hierarchies.

The main idea of feedback control is to use measurements of a system’s outputs
to achieve externally specified goals [15]. The objective of a feedback loop is
usually to maintain properties of the system’s output at or close to its reference
input. The measured output of the system is evaluated against the reference
input and the control error is produced. Based on the control error, the controller
decides how to adjust the system’s control input (parameters that affect the
system) to bring its output to the desired value. To do that, the controller needs
to possess a model of the system. In addition, a disturbance may influence the
way control input affects output. Sensor noise may be present as well. This view
of feedback loops does not concentrate on the activities within the controller
itself. That is the emphasis of another model of a feedback loop, often called
the autonomic control loop [9]. It focuses on the activities that realize feedback:
monitoring, analysis, plan, execution — MAPE [18].

The common control objectives of feedback loops are regulatory control (mak-
ing sure that the output is equal or near the reference input), disturbance rejection
(ensuring that disturbances do not significantly affect the output), constrained op-
timization (obtaining the “best” value for the measured output) [15]. Control the-
ory is concerned with developing control systems with properties such as stability
(bounded input produces bounded output), accuracy (the output converges to the
reference input), etc. While most of these guidelines are best suited for physical
systems, many can be used for feedback control of software systems.

Using the ADS as an example, a feedback loop would: (1) monitor particular
indicators of the system which are of interest to the stakeholders — e.g., the time
it takes for ambulances to arrive at the location of the incidents; (2) compare
the monitored values of these indicators with reference values specified in the
requirements — e.g., QCs in the ADS goal model indicate ambulances should
arrive in 10 or 15 minutes; and (3) if the monitored values do not satisfy the
requirements, do something to fix the problem — e.g., increase the number of
ambulances, change their locations around the city, etc. In this paper we propose
Awareness Requirements as indicators to be monitored by the feedback loop,
whereas the other steps of the loop in the context of our research are briefly
discussed in section 7. Our view of adaptive systems as control systems has also
been featured in a recently published position paper [34].



138 V.E. Silva Souza et al.

2.3 Requirements Monitoring

Monitoring is the first step in MAPE feedback loops and, as will be characterized
in section 3, since AwReqs refer to the success/failure of other requirements, we
will need to monitor requirements at runtime.

Therefore, we have based the monitoring component of our implementation
on the requirements monitoring framework EEAT3, formerly known as ReqMon
[24]. EEAT, an Event Engineering and Analysis Toolkit, provides a programming
interface (API) that simplifies temporal event reasoning. It defines a language
to specify goals and can be used to compile monitors from the goal specification
and evaluate goal fulfillment at runtime.

EEAT’s architecture is presented in more detail along with our implementa-
tion in section 5. In it, requirements can be specified in a variant of the Object
Constraints Language (OCL), called OCLTM — meaning OCL with Temporal
Message logic [25]. OCLTM extends OCL 2.0 [2] with:

– Flake’s approach to messages [12]: replaces the confusing ˆ message(), ˆ̂
message() syntax with sentMessage/s, receivedMessage/s attributes in
class OclAny;

– Standard temporal operators: ◦ (next), • (prior), ♦ (eventually), �
(previously), � (always), � (constantly), W (always ... unless), U
(always ... until);

– The scopes defined by Dwyer et al. [11]: globally, before, after, between
and after ... until. Using the scope operators simplifies property specifica-
tion;

– Patterns, also in Dwyer et al. [11]: universal, absence, existence, bounded
existence, response, precedence, chained precedence and chained
response;

– Timeouts associated with scopes: e.g. after(Q, P, ‘3h’) indicates that P
should be satisfied within three hours of the satisfaction of Q.

Figure 2 shows an example of OCLTM constraint on the ADS. The invariant
getsDispatched determines that if a call receives the confirmUnique message,
eventually an ambulance should get the message dispatch and both messages
should refer to the same callID argument. Given an instrumented Java im-
plementation of these objects and a program in which they exchange messages
through method calls, EEAT is able to monitor and assert this invariant at run-
time. In section 5, we describe in more detail how EEAT accomplishes this in
the context of AwReqs monitoring.

Although in our proposal AwReqs can be expressed in any language that
provides temporal constructs (e.g., LTL, CTL, etc.), examples of AwReq specifi-
cations in section 4 will be given using OCLTM , which is also the language used
for our proposal’s validation, presented in section 5.

3 http://eeat.cis.gsu.edu:8080/

http://eeat.cis.gsu.edu:8080/


Awareness Requirements 139

Fig. 2. An example of OCLTM constraint

3 Awareness Requirements

As we have mentioned in section 1, feedback loops can provide adaptivity for a
given system by introducing activities such as monitoring, analysis (diagnosis),
planning and execution (of compensations) to the system proper. We are inter-
ested in modeling the requirements that lead to this feedback loop functionality.
In control system terms (see §2.2), the reference input in this case is the system
fulfilling its mandate (its requirements). Feedback loops, then, need to measure
the actual output and compare it to the reference input, in other words, verify
if requirements are being satisfied or not.

Furthermore, Berry et al. [4] defined the envelope of adaptability as the limit
to which a system can adapt itself: “since for the foreseeable future, software
is not able to think and be truly intelligent and creative, the extent to which
a [system] can adapt is limited by the extent to which the adaptation analyst
can anticipate the domain changes to be detected and the adaptations to be
performed.”

In this context, to completely specify a system with adaptive characteristics,
requirements for adaptation have to be included in the specifications. We propose
a new kind of requirement, which we call Awareness Requirement, or AwReq, to
fill this need. AwReqs promote feedback loops for adaptive systems to first-class
citizens in Requirements Engineering.

In this section, we characterize AwReqs as requirements for feedback loops
that implement adaptivity (§3.1); propose patterns to facilitate their elicitation,
along with a way to represent them graphically in the goal model (§3.2); and
discuss the elicitation of this new type of requirements (§3.3). We illustrate all
of our ideas using our running example, the ADS (figure 1).

3.1 Characterization

AwReqs are requirements that talk about the run-time status of other require-
ments. Specifically, AwReqs talk about the states requirements can assume dur-
ing their execution at runtime. Figure 3 shows these states which, in the context
of our modeling framework, can be assumed by goals, tasks, DAs, QCs and
AwReqs themselves. When an actor starts to pursue a requirement, its result
is yet Undecided. Eventually, the requirement will either have Succeeded, or
Failed. For goals and tasks, there is also a Canceled state.



140 V.E. Silva Souza et al.

Fig. 3. States assumed by a requirement at runtime

Table 1. Examples of AwReqs, elicited in the context of the ADS

Id Description Type Pattern

AR1 Input emergency information should
never fail

– NeverFail(T-InputInfo)

AR2 Communications networks working
should have 99% success rate

Aggregate SuccessRate(D-CommNets
Work, 99%)

AR3 Search call database should have a 95%
success rate over one week periods

Aggregate SuccessRate(G-Search
CallDB, 95%, 7d)

AR4 Dispatch ambulance should fail at most
once a week

Aggregate MaxFailure(G-Dispatch
Amb, 1, 7d)

AR5 Ambulance arrives in 10 minutes
should succeed 60% of the time,
while Ambulance arrives in 15 minutes
should succeed 80%, measured daily

Aggregate @daily SuccessRate(
Q-Amb10min, 60%) and
SuccessRate(Q-Amb15min,
80%)

AR6 Update automatically should succeed
100 times more than the task Update
manually

Aggregate ComparableSuccess(
T-UpdAuto, T-UpdManual,
100)

AR7 The success rate of No unnecessary
extra ambulances for a month should
not decrease, compared to the previous
month, two times consecutively

Trend not TrendDecrease(
Q-NoExtraAmb, 30d, 2)

AR8 Update arrival at site should be suc-
cessfully executed within 10 minutes
of the successful execution of Inform
driver, for the same emergency call

Delta ComparableDelta(
T-UpdArrSite,
T-InformDriver, time,
10m)

AR9 Mark as unique or duplicate should be
decided within 5 minutes

Delta StateDelta(T-MarkUnique,
Undecided, *, 5m)

AR10 AR3 should have 75% success rate over
one month periods

Meta SuccessRate(AR3, 75%,
30d)

AR11 AR5 should never fail Meta NeverFail(AR5)



Awareness Requirements 141

Table 1 shows some of the AwReqs that were elicited during the analysis of
the ADS. These examples illustrate the different types of AwReqs, which are
discussed in the following paragraphs. Table 1 also indicates the pattern of each
AwReq and we further elaborate on this matter on section 3.2.

The examples illustrate a number of types of AwReq. AR1 shows the simplest
form of AwReq: the requirement to which it refers should never fail. Considering
a control system, the reference input is to fulfill the requirement. If the actual
output is telling us the requirement has failed, the control system must act
(compensate, reconcile — out of the scope of this proposal and briefly discussed
in section 7) in order to bring the system back to an acceptable state. AR1
considers every instance of the referred requirement. An instance of a task is
created every time it is executed and the “never fail” constraint is to be checked
for every such instance. Similarly, instances of a goal exist whenever the goal
needs to be fulfilled, while DA and QC instances are created whenever their
truth/falsity needs to be checked in the context of a goal fulfillment.

Inspired by the three modes of control of the proportional-integral-differential
(PID) controller, a widely used feedback controller type [10], we propose three
types of AwReqs : Aggregate AwReqs act like the integral component, which con-
siders not only the current difference between the output and the reference in-
put (the control error), but aggregates the errors of past measurements. Delta
AwReqs were inspired by how proportional control sets its output proportional
to the control error. Trend AwReqs follow the idea of the derivative control,
which sets its output according to the rate of change of the control error. We
define and exemplify each type of AwReq in the following.

An aggregate AwReq refers to the instances of another requirement and
imposes constraints on their success/failure rate. E.g., AR2 is the simplest aggre-
gate AwReq: it demands that the referred DA be true 99% of the time the goal
Receive emergency call is attempted. Aggregate AwReqs can also specify the pe-
riod of time to consider when aggregating requirement instances (e.g., AR3). The
frequency with which the requirement is to be verified is an optional parameter
for AwReqs. If it is omitted, then the designer is to select the frequency (if the
period of time to consider has been specified, it can be used as default value
for the verification frequency). AR5 is an example of an AwReq with verification
interval specified.

Another pattern for aggregate AwReq specifies the min/max success/failure
a requirement is allowed to have (e.g., AR4). AwReqs can combine different re-
quirements, like AR5, that integrates two QCs with different target rates. One
can even compare the success counts of two requirements (AR6). This captures a
desired property of the alternative selection procedure when deciding at runtime
how to fulfill a goal.

AR7 is an example of a trend AwReq that compare success rates over a num-
ber of periods. Trend AwReqs can be used to spot problems in how success/failure
rates evolve over time. Delta AwReqs, on the other hand, can be used to spec-
ify acceptable thresholds for the fulfillment of requirements, such as achievement
time. AR8 specifies that task Update arrival at site should be satisfied (successfully



142 V.E. Silva Souza et al.

finish execution) within 10 minutes of completing task Inform driver. This means
that once the dispatcher has informed the ambulance driver where the emergency
is, she should arrive there within 10 minutes.

Another delta AwReq, AR9, shows how we can talk not only about success and
failure of requirements, but about changes of states, following the state machine
diagram of figure 3. In effect, when we say a requirement “should [not] succeed
(fail)” we mean that it “should [not] transition from Undecided to Succeeded
(Failed)”. AR9 illustrates yet another case: the task Mark as unique or duplicate
should be decided — i.e., should leave the Undecided state — within 5 minutes.
In other words, regardless if they succeeded or fail, operators should not spend
more than 5 minutes deciding if a call is a duplicate of another call or not.

Finally, AR10 and AR11 are the examples of meta-AwReqs: AwReqs that talk
about other AwReqs. As we have previously discussed, AwReqs are based on the
premise that even though we elicited, designed and implemented a system plan-
ning for all requirements to be satisfied, at runtime things might go wrong and
requirements could fail, so AwReqs are added to trigger system adaptation in
these cases. In this sense, AwReqs themselves are also requirements and, there-
fore, are also bound to fail at runtime. Thus, meta-AwReqs can provide further
layers of adaptation in some cases if needed be.

One of the motivations for meta-AwReqs is the application of gradual rec-
onciliation/compensations actions. This is the case with AR10: if AR3 fails (i.e.,
Search call database has less than 95% success rate in a week), tagging the calls
as “possibly ambiguous” (reconciling AR3) might be enough, but if AR3’s suc-
cess rate considering the whole month is below 75% (e.g., it fails at least two
out of four weeks), a deeper analysis of the database search problems might be
in order (reconciling AR10). Another useful case for meta-AwReqs is to avoid
executing specific reconciliation/compensation actions too many times. For ex-
ample, AR5 states that 60% of the ambulances should arrive in up to 10 minutes
and 80% in up to 15 and to reconcile we should trigger messages to all users of
the ADS. To avoid sending repeated messages in case it fails again, AR11 states
that AR5 should never fail and, in case it does, its reconciliation decreases AR5’s
percentages by 10 points (to 50% and 70%, respectively), which means that a
new message will be sent only if the emergency response performance actually
gets worse. If sending this message twice a month were to be avoided, AR11’s
reconciliation could be, for example, disabling AR5 for that month. As mentioned
before, reconciliation is discussed in section 7.

With enough justification to do so, one could model an AwReq that refers to a
meta-AwReq, which we would call a meta-meta-AwReq — or third-level AwReq.
There is no limit on how many levels can be created, as long as meta-AwReqs
from a given level refer strictly to AwReqs from lower levels, in order to avoid
circular references. It is important to note that the name meta-AwReq is due
only to the fact that it consists of an AwReq over another AwReq. This does not
mean, however, that multiple levels of adaptation loops are required to monitor
them. As will be presented in section 5, monitoring is operationalized by EEAT,
which does so by matching method calls to invariants described in OCLTM (an



Awareness Requirements 143

example of this was presented in section 2.3), regardless of the class of the object
that is receiving the message (goal, task, AwReq, meta-AwReq, etc.).

3.2 Patterns and Graphical Representation

Specifying AwReqs is not a trivial task. For this reason we propose AwReq pat-
terns to facilitate their elicitation and analysis and a graphical representation
that allows us to include them in the goal model, improving communication
among system analysts and designers.

Many AwReqs have similar structure, such as “something must succeed so
many times”. By defining patterns for AwReqs we create a common vocabulary
for analysts. Furthermore, patterns are used in the graphical representation of
AwReqs in the goal model and code generation tools could be provided to au-
tomatically write the AwReq in the language of choice based on the pattern.
In section 5.1, we provide OCLTM idioms for this kind of code generation. We
expect that the majority (if not all) AwReqs fall into these patterns, so their use
can relieve requirements engineers from most of the specification effort.

Table 2 contains a list of patterns that we have identified so far in our research
on this topic. This list is by no means exhaustive and each organization is free to
define its own patterns (with their own names and meanings). We have already
shown the pattern representation of the AwReqs that were elicited for the ADS in
the last column of table 1. For such representation, we have used the patterns of
table 2, mnemonics to refer to the requirements and abbreviated amounts of time

Table 2. A non-exhaustive list of AwReq patterns

Pattern Meaning

NeverFail(R) Requirement R should never fail. Analogous patterns
AlwaysSucceed, NeverCanceled, etc.

SuccessRate(R, r, t) R should have at least success rate r over time t.

SuccessRateExecutions
(R, r, n)

R should have at least success rate r over the latest n
executions.

MaxFailure(R, x, t) R should fail at most x times over time t. Analogous
patterns MinFailure, MinSuccess and MaxSuccess.

ComparableSuccess(R, S,
x, t)

R should succeed at least x times more than S over
time t.

TrendDecrease(R, t, x) The success rate of R should not decrease x times
consecutively considering periods of time specified by
t. Analogous pattern TrendIncrease.

ComparableDelta(R, S, p,
x)

The difference between the value of attribute p in
requirements R and S should not be greater than x.

StateDelta(R, s1, s2, t) R should transition from state s1 to state s2 in less
time than what is specified in t.

P1 and / or P2; not P Conjunction, disjunction and negation of patterns.



144 V.E. Silva Souza et al.

like in OCLTM timeouts [25]. Furthermore, it is important to note that when
requirements engineer create patterns, they are responsible for their consistency
and correctness and, unfortunately, our approach does not provide any tool to
help in this task.

Given that AwReqs can be shortened by a pattern we propose they be rep-
resented graphically in the goal model along with other elements such as goals,
tasks, softgoals, DAs and QCs. For that purpose, we introduce the notation
shown in figure 4, which shows the goal model of the ADS with the addition of
AwReqs, represented graphically in the model. AwReqs are represented by thick
circles with arrows pointing to the element to which they refer and the AwReq
pattern besides it. The first parameter of the pattern is omitted, as the AwReq
is pointing to it. In case an AwReq does not fit a pattern, the analyst should
write its name and document its specification elsewhere.

3.3 Sources of Awareness Requirements

Like other types of requirements, AwReqs must be systematically elicited. Since
they refer to the success/failure of other requirements, their elicitation takes
place after the basic requirements have been elicited and the goal model con-
structed. There are several common sources of AwReqs and, in this section, we
discuss some of these sources. We do not, however, propose a systematic process
for AwReq elicitation and requirements engineers should use existing requirement
elicitation techniques to discover requirements that belong to this new class.

One obvious source consists of the goals that are critical for the system-to-
be to fulfill its purpose. If the aim is to create a robust and resilient system,
then there have to be goals/tasks in the model that are to be achieved/executed
at a consistently high level of success. Such a subset of critical goals can be
identified in the process and AwReqs specifying the precise achievement rates
that are required for these goals will be attached to them. This process can
be viewed as the operationalization of high-level non-functional requirements
(NFRs) such as Robustness, Dependability, etc. For example, the task Input
emergency information is critical for this process since all subsequent activities
depend on it. Also, government regulations and rules may require that certain
goals cannot fail or be achieved at high rates. Similarly, AwReqs are applied to
DAs that are critical for the system (e.g., Communications networks working).

As shown in section 3.1, AwReqs can be derived from softgoals. There, we
presented a QC Ambulance arrives in 10 minutes that metricizes a high-level
softgoal Fast assistance. Then, AwReq AR5 is attached to it requiring the success
rate of 60%. This way the system is able to quantitatively evaluate at runtime
whether the quality requirements are met over large numbers of process instances
and make appropriate adjustments if they are not.

Qualitative softgoal contribution labels in goal models capture how goals and
tasks affect NFRs, which is helpful, e.g., for the selection of the most appropriate
alternatives. In the absence of contribution links, AwReqs can be used to capture
the fact that particular goals are important or even critical to meet NFRs and
thus those goals’ high rate of achievement is needed. This can be viewed as



Awareness Requirements 145

Fig. 4. Goal model of figure 1 with AwReqs represented graphically

an operationalization of a contribution link. For example, the task Prioritize
calls in figure 1 positively affects the softgoal Prioritized information and can
even be considered critical with respect to that softgoal. So, an AwReq, say,
SuccessRate(Prioritize Calls, 90%), can be added to the model to capture that
fact. On the other hand, if a goal has a negative effect on an NFR, then an
AwReq could demand a low success rate for it.

In Tropos [5] and other variations of goal modeling notation, alternatives intro-
duced by OR-decomposed goals are frequently evaluated with respect to certain
softgoals. The goal Periodic updates in figure 1 (of figure 4) is such an example.
The evaluations are qualitative and show whether alternatives contribute posi-
tively or negatively to softgoals. In our approach, softgoals are refined into QCs
and the qualitative contribution links are removed. However, the links do cap-
ture valuable information on the relative fitness of alternative ways to achieve
goals. AwReqs can be used as a tool to make sure that “good” alternatives are
still preferred over bad ones. For instance, the AwReq AR6 states that automatic
updates must be executed more often than manual ones, presumably because
this is better for proximity of ambulances to target locations and due to the
costs of manual updates. This way the intuition behind softgoal contribution
links is preserved. If multiple conflicting softgoals play roles in the selection of
alternatives, then a number of alternative AwReqs can be created since the selec-
tion of the best alternative will be different depending on the relative priorities
of the conflicting NFRs.

One of the difficulties with AwReqs elicitation is coming up with precise spec-
ifications for the desired success rates over certain number of instances or during
a certain time frame. To ease the elicitation and maintenance we recommend
a gradual elicitation, first using high-level qualitative terms such as “medium”



146 V.E. Silva Souza et al.

or “high” success rate, “large” or “medium” number of instances, etc. Thus, the
AwReq may originate as “high success rate of G over medium number of instances”
before becoming SuccessRate(G, 95%, 500). Of course, the quantification of these
high-level terms is dependent on the domain and on the particular AwReq. So,
“high success rate” may be mapped to 80% in one case and to 99.99% in another.
Additionally, using abstract qualitative terms in the model while providing the
mapping separately helps with the maintenance of the models since the model
remains intact while only the mapping is changing.

4 Specifying Awareness Requirements

We have just introduced AwReqs as requirements that refer to the success or fail-
ure of other requirements. This means that the language for expressing AwReqs
has to treat requirements as first class citizens that can be referred to. Moreover,
the language has to be able to talk about the status of particular requirements
instances at different time points. We have chosen to use an existing language,
namely OCLTM , over creating a new one, therefore inheriting its syntax and
semantics. The subset of OCLTM features available to requirements engineers
when specifying AwReqs is the subset supported by the monitoring framework,
EEAT, introduced in section 2.3. A formal definition of the syntax and the se-
mantics of AwReqs is out of the scope of this paper.

Our general approach to using it is as follows: (i) design-time requirements
— as shown in figure 1, but also the AwReqs of table 1 — are represented as
UML classes, (ii) run-time instances of requirements, such as various ambulance
dispatch requests, are represented as instances of these classes. Representing sys-
tem requirements (previously modeled as a goal model) in a UML class diagram
is a necessary step for the specification of AwReqs in any OCL-based language,
as OCL constraints refer to classes and their instances, attributes and methods.
Even though other UML diagrams (such as the sequence diagram or the activity
diagram) might seem like a better choice for the representation of requirements
and AwReqs, having instances of classes that represent requirements at runtime
is mandatory for the OCL-based infrastructure that we have chosen.

Hence, we present in figure 5 a model that represents classes that should be
extended to specify requirements. In other words, each requirement of our system
should be represented by a UML class, extending the appropriate class from
the diagram of figure 5. These classes have the same name as the mnemonics
used in the pattern column of table 1. Moreover, the first letter of each class
name indicates which element of figure 5 is being extended (T for Task, G for
Goal and so forth). Note that the diagram of figure 5 does not represent a meta-
model for requirements due to the fact that the classes that represent the system
requirements are subclasses of the classes in this diagram, not instances of them
as it is the case with meta-models. This inheritance is necessary in order for
AwReq specifications to be able to refer to the methods defined in these classes,
as they are inherited by the requirement classes.

Another important observation is that these classes are only an abstract rep-
resentation of the elements of the goal model (figure 1) and they are part of the



Awareness Requirements 147

Fig. 5. Class model for requirements in GORE

monitoring framework that will be presented in section 5. They are not part of
the monitored system (i.e., the ADS). In other words, the actual requirements
of the system are not implemented by means of these classes.

Figure 6 shows the specification of some AwReqs of table 1 using OCLTM .
For example, consider AR1, which refers to a UML Task requirement. Figure 6
presents AR1 as an OCL invariant on the class T-InputInfo, which should be
a subclass of Task (from figure 5) and represents requirement Input emergency
information. The invariant dictates that instances of T-InputInfo should never
be in the Failed state, i.e., Input emergency information should never fail.

Aggregate AwReqs place constraints over a collection of instances. In AR3,
for example, all instances of G-SearchCallDB executed in the past 7 days are
retrieved in a set named week (using date comparison as in [25]), then we use the
select() operation again to separate the subset of the instances that succeeded
and, finally, we compare the sizes of these two sets in order to assert that 95%
of the instances are successful at all times (always).

Trend AwReqs are similar, but a bit more complicated as we must separate
the requirements instances into different time periods. For AR7, the select()
operation was used to create sets with the instances of Q-NoExtraAmb for the
past three months to compare the rate of success over time.

Delta AwReqs specify invariants over single instances of the requirements. AR8
singles out the instances of T-UpdAtSite that are related to T-InformDriver in
the related set by comparing the callIDargument using OCLTM ’s arguments()
operation [25]. Its invariant states that eventually the related set should have ex-
actly one element, which should both be successful and finish its execution within
10 minutes of T-InformDriver’s end time.



148 V.E. Silva Souza et al.

Fig. 6. Examples of AwReqs expressed in OCLTM

AR9 shows how to specify the example in which we do not talk specifically
about success or failure of a requirement, but its change of state: eventually
tasks T-MarkUnique should not be in the Undecided state and the difference
between their start and end times should be at most 5 minutes.

5 Implementation and Evaluation

To evaluate our proposal we have implemented a framework to monitor AwReqs
at runtime. Such evaluation considers three aspects of this framework:

1. Can AwReqs be monitored? Specifically, can an automated monitor evaluate
requirements types enumerated in table 2 at runtime? Applying a construc-
tive experiment, we show this is true (§5.1);

2. Can the AwReqs framework provide value for the analysis of a real system?
With simulation experiments, we demonstrate this is true for scenarios of
the ADS (§5.2);

3. What is the impact of AwReqs monitoring in the overall performance of the
monitored system? We discuss this in §5.3.

The first two items above represent the experimental and descriptive evaluation
methods of Design Science, as enumerated by [16]. After this initial evaluation,
two other experiments were conducted, modeling the AwReqs of systems that



Awareness Requirements 149

are close to real-world applications: an Adaptive Computer-aided Ambulance
Dispatch system [31] that is somewhat similar to the ADS, but was based on
the requirements for the London Ambulance System Computer-Aided Despatch
(LAS-CAD) [1]; and an Automatic Teller Machine [35]. Since these experiments
involved simulations of running systems based on their requirements models,
future evaluation efforts include experiment with actual running systems and
conducting full-fledged case studies with partners in industry.

5.1 Monitoring Awareness Requirements Patterns

As mentioned in section 2.3, we have used EEAT to monitor AwReqs expressed
in OCLTM . In its current version, EEAT compiles the OCLTM expression into
a rule file that is triggered by messages exchanged by objects at runtime (i.e.,
method calls). For this reason, we have to transform the initial specification
of the AwReqs to one based on methods received by the run-time instances
which represent the requirements. Figure 7 shows some of the AwReqs previously
presented in figure 6 in their “EEAT specifications”.

Fig. 7. Specification of AwReqs for EEAT

For monitoring to work, then, the source code of the monitored system (in
this case, the ADS) has to be instrumented in order to create the instances of
the classes that represent the requirements at runtime and call the methods
defined in classes DefinableRequirement and PerformativeRequirement from
figure 5. Methods start() and end() should be called when the system starts
and ends the execution of a goal or task (or the evaluation of a QC or DA),
respectively. Together with the between clause (one of Dwyer et al. scopes, see
§2.3), these methods allow us to define the period in which AwReqs should be
evaluated, because otherwise the rule system could wait indefinitely for a given
message to arrive.

Given the right scope, the methods success(), fail() and cancel() are
called by the monitored system to indicate a change of state in the requirement
from Undecided to one of the corresponding final states (see figure 3). These
methods are then used in the “EEAT specification” of AwReqs. For example, we



150 V.E. Silva Souza et al.

define AR1 not as never being in the Failed state, but as never receiving the
fail() message in the scope of a single execution (between start() and end()).

An aggregate requirement, on the other hand, aggregates the calls during
the period of time defined in the AwReq. For AR3, this is done by monitoring for
calls of the newWeek()method, which are called automatically by the monitoring
framework at the beginning of every week. Similar methods for different time
periods, such as newDay(), newHour() and so forth, should also be implemented.

The last example shows the delta AwReq AR8, which uses OCLTM timeouts
to specify that the success() method should be called in the T-InformDriver
instance within 10 minutes after the same method is called in T-UpdAtSite,
given that both instances refer to the same call ID, an argument that can be
passed along the method. This can be implemented by having a collection of
key-value pairs passed as parameters to the methods start(), success(), etc.

An automatic translator from the AwReqs ’ initial specification to their “EEAT
specification” could be built to aid the designer in this task. Another possibility
is to go directly from the AwReq patterns presented in section 3.2 to this final
specification. Table 3 illustrates how some of the patterns of table 1 can be
expressed in OCLTM . These formulations are consistent with those shown in
figure 7. The definitions and invariants are placed in the context of UML classes
that represent requirements (see §4). For example, a receiveMessage(‘fail’)
for context R, denotes the called operation R.fail() for class R. Therefore, the
invariant pR in the first row of table 3 is true if R.fail() is never called.

Table 3. EEAT/OCLTM idioms for some patterns

Pattern OCLTM idiom

NeverFail(R) def: rm: OclMessage = receiveMessage(‘fail’)
inv pR: never(rm)

SuccessRate(R, r, t) def: msgs: Sequence(OclMessage) = receiveMessages()->
select(range().includes(timestamp()))

- - Note: these definitions are patterns that are assumed in
the following definitions

def: succeed: Integer = msgs->select(methodName = ‘succeed’))->size()
def: fail: Integer = msgs->select(methodName = ‘fail’))->size()
inv pR: always(succeed / (succeed + fail) > r)

ComparableSuccess
(R, S, x, t)

- - c1 and c2 are fully specified class names
inv pR: always(c1.succeed > c2.succeed * x)

MaxFailure(R, x, t) inv pR: always(fail < x)

P1 and/or P2; not P - - arbitrary temporal and real-time logical expressions are
allowed over requirements definitions and run-time objects

Of course, the patterns of table 1 represent only common kinds of expres-
sions. AwReqs contain the range of expressions where a requirement R1 can
express properties about requirement R2, which include both design-time and
run-time requirements properties. OCLTM explicitly supports such references,
as the following expressions illustrate:



Awareness Requirements 151

def: p1: PropertyEvent = receivedProperty(‘p:package.class.invariant’)
inv p2: never(p1.satisfied() = false)

In OCLTM , all property evaluations are asserted into the run-time evaluation
repository as PropertyEvent objects. The definition expression of p1 refers to
an invariant (on a UML class, in a UML package). Properties about p1 include
its run-time evaluation (satisfied()), as well as its design-time properties (e.g.,
p1.name()). Therefore, in OCLTM , requirements can refer to their design-time
and run-time properties and, thus, AwReqs can be represented in OCLTM .

To determine if the AwReq patterns can be evaluated at runtime, we constructed
scenarios for each row of table 3. Each scenario includes three alternatives, which
should evaluate to true, false, and indeterminate (non-false) during requirements
evaluation. We had EEAT compile the patterns and construct a monitor. Then, we
ran the scenarios. In all cases, EEAT correctly evaluated the requirements.

To illustrate how EEAT evaluates OCLTM requirements in general, the next
subsection describes in detail a portion of the evaluation of the ADS’ monitoring
system, which was generated from the requirements of table 1.

5.2 Evaluating an Awareness Requirement Scenario

The requirements of the ADS provide a context to evaluate the AwReq frame-
work. The ADS is implemented in Java. Its requirements (table 1) are repre-
sented as OCLTM properties, using patterns like those presented in table 3 and
figure 7. Scenarios were developed to exercise each requirement so that each of
them should evaluate as failed or succeeded. When each scenario is run, EEAT
evaluates the requirements and returns the correct value. Thus, all the scenarios
that test ADS requirements presented here evaluate correctly.

Next, we describe how this process works for one requirement and one test.
Consider a single vertical slice of the development surrounding requirement AR1,
as shown in figure 8:

1. Analysts specify the Emergency input information task of figure 1 (i.e.,
T-InputInfo) as a task specification (e.g., input, output, processing algo-
rithm) along with AwReqs such as AR1;

2. Developers produce an input form and a processor fulfilling the specification.
In a workflow system architecture, T-InputInfo is implemented as a XML
form which is processed by a workflow engine. In our standard Java applica-
tion, T-InputInfo is implemented as a form that is saved to a database. In
any case, the point at which the input form is processed is the instrumenta-
tion point;

3. Validators (i.e., people performing requirements monitoring) instrument the
software. Five events are logged in this simple example: (a) T-InputInfo
.start(), (b) T-InputInfo.end(), (c) T-InputInfo.success(), (d) T-
InputInfo.fail(), and (e) T-InputInfo.cancel(). Of course, the develop-
ers may have chosen a different name for T-InputInfo or the five methods,
in which case, the validator must introduce a mapping from the run-time
object and methods to the requirements classes and operations. Given the



152 V.E. Silva Souza et al.

rise of domain-driven software development, in which requirements classes
are implemented directly in code, the mapping function is often relatively
simple — even one-to-one;

4. The EEAT monitor continually receives the instrumented events and deter-
mines the satisfaction of requirements. In the case of AR1, if the T-InputInfo
form is processed as succeed or cancel, then AR1 is true.

The architecture and process of EEAT provides some context for the preceding
description. EEAT follows a model-driven architecture (MDA). It relies on the
Eclipse Modeling Framework (EMF) for its meta-model and the OSGi compo-
nent specifications. This means that the OCLTM language and parser is defined
as a variant of the Eclipse OCL parser by providing EMF definitions for oper-
ations, such as receivedMessage. The compiler generates Drools rules, which
combined with the EEAT API, provide the processing to incrementally evaluate
OCLTM properties at runtime.

EEAT provides an Eclipse-based UI. However, the run-time operates as a
OSGi application, comprised as a dynamic set of OSGi components. For these
experiments, the EEAT run-time components consist of the OCLTM property
evaluator, compiled into a Drools rule system, and the EEAT log4j feed, which
listens for logging events and adds them to the EEAT repository. The Java
application was instrumented by Eclipse TPTP to send CBE events via log4j
to EEAT, where the event are evaluated by the compiled OCLTM property
monitors. For a more complete description of the language and process of EEAT,
see [26,27].

Fig. 8. Overview of the AwReqs monitoring framework



Awareness Requirements 153

5.3 Monitor Performance

Monitoring has little impact on the target system, mostly because the target sys-
tem and the monitor typically run on separate computers. The TPTP Probekit
provides optimized byte-code instrumentation, which adds little overhead to
some (selected) method calls in the target system. The logging of significant
events consumes no more than 5%, and typically less than 1% overhead.

For real-time monitoring, it is important to determine if the target events can
overwhelm the monitoring system. A performance analysis of EEAT was con-
ducted by comparing the total monitoring runtime vs. without monitoring using
40 combinations of the Dwyer et al. temporal patterns [11]. For data, a simple
two-event sequence was the basis of the test datum; for context, consider the
events as an arriving email and its subsequent reply. These pairs were continu-
ously sent to the server 10,000 times. In the experiment, the event generator and
EEAT ran in the same multi-threaded process. The test ran as a JUnit test case
within Eclipse on a Windows Server 2003 dual core 2.8 GHz with 1G memory.
The results suggest that, within the test configuration, sequential properties (of
length 2) are processed at 137 event-pairs per second [26]. This indicates that
EEAT is reasonably efficient for many monitoring problems.

6 Related Work

In the literature, there are many approaches for the design of adaptive systems.
A great deal of them, however, focus on architectural solutions for this prob-
lem, such as the Rainbow framework [13], the proposal of Kramer & Magee [19],
the work of Sousa et al. [30], the SASSY framework [22], among others. These
approaches usually express adaptation requirements in a quantitative manner
(e.g., utility functions) and focus on quality of service (i.e., non-functional re-
quirements). In comparison, our research is focused on early requirements (goal)
models, allowing stakeholders and requirements engineers to reason about adap-
tation on a higher level of abstraction. Furthermore, AwReqs can be associated
not only to non-functional characteristics of the system (represented by quality
constraints), but also to functional requirements (goals, tasks) and even domain
assumptions. The rest of this section focuses on recent approaches that share a
common focus with ours in early requirements models.

A number of recent proposals offer alternative ways of expressing and rea-
soning about partial requirements satisfaction. RELAX by Whittle, et al. [36] is
one such approach aimed at capturing uncertainty (mainly due to environmental
factors) in the way requirements can be met. Unlike our goal-oriented approach,
RELAX assumes that structured natural language requirements specifications
(containing the SHALL statements that specify what the system ought to do)
are available before their conversion to RELAX specifications. The modal oper-
ators available in RELAX, SHALL and MAY. . .OR, specify, respectively, that
requirements must hold or that there exist requirements alternatives. We, on the
other hand, capture alternative requirements refinement using OR decomposi-
tions of goals.



154 V.E. Silva Souza et al.

In RELAX, points of flexibility/uncertainty are specified declaratively, thus
allowing designs based on rules, planning, etc. as well as to support unanticipated
adaptations. Some requirements are deemed invariant — they need to be satisfied
no matter what. This corresponds to the NeverFail(R) AwReq pattern in our
approach. Other requirements are made more flexible in order to maintain their
satisfaction by using “as possible”-type RELAX operators. Because of these,
RELAX needs a logic with built-in uncertainty to capture its semantics. The
authors chose fuzzy branching temporal logic for this purpose. It is based on the
idea of fuzzy sets, which allows gradual membership functions. E.g., the function
for fuzzy number 2 peaks at 1 given the value 2 and slopes sharply towards 0
as we move away from 2, thus capturing “approximately 2”. Temporal operators
such as Eventually and Until allow for temporal component in requirements
specifications in RELAX.

Our approach is much simpler compared to RELAX. The AwReqs constructs
that we provide just reference other requirements. Thus, we believe that it is
more suitable, e.g., for requirements elicitation activities. Our specifications do
not rely on fuzzy logic and do not require a complete requirements specification
to be available prior to the introduction of AwReqs. Also, our language does
not require complex temporal constructs. However, the underlying formalism
used for AwReqs — OCLTM — provides temporal operators, as does EEAT,
so temporal properties can be expressed and monitored. Most of the work on
generating OCLTM specifications can be automated through the use of patterns.

With each relaxation RELAX associates “uncertainty factors”: properties of
the environment that can or cannot be monitored, but which affect uncertainty
in achieving requirements. Our future work includes such integration of domain
models in our approach.

Using AwReqs we can express approximations of many of the RELAX-ed re-
quirements. For instance, AR5 from table 1 can be used as a rough approximation
of the requirement “ambulances must arrive at the scene AS CLOSE AS POSSI-
BLE to 10 minutes’ time”. The general pattern for approximating fuzzy require-
ments is to first identify a number of requirements that differ in their strictness,
depending on our interpretation of what “approximately” means. E.g., R1 = “am-
bulance arrives in 10 min”, R2 = “ambulance arrives in 12 min”, R3 = “ambulance
arrives in 15 min”. Then, we assign desired satisfaction levels to these require-
ments. For instance, we can set success rate for R1 to 60% (as in AR5), R2 to
80%, and R3 to 100%. This means that all ambulances will have to arrive within
10–15 min from the emergency call. The AwReq will then look like AR12 = Suc-
cessRate(R1, 60%) AND SuccessRate(R2, 80%) AND SuccessRate(R3, 100%).
On the other hand, AR13 = SuccessRate(R1, 80%) AND SuccessRate(R2, 100%)
provides a much stricter interpretation of the fuzzy duration with all ambulances
required to arrive within 12 minutes.

Another related approach called FLAGS is presented in [3]. FLAGS require-
ments models are based on the KAOS framework [20] and are targeted at adap-
tive systems. It proposes crisp (Boolean) goals (specified in linear-time temporal
logic, as in KAOS), whose satisfaction can be easily evaluated, and fuzzy goals



Awareness Requirements 155

that are specified using fuzzy constraints. In FLAGS, fuzzy goals are mostly as-
sociated with non-functional requirements. The key difference between crisp and
fuzzy goals is that the former are firm requirements, while the latter are more
flexible. Compared to RELAX, FLAGS is a goal-oriented approach and thus is
closer in spirit to our proposal.

To provide semantics for fuzzy goals, FLAGS includes fuzzy relational and
temporal operators. These allow expressing requirements such as something be
almost always less than X, equal to X, within around t instants of time, lasts
hopefully t instants, etc. As was the case with the RELAX approach, AwReqs can
approximate some of the fuzzy goals of FLAGS while remaining quite simple. The
example that we presented while discussing RELAX also applies here. Whenever
a fuzzy membership function is introduced in FLAGS, its shape must be defined
by considering the preferences of stakeholders. This specifies exactly what values
are considered to be “around” the desired value. As we have shown above with
AR12 and AR13, AwReqs can approximate this “tuning” of fuzzy functions while
not needing fuzzy logic and thus remaining more accessible to stakeholders.

Additionally, in FLAGS, adaptive goals define countermeasures to be executed
when goals are not attained, using event-condition-action rules. Using a similar
approach, we have recently published a proposal to complement AwReqs with
adaptation strategies that provide compensation for failures [33]. Discussion in
section 3 illustrates how AwReqs and meta-AwReqs could be used to enact the
required compensation behavior, including relaxation of desired success rates.
We further comment on these aspects on section 7.2.

Letier and van Lamsweerde [21] present an approach that allows for specify-
ing partial degrees of goal satisfaction for quantifying the impact of alternative
designs on high-level system goals. Their partial degree of satisfaction can be
the result of, e.g., failures, limited resources, etc. Unlike FLAGS and RELAX,
here, a partial goal satisfaction is measured not in terms of its proximity to being
fully satisfied, but in terms of the probability that it is satisfied. The approach
augments KAOS with a probabilistic layer. Here, goal behavior specification (in
the usual KAOS temporal logic way) is separate from the quantitative aspects
of goal satisfaction (specified by quality variables and objective functions). Ob-
jective functions can be quite similar to AwReqs, except they use probabilities.
For instance, one such function presented in [21] states that the probability of
ambulance response time of less than 8 min should be 95%. Objective functions
are formally specified using a probabilistic extension of temporal logic. An ap-
proach for propagating partial degrees of satisfaction through the model is also
part of the method.

Overall, the method can be used to estimate the level of satisfaction of high-
level goals given statistical data about the current or similar system (from rather
low-level measurable parameters). Our approach, on the other hand, naturally
leads to high-level monitoring capabilities that can determine satisfaction levels
for AwReqs.

There is a fundamental difference between the approaches described above
and our proposal. There, by default, goals are treated as invariants that must



156 V.E. Silva Souza et al.

always be achieved. Non-critical goals — those that can be violated from time to
time — are relaxed. Then, the aim of those methods is to provide the machinery
to conclude at runtime that while the system may have failed to fully achieve
its relaxed goals, this is acceptable. So, while relaxed goals are monitored at
runtime, invariant ones are analyzed at design time and must be guaranteed to
always be achievable at runtime.

In our approach, on the other hand, we accept the fact that a system may fail
in achieving any of its initial (stratum 0) requirements. We then suggest that
critical requirements are supplemented by AwReqs that ultimately lead to the
introduction of feedback loop functionality into the system to control the degree
of violation of critical requirements. Thus, the feedback infrastructure is there to
reinforce critical requirements and not to monitor the satisfaction of expendable
(i.e., relaxed) goals, as in RELAX/FLAGS. The introduction of feedback loops
in our approach is ultimately justified by criticality concerns.

7 From Awareness Requirements to Feedback Loops

As stated in section 1, our intention in this proposal is to identify and explore
requirements that lead to the introduction of feedback loop functionality into
adaptive systems. In section 3.3, we discussed the sources of AwReqs, while
section 5 explained how EEAT can be used to monitor AwReqs at runtime to
determine if they are attained or not. In this section, we present the overview of
the role of Awareness Requirements in our overall approach for feedback loop-
based requirements-driven adaptive systems design.

Figure 9 shows a variant of a feedback controller diagram adapted for require-
ments-driven adaptive systems. Here, system requirements play the role of the
reference input, while indications of requirements convergence signaling if the

Fig. 9. A feedback loop illustrating the steps of the proposed process



Awareness Requirements 157

requirements have been met replace the traditional monitored output of the con-
troller. The controller itself is represented by a requirements-driven adaptation
framework that controls the target system through executing adaptation actions
that correspond to the control input in traditional feedback control schemes. Dy-
namically changing context corresponds to the disturbance input of the control
loop. Finally, the measure of requirements divergence is the control error.

Furthermore, the phases of our proposed approach are added to the feedback
loop diagram in figure 9, labeled 1 through 5. Step 1 is to set the targets for
system to achieve/maintain at runtime. AwReqs, as discussed here, are used for
this purpose. For step 2, the EEAT monitoring framework presented in section
5 is used to monitor whether the AwReqs are attained at runtime. Given the
values for the AwReq attainment at runtime, in step 3 we calculate requirements
divergence. If the targets are not met, this warrants a system adaptation. The
system identification process (step 4) is aimed at linking system configuration
parameters with indicators of requirements convergence and can be used to de-
termine possible system reconfigurations. This process is further discussed in
section 7.1. Finally, adaptation strategies/actions (step 5 in figure 9) are used
by the adaptation framework to actually adapt the target system. These are
further discussed in section 7.2.

7.1 System Identification

As we have shown throughout sections 3 to 5, AwReqs can be used to determine
when requirements are not being satisfied, much the same way a control system
calculates the control error, i.e., the discrepancy between the reference input (de-
sired) and the measured output (outcome). The next step, then, is to determine
the control input based on this discrepancy, i.e., determine what could be done
to adapt the target system to ultimately satisfy the requirements.

In Control Theory (e.g., [15]), the first step towards accomplishing this is an
activity called System Identification, which is the process of determining the
equations that govern the dynamic behavior of a system. This activity is con-
cerned with: (a) the identification of system parameters that, when manipulated,
have an effect on the measured output; and (b) the understanding of the nature
of this effect. Afterwards, these equations can guide the choice of the best way to
adapt to different circumstances. For example, in a control system in which the
room temperature is the measured output, turning on the air conditioner lowers
the temperature, whereas using the furnace raises it. If the heating/cooling sys-
tems offer different levels of power, there is also a relation between such power
level and the rate in which the temperature in the room changes.

In [32] we propose a systematic process for conducting System Identification
for adaptive software systems, along with a language that can be used to rep-
resent how changes in system parameters affect the indicators of requirements
convergence. After AwReqs have been elicited as indicators, the System Identi-
fication process consists of three activities:

1. Identify parameters: determine points of variability in the system (OR-
decompositions, parameters related to system goals or tasks) whose change



158 V.E. Silva Souza et al.

of value affects any of the indicators. For instance, the set of required fields
(an enumerated parameter) affects AwReq AR1 (see table 1) — less required
fields makes inputting information easier; the number of ambulances, as well
as operators and dispatchers working, affects AwReq AR5 — the higher the
number, the higher the chances of fast assistance;

2. Identify relations: for each indicator–parameter pair (not only the ones
identified in the previous step, but the full {indicators} × {parameters}
Cartesian product), verify if there is a relation between changes in the param-
eter and the value of the indicator. For each existing relation, model quali-
tative information about the nature of the effect using differential equations.
For example, Δ (AR1/RequiredF ields) < 0 indicates that decreasing the
required fields (assuming the enumerated values form a totally ordered set)
increases the success of AR1; Δ (AR5/NumberOfAmbulances) > 0 states
that increasing the number of ambulances also increases the success of AR5;

3. Refine relations: after identifying initial relations, the model can be refined
by comparing and combining those that refer to the same indicator. For ex-
ample, Δ (AR5/NumberOfAmbulances) > Δ (AR5/NumberOfOperators)
tells us that buying more ambulances is more effective than hiring more op-
erators when considering how fast ambulances get to emergency sites.

A more detailed explanation of the System Identification process and the pro-
posed language for modeling relations between indicators and parameters can be
found in [32]. However, the basic examples above already give us the intuition
that this kind of information is very important in order to determine the best
way to adapt the target system and, therefore, the models produced by Sys-
tem Identification can be used by the adaptation framework for this purpose.
Adaptation strategies are discussed next.

7.2 Adaptation Strategies

There are several ways a system can be changed as a result of its failure to at-
tain the requirements. We call one such possibility adaptation. Here, the system’s
configuration (the values of its parameters) is changed in attempt to achieve the
indicator targets. This can be viewed as parameter tuning. There can be a num-
ber of possible reconfiguration strategies based on the amount of information
available in the system identification model. The more information is available
and the more quantitative it is, the more precise and advanced the reconfigu-
ration strategies can become. The reconfigurations involve changing the values
of the system parameter(s), which affect indicator(s) that failed to achieve their
target values. With the absence of a fully quantitative model relating parameters
and indicators, an adaptation strategy may involve a number of such reconfigu-
rations that are performed in succession in attempt to bring the indictor value to
its target. When more precise information is available, quantitative approaches,
e.g., mimicking the PID controller [15] can be used. Detailed specification and
analysis of these strategies is one of the subjects of our current research.

In addition to reconfiguring a system, Evolution Requirements, which describe
evolutions of other requirements, can be used to identify specific changes to the



Awareness Requirements 159

system requirements under particular conditions (usually requirements failures,
negative trends on achieving requirements, or opportunities for improvement).
Unlike reconfigurations discussed above, evolution requirements may change the
space of alternatives available for the system. In our recent work [33], we have
identified a number of adaptation strategies, including abort, retry, delegate to an
external agent, relax/strengthen the requirement, etc., constructed from the ba-
sic requirements evolution operations such as initiate (a requirement instance),
rollback (changes due to an attempt to achieve a requirement), etc. These adap-
tation strategies can be applied at the requirements instance level (thus, fix-
ing/improving a particular system instance) and/or type level (thereby changing
the behavior of all subsequent system instances). Reconfiguration is considered
as one possible adaptation strategy. It can be applied at both levels. Further, [33]
proposes an ECA-based process for executing adaptation strategies in response
to failures. Triggered by AwReq failures, this process attempts to execute the pos-
sibly many adaptation strategies associated with the AwReq in their preference
order, while defaulting to the abort strategy if others do not prove successful.

We stress here that Awareness Requirements are absolutely crucial in our vision
for requirements-driven adaptive systems design. They serve both as the means
to specify targets to be met by the system (i.e., reference inputs for the feedback
controller) and as the indicators of requirements convergence (i.e., the monitored
outputs), with their failures triggering the above-described adaptation strategies.

8 Conclusions

The main contribution of this paper is the definition of a new class of require-
ments that impose constraints on the run-time success rate of other require-
ments. The technical details of the contribution include linguistic constructs
for expressing such requirements (reference to other requirements, requirement
states, temporal operators), expression of such requirements in OCLTM , as well
as portions of a prototype implementation founded on an existing requirements
monitoring framework. We have also discussed the role of AwReqs in a complete
process for the development of adaptive systems using a feedback loop-based
adaptation framework that builds on top of this monitoring framework.

Other than working towards the full feedback loop implementation discussed
in section 7, future steps in our research include the integration of domain models
in the approach (as mentioned in section 6) and improvements in the definition
and specification of AwReqs. Other questions also present themselves as opportu-
nities for future work in the context of this research: what is the role of contextual
information in this approach? How could we add predictive capabilities or prob-
abilistic reasoning in order to avoid failures instead of adapting to them? Could
this approach help achieve requirements evolution? These and other questions
show how much work there is still to be done in this research area.

References

1. Report of the inquiry into the London Ambulance Service. South West Thames
Regional Health Authority (1993)



160 V.E. Silva Souza et al.

2. Object Constraint Language, OMG Available Specification, Version 2.0 (2006),
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

3. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-
tation. In: Proc. of the 18th IEEE International Requirements Engineering Con-
ference, pp. 125–134. IEEE (2010)

4. Berry,D.M., Cheng,B.H.C., Zhang, J.: The FourLevels ofRequirementsEngineering
for and in Dynamic Adaptive Systems. In: Proc. of the 11th International Workshop
on Requirements Engineering: Foundation for Software Quality, pp. 95–100 (2005)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

6. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feed-
back Loops. In:Cheng, B.H.C., de Lemos, R.,Giese, H., Inverardi, P.,Magee, J. (eds.)
Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

7. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

9. Dobson, S., et al.: A Survey of Autonomic Communications. ACM Transactions
on Autonomous and Adaptive Systems 1(2), 223–259 (2006)

10. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Macmil-
lan Coll Div (1992)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proc. of the 21st International Conference on Software
Engineering, pp. 411–420. ACM (1999)

12. Flake, S.: Enhancing the Message Concept of the Object Constraint Language. In:
Proc. of the 16th International Conference on Software Engineering & Knowledge
Engineering, pp. 161–166 (2004)

13. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-BasedSelf-AdaptationwithReusable Infrastructure.Computer 37(10),
46–54 (2004)

14. Giese, H., Cheng, B.H.C. (eds.): Proceedings of the 6th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. ACM (2011)

15. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems, 1st edn. Wiley (2004)

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly 28(1), 75–105 (2004)

17. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problem
in Requirements Engineering. In: Proc. of the 16th IEEE International Require-
ments Engineering Conference, pp. 71–80. IEEE (2008)

18. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Kramer, J., Magee, J.: A Rigorous Architectural Approach to Adaptive Software
Engineering. Journal of Computer Science and Technology 24(2), 183–188 (2009)

http://www.omg.org/cgi-bin/doc?formal/2006-05-01


Awareness Requirements 161

20. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications, 1st edn. Wiley (2009)

21. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering. In: Proc. of the 12th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, vol. 29, pp. 53–62.
ACM (2004)

22. Menasce, D.A., Gomaa, H., Malek, S., Sousa, J.A.P.: SASSY: A Framework for
Self-Architecting Service-Oriented Systems. IEEE Software 28(6), 78–85 (2011)

23. Parashar, M., Figueiredo, R., Kiciman, E.E. (eds.): Proceedings of the 7th Inter-
national Conference on Autonomic Computing. ACM (2010)

24. Robinson, W.N.: A requirements monitoring framework for enterprise systems.
Requirements Engineering 11(1), 17–41 (2006)

25. Robinson, W.N.: Extended OCL for Goal Monitoring. Electronic Communications
of the EASST 9 (2008)

26. Robinson, W.N., Fickas, S.: Designs Can Talk: A Case of Feedback for Design
Evolution in Assistive Technology. In: Lyytinen, K., Loucopoulos, P., Mylopoulos,
J., Robinson, B. (eds.) Design Requirements Engineering. LNBIP, vol. 14, pp. 215–
237. Springer, Heidelberg (2009)

27. Robinson, W.N., Purao, S.: Monitoring Service Systems from a Language-Action
Perspective. IEEE Transactions on Services Computing 4(1), 17–30 (2011)

28. Rohleder, C., Smith, J., Dix, J.: Requirements Specification - Ambulance Dispatch
System. Tech. rep., Software Engineering (CS 3354) Course Project, University of
Texas at Dallas, USA (2006), http://www.utdallas.edu/~cjr041000/

29. Rosenthal, D.: Consciousness and Mind, 1st edn. Oxford University Press (2005)
30. Sousa, J.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: A Soft-

ware Infrastructure for User–Guided Quality–of–Service Tradeoffs. In: Cordeiro,
J., Shishkov, B., Ranchordas, A., Helfert, M. (eds.) ICSOFT 2008. CCIS, vol. 47,
pp. 48–61. Springer, Heidelberg (2009)

31. Souza, V.E.S.: An Experiment on the Development of an Adaptive System based
on the LAS-CAD. Tech. rep., University of Trento (2012),
http://disi.unitn.it/~vitorsouza/a-cad/

32. Souza, V.E.S., Lapouchnian, A., Mylopoulos, J.: System Identification for Adaptive
Software Systems: A Requirements Engineering Perspective. In: Jeusfeld, M., Del-
cambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 346–361. Springer,
Heidelberg (2011)

33. Souza, V.E.S., Lapouchnian, A., Mylopoulos, J.: (Requirement) Evolution Require-
ments for Adaptive Systems. In: Proc. of the 7th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, pp. 155–164. IEEE
(2012)

34. Souza, V.E.S., Mylopoulos, J.: From Awareness Requirements to Adaptive Systems:
a Control-Theoretic Approach. In: Proc. of the 2nd International Workshop on
Requirements@Run.Time, pp. 9–15. IEEE (2011)

35. Tallabaci, G.: System Identification for the ATM System. Master thesis, University
of Trento (to be submitted, 2012)

36. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: RELAX: In-
corporating Uncertainty into the Specification of Self-Adaptive Systems. In: Proc.
of the 17th IEEE International Requirements Engineering Conference, pp. 79–88.
IEEE (2009)

37. Yu, E.S.K., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Require-
ments Engineering, 1st edn. MIT Press (2011)

http://www.utdallas.edu/~cjr041000/
http://disi.unitn.it/~vitorsouza/a-cad/


Self-management of Distributed Systems Using

High-Level Goal Policies

Liliana Rosa1, Lúıs Rodrigues1, and Antónia Lopes2

1 INESC-ID, Instituto Superior Técnico, Universidade Técnica de Lisboa
lrosa@gsd.inesc-id.pt, ler@ist.utl.pt

2 LASIGE, Faculty of Sciences, University of Lisbon
mal@di.fc.ul.pt

Abstract. A growing number of systems have to face dynamic and un-
predictable execution conditions and workloads. In an attempt to address
the challenges posed by such environments, many systems are built from
customizable components. These components can be tuned according to
the execution context, allowing the system to meet its QoS requirements.
In this context, self-management is an essential quality. This chapter
presents an approach for the self-management of systems built from cus-
tomizable components based on high-level goal policies. With this ap-
proach, in response to changes in the execution context, the necessary
system adaptations are automatically selected and deployed. The evalua-
tion of different aspects of the approach relies on a web-based application
deployed as a distributed clustered-based architecture.

1 Introduction

Today, most software systems must be designed and built to offer good per-
formance on a wide range of operational envelopes, characterized by different
settings such as a wide diversity of user profiles, dynamic workloads, or variable
network conditions. To tackle different operational envelopes, these systems are
often built from customizable components. Each component offers a range of
configurable aspects that can be tuned to implement different tradeoffs between
the service provided and the resources consumed. In this manner, the global
system performance can be optimized such that it best matches the quality of
service (QoS) requirements defined for a given target deployment.

In the majority of cases, the customizable options are determined offline ac-
cording to an average expected usage pattern. Unfortunately, more and more
often, the execution scenario is dynamic and unpredictable, which renders the
pre-configuration inappropriate and results in poor performance and ineffective
resource consumption. For instance, large-scale networked applications are often
subject to highly variable and unpredictable workloads, that make static resource
allocation ineffective. Also, many distributed applications, such as multimedia
applications, even with few participants and stable workloads, may be required
to reconfigure during runtime to maintain a given level of quality of service in
face of changing network conditions.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 162–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Self-management of Distributed Systems Using High-Level Goal Policies 163

One way of addressing the challenges of dynamic execution environments
consists in building self-adaptive solutions. In these solutions, the execution
conditions are continuously monitored and, when changes are observed, the
customizable options of the system components are adapted during runtime
(e.g., [5,10,3]). However, even if the principle underlying this strategy is quite
simple, finding an appropriate adaptation strategy can be a surprisingly complex
task. The difficulty stems from the combinatorial nature of matching multiple
adaptations, in multiple components: there are many tradeoffs involved and an
adaptation may cancel or amplify the effect of another adaptation. As a result,
to manually balance all the tradeoffs in order to maintain or return the system
to a desired performance behavior becomes a hard, complex, and error-prone
task.

In this chapter, we describe an approach that automates the selection of the
adaptations that should be performed in response to changes in the execution
environment. To guide the selection process, the system manager has to define a
policy that is specified in terms of high-level goals, which capture the expected
behavior of the system in terms of performance and quality metrics. Therefore,
in our approach, only the desired behavior of the system needs to be specified
and the required adaptations are selected automatically by the system.

The work described in this chapter is an extension of the work presented
in [16,17] to address distributed systems. Previous work only considered non-
distributed systems or systems where a distributed component was encapsulated
by an abstract non-distributed component. The augmentations proposed in this
chapter target distributed systems where components can be local or distributed,
and deployed in one or more nodes. Furthermore, we discuss how aspects such
as the number of component instances, instance location, local and global effects
of adaptations are modeled and accounted for in the selection process.

The contributions of this work are two-fold. One is the identification of the
key aspects to describe goals, specify adaptations, and select adaptations when
addressing distributed components. The other contribution is to identify how to
perform the system monitoring and execution of the adaptations in a distributed
setting.

The rest of the chapter is structured as follows. Section 2 introduces an ex-
ample application that we use throughout the chapter for illustrating the key
concepts followed by an overview of our approach in Section 3. Then, Section 4
details the underlying adaptation model whereas Section 5 describes how plan-
ning is carried out, based on high-level goals. In Section 6 we revisit the running
example and report on evaluation results. Section 7 addresses the related work
and we conclude this chapter with Section 8, by pointing out other aspects that
need further investigation.

2 Example: High Traffic Web Cluster

To better illustrate the proposed approach, we begin by introducing the example
application that will be used for the remainder of the chapter. The aplication is



164 L. Rosa, L. Rodrigues, and A. Lopes

a website that is subject to dynamic and unpredictable load, often facing high
traffic. The website is an online shopping store, that allows users to register for
an account, browse the products catalog, and perform online orders. The users
can either be private or business clients, with distinct contents being served.

The website is deployed in a clustered-based architecture, i.e., a web cluster,
as shown in Figure 1. The clients make requests to a virtual IP served by a front-
end that acts as a load balancer, distributing the requests among the available
servers. Each server node of the cluster has its own web server. All cluster nodes
may receive and process any request from any client (server nodes are not spe-
cialized). However, to improve the performance by exploring data locality, the
load balancer may attempt to forward similar requests and requests from the
same session to the same server.

Client Client Client Client Client ClientClient

Virtual Server load balancing

Database
Recomendation

Search

Apache HTTP Server

Infinispan

Cat JGroupsUser

Account

Server 1

Backend

Apache HTTP Server

Infinispan

Cat JGroupsUser

Account

Server 2

NAS

Fig. 1. The example application

Furthermore, a distributed in-memory caching system is collectively main-
tained by all servers. The cache is used to store results from recent requests.
Therefore, when a server receives a request, it first checks if the request can be
served from the cache. If this is not the case, then it forwards the request to the
local software component that is capable of retrieving or generating the web-
page. The cache is never used to store security-sensitive information, therefore
some requests are forwarded directly to the corresponding software component.

Finally, all nodes have access to a shared persistent store, implemented by a
database and additional network attached storage (NAS). These are part of the
backend.

The website content is served by software components installed in the web
servers deployed at each cluster node. The Catalog component (abbreviated
by Cat in the figure) handles static content, such as product webpages. The



Self-management of Distributed Systems Using High-Level Goal Policies 165

Account component handles sensitive content, such as credit card information or
the user’s account password. Finally, the User component handles dynamically
generated content, which is customized to the user, such as product recommenda-
tions and customized searches. For that purpose it relies on two other centralized
components. The Recommendation engine generates recommendations for a par-
ticular user and the Search engine gathers the results of a search customized to
the user. These two components operate in the backend and can be accessed by
any server. Each of the Catalog, Account, and User components are separated
in business and private to cater to the different types of users, thus, totaling
six main software components. From now on, when we refer to Catalog, User, or
Account components, we are speaking of both business and private components.

The system runs in several machines. One of the machines is dedicated to
the autonomic controller that self-manages the system (which is addressed in
detail in Section 3). Each of the remaining machines executes the web server,
an instance of the in-memory caching system, the multicast communication sys-
tems required by the cache, and the Catalog, User and Account components.
Each server runs Linux OS and Apache HTTP server [1] and uses the RedHat
Infinispan [11] as the distributed in-memory caching tool and JGroups [12] as
the multicast service.

This is a very rich case study that offers many opportunities for self-adaptation.
The first, and most obvious, is to adapt the number of active servers elastically
in responses to changes in the workload. In periods of more load more servers
can be activated and in periods of less load some servers can be assigned to other
tasks or switched off for power saving.

However, the maximum number of servers is limited. Therefore, in periods
of peak load it may be impossible to add more servers to the cluster of active
nodes. In that case, one may rely on alternative configurations of the software
components that serve requests at each node, avoiding overload at the servers.
In fact, savings can be achieved at the expense of the quality of information
provided to the clients. This can be achieved, for instance, by reducing the
resolution of any media content that the pages may contain, or the freshness
of the recommendations and search results presented to the user (by fetching
the last generated recommendations/search results instead of generating a fresh
one).

Finally, even in face of a constant rate of requests, the performance of the
in-memory caching system is highly dependent on the profile of the workload, in
particular, on the existence of hot-spots that may generate conflicts when access-
ing the cache entries. Thus, the cache performance may be optimized by selecting
the most appropriate multicast primitive for each workload (basically, through
the activation or inactivation of a mechanism able to totally order concurrent
requests to the cache, preventing deadlocks at the expense of higher network
utilization). This is an interesting aspect of the adaptation, as it illustrates sev-
eral issues that are raised when performing dynamic adaptation on distributed
components.



166 L. Rosa, L. Rodrigues, and A. Lopes

3 Approach Overview

The aim of the work proposed in this chapter is the self-management of software
systems built from adaptable components, both distributed and non-distributed.
The application described in the previous section is an example of a system that
includes both types of components. In this section we present an overview of the
proposed approach and discuss the major challenges that need to be addressed to
implement goal-oriented self-adaptation of systems with distributed components.
The solutions to these challenges will be addressed in detail in the subsequent
sections of the chapter.

In our approach, similarly to other works, the self-management of a system
is achieved using feedback. The system is augmented with suitable sensors and
effectors that are connected to an external controller to implement a closed
control loop [13,4,7]. The main activities performed by the control layer are
(i) the collection of relevant data from sensors, (ii) the analysis of the collected
data, (iii) the decision on how to adapt the system to reach a desirable state,
and (iv) the implementation of the decision via the available effectors.

Central to our approach is the use of key performance indicators (KPIs), which
are metrics that capture particular aspects of system performance and allow us
to describe the system behavior. Any measurable aspect of the system operation
can be captured by a KPI and the behavior of the control layer can be described
in terms of the selected KPIs.

The control layer monitors the KPIs and adapts the managed system whenever
the KPIs deviate from the desired values. KPIs are monitored using sensors, that
send the information to a central element, the monitor. The monitor detects
deviations in the system behavior and notifies the element that is responsible
for deciding on how to adapt the system, the planner. When the planner decides
an adaptation, the executor element performs the adaptation relying in several
effectors, developed for the managed system. This architecture is depicted in
Figure 2.

3.1 Monitor

The monitor collects data regarding some key aspects of the system behavior,
i.e., the data required to compute the current value of the relevant system KPIs.
In the example application, data such as the number of requests received per unit
of time (request load) or requests served per unit of time (achieved throughput)
are examples of relevant sensed data required to compute KPIs that capture
the performance of the system. In terms of resource consumption, data such as
consumed power, CPU, and memory can be used to define the KPIs. Still con-
sidering the example application, it is also possible to define KPIs that capture
the quality of the service being provided to the end user, for instance, by using
data regarding the quality of the images being produced, or the average time to
serve a request.

The data collected by the monitor is captured by sensors in the managed
system. Different sensors may have different scopes, as depicted in Figure 2. Some



Self-management of Distributed Systems Using High-Level Goal Policies 167

...

Planner

Event

Monitor

KEY

         E

Sensor

Effector

S

Data flow

Executor

Adaptation

S E

Node

Component A ES

Component B ES

...

S E

Node

Component A ES

Component B ES

...

Node

Fig. 2. Proposed architecture with the external controller (top node) and the managed
system (bottom nodes)

sensors are associated to a component (e.g., a sensor that obtains the number
of copies of an object that exists in the cache of Infinispan), while other sensors
can be associated with a component instance (e.g., a sensor that measures the
CPU use of a particular component instance). Sensors can also be associated to
a node of the managed system. For instance a node-level sensor may measure the
total energy consumed by a node, which depends on the components executing
on that node but also on the OS, daemons,middleware, etc. By combining values
from different sensors it is possible to derive KPIs of wider scope. For instance,
by summing the CPU use of all components that execute in a given node it is
possible to assess the total CPU utilization at that node. Data from multiple
nodes may be aggregated to compute system-wide KPIs. For instance, energy
consumed by each node may be added up to compute the total energy consumed
by the entire cluster.

The monitor also analyzes the data and identifies system states that are un-
desirable and require correction. Whenever such a state is detected, the monitor
notifies the planner, by triggering an event carrying the relevant state informa-
tion. The monitor element is initialized with a set of event definitions that state
in which conditions each event has to be triggered.

3.2 Planner

The planner determines how to adapt the system to meet its QoS requirements
when it receives from the monitor an event signaling a deviation from the ex-
pected behavior. In the proposed approach, the result of the planner depends on
the set of ranked behavior goals that have been defined for the system. This is
because when the planner component searches for the best configuration for the
system in the current state, it uses the notion of optimality defined by this set
of goals and their ranks. On the other hand, the result of planner also depends
on the set of mechanisms that are available for reconfiguring the system. It is
assumed that the latter are specified in terms of adaptations that include an



168 L. Rosa, L. Rodrigues, and A. Lopes

estimate of the impact they have in the system KPIs. When searching for the
optimal configuration, the planner estimates the impact of different adaptations.
Sections 4 and 5 explain the high-level goal-based planning of our approach in
more detail.

3.3 Executor

The executor performs the adaptations selected by the planner. It relies on a
set of commands that are different for each adaptation; these commands control
the adaptation process. The commands are received and executed by effectors
that are associated to adaptation targets. To support both distributed and non-
distributed components, the effectors can be associated to a component or to
a node. The former are often component-specific, thus, different effectors may
need to be developed for each component. The latter are attached to a node and
are able to configure the node.

To support the distribution, the executor needs to command both component
and node effectors, but it also needs to be able to coordinate all the effectors while
performing the selected adaptations. Furthermore, different adaptations may
require different coordination mechanisms, which the executor must support.
While the coordination aspects are fundamental to support the adaptations of
distributed components, the discussion of these mechanisms in detail is outside
the scope of this chapter. In this chapter we assume that all adaptations employ
the barrier synchronization mechanism described in [15].

4 Adaptation Model

To control the self-management process, the planner relies on an adaptation
model, which captures different key aspects related to the adaptive behavior and
the adaptation support. As depicted in Figure 3, the adaptation model depends
on a set of KPIs defined at design time. The system manager can express the
target behavior for the system in terms of a high-level policy that establishes
goals for some or all of these KPIs. When the system behavior deviates from
the desired, its self-management is achieved using the adaptations described in
the adaptation specification. The description of the components to which these
adaptations apply is provided in the component specification.

4.1 KPIs

The general specification of a KPI includes its name, the type of value (integer,
double, etc), and the error margin. Any two values of the KPI are considered
equivalent if their distance is below this margin.

To address both distributed and non-distributed components, KPIs are di-
vided in four categories that determine how their values are sensed: system-
sensed, component-sensed, node-sensed, and instance-sensed.



Self-management of Distributed Systems Using High-Level Goal Policies 169

Goal
Policy

Component
Specification

Adaptation
Specification

KPIs

depends on

depends on

depends on

defined at design time

defined at run time

Fig. 3. The elements of the adaptation model

System-Sensed. The values of the KPI are measured for the entire system as
a whole. For instance, the number of active servers in the system.

Component-Sensed. The values of the KPI are measured by individual com-
ponent as a whole (even if they are distributed over different nodes) and its
specification includes a combination function CF. This function defines how
the KPI value for the entire system is obtained by combining the values mea-
sured for the individual components. For instance, the latency of requests
may be measured by component and summed. We denote by c.kpi the value
of kpi for component c.

Node-Sensed. The values of the KPI are measured by individual node and
its specification includes an aggregation function AF. This function defines
how the value of the KPI for the entire system is obtained by combining
the values measured in each node of the system. This type of KPI is useful
for metrics that are global to the node, thus, obtained independently of the
components present in the node. For instance, the power consumption can be
measured per node and these values can be aggregated taking the average.
We denote by n.kpi the value of kpi for node n.

Instance-Sensed. The values of the KPI are measured per component instance,
i.e., by individual component in each node. We denote by n.c.kpi the value
of kpi for the component c in node n. The specification includes a combi-
nation function (CF) and an aggregation function (AF) that are employed
to calculate the value of the global KPI from sets of values measured per
component instance. The composition of the combination and aggregation
functions is required to be commutative. The global value of an instance-
sensed KPI is obtained by composing the two functions. In this way, it is
possible to calculate the global value of the KPI in two manners:

a. AF ◦CF : first it is calculated the value of the KPI for each node through
the application of the combination function, and then the values obtained
for the different nodes are aggregated.

b. CF ◦AF : first it is calculated the value of the KPI for each component
through the application of the aggregation function, and then the values
obtained for the different components are combined.



170 L. Rosa, L. Rodrigues, and A. Lopes

For instance, the CPU use can be measured per component instance and
we can take the sum as combination function and the average as aggre-
gation function (it is not difficult to see that their composition is indeed
commutative).

The fact that a KPI is component-sensed does not imply that its values have to
be measured for every type of component. The KPIs that are measured for each
type of component are defined in the component specification (see Section 4.4).
The application of combination functions is, hence, restricted to the components
for which these values are measured. More concretely, if a KPI kpi is component-
sensed, its value for the entire system is given by the expression below, where c <
kpiMensurable denotes that the values of kpi are measured for c and SysCfg()
denotes the set of components in the current system configuration.

CF ({c.kpi : c ∈ SysCfg() and c < kpiMensurable})
Node-sensed KPIs are measured for all nodes. For instance, the power consump-
tion of all nodes is measured, as idle nodes also consume power. The KPI value
for the entire system is given by the following expression, where N denotes the
set of the system’s nodes.

AF ({n.kpi : n ∈ N})
Combination and aggregation functions are required to be non-decreasing mono-
tonic. For instance, for combination functions, this means that an increase in a
component’s KPI either maintains or increases the system’s global KPI and,
similarly, a decrease in one element either maintains or decreases it. This re-
quirement expresses a natural property of KPIs and ensures that local reasoning
about the type of impact that adaptations have in the KPI of individual com-
ponents or nodes is also valid globally.

We provide below the definition of some KPIs useful in the context of the
example application.

KPI−System numbe r s e r v e r s : i n t Er r o r 0
KPI−Comp l a t e n c y : doub l e CF Avg Er r o r 0 .1
KPI−Node power : i n t AF Sum Er r o r 1
KPI−In s tance cpu use : doub l e CF Sum AF Avg Er r o r 0 .1
KPI−In s tance l o ad : doub l e CF Sum AF Sum Er r o r 0 .2
KPI−In s tance th roughpu t : doub l e CF Sum AF Sum Er r o r 0 .2

KPIs can additionally be used to specify composite KPIs, denoted by CKPIs.
CKPIs are identified by a ckpi name and their specification consists of a join
function JF of several KPIs, and an Error margin. In the example application,
we can define the service ratio as a CKPI:

CKPI s e r v i c e r a t i o = th roughpu t/ l oad Er r o r 0 .01

4.2 Goal Policy

The goals are the high-level directives which guide the system management. They
describe the acceptable system behavior in terms of KPI values. A policy is a set



Self-management of Distributed Systems Using High-Level Goal Policies 171

of goals ranked by importance, with the most important coming first. When it
is not possible to fulfill all the goals, the less important goals are violated first.
There are six types of goals that can be defined.

Goal goalName : kpiName Above th r e sho l d down
Goal goalName : kpiName Below t h r e s h o l d up
Goal goalName : kpiName Between thr down th r u p

Goal goalName : kpiName Close t a r g e t MinGain va l u e Every p e r i o d
Goal goalName : Minimize kpiName MinGain va l u e Every p e r i o d
Goal goalName :Maximize kpiName MinGain va l u e Every p e r i o d

The first batch of goals are exact goals, which separate the values of a KPI in
two disjoint sets: acceptable and not acceptable. An above goal will only find
acceptable the values above the threshold. A below goal will only accept the
values below, and a between goal only the values in the specified interval. The
remaining goals are optimization goals, i.e., best effort goals that specify a total
order between the values of a KPI. A maximize goal states that the largest is the
best, while a minimize goal aims at the smallest. A close goal tries to keep the
value as close as possible to a target. The description of optimization goals also
specifies how often the system should try to optimize its behavior with respect
to these goals (every period of time) and a minimum gain for an adaptation be
worthwhile.

Below, we present two examples of goals for the example application. The
first aims at maintaining the the system’s redundancy level, by having at least
three active servers. The second goal states that attempts of maximizing the
service ratio should be done every 300 seconds. If an improvement is possible,
the adaptation is only applied if the gain is 5% or more.

Goal p r e s e r v e r ed undan cy : n umbe r s e r v e r s Above 3
Goal ma x s e r v i c e r a t i o : Maximize s e r v i c e r a t i o MinGain 0 .05 Every 300

4.3 Component Specification

The component specification includes the description of all the components avail-
able for use in the system. In particular, this specification defines a type hierarchy
organizing components in types according to the functionality they provide. A
component type is either concrete or abstract. The first designates a specific
type for which an implementation is available, while the second represents the
characteristics of a group of components. In the specification, a component is ab-
stract if it is marked explicitly as Abstract, otherwise it is a concrete component.
Both abstract and concrete components may describe their parents in the hier-
archy by subtyping their types. The use of abstract components helps simplify
both the component and adaptation specifications. The component specification
becomes simpler because all parameters and subtypes of the parent component
are inherited by children components. The adaptation specification also becomes
simpler because adaptations that apply to all children components need to be
specified only once, for the parent component.



172 L. Rosa, L. Rodrigues, and A. Lopes

For instance, in the example application, there are two types of catalog com-
ponents tailored for private and business users. They can be specified as two
subtypes of an abstract catalog component as follows.

Abs t r a ct Component Cata l og
subtype S to r eSe r v i c e , {cpu use,load,throughput,latency}Mensurab le
Loca lParameters
mode :{ r e g u l a r , low}

Component Bu s i n e s sCa t a l o g
subtype Cata l og

Component Pr i v a t eCa t a l o g
subtype Cata l og

The component specification also allows to describe which components con-
tribute to instance and component-sensed KPIs. This is achieved by subtyping
a corresponding abstract type kpiMensurable. For instance, Catalog is defined
as a subtype of cpu useMensurable and, hence, the value of cpu use (which is a
instance-sensed KPI) is available for every instance of the catalog.

When describing components, namely components that can be customized,
their specification may also include the definition of parameters. These param-
eters can be tuned during runtime, with impact on the system behavior. There
are two types of parameters that can be defined: local and global. Local parame-
ters refer to parameters of a component instance or non-distributed components.
Global components refer to parameters of the component as a whole.

The Infinispan component, specified below, is an example of a distributed
component that has both local and global parameters. The abortTimeout is con-
trolled per component instance, depending on the load and available bandwidth
at each server, while the number of owners that an object has in cache (the
number of copies) is a parameter for the component as a whole.

Component I n f i n i s p a n
subtype DistCach ing ,{cpu use,load,throughput,latency}Mensurab le
Loca lParameters
abortTimeout : i n t

Globa lParameters
owners : i n t

4.4 Adaptation Specification

The adaptation specification describes the adaptations available to change the
system’s behavior. Adaptations are defined in terms of a fixed set of adapta-
tion actions supporting the tuning of parameters, replacement of components
and addition/removal of component instances. To address both distributed and
non-distributed components, three groups of adaptations were considered, char-
acterized by their scope: instance, component, and node.

Component adaptations employ actions that target a component c, affecting
all the instances of that component in the system. There are two types of
component adaptation actions: tune a parameter and exchange a compo-
nent’s implementation. For the first action, the c.setParameter(p,v) changes



Self-management of Distributed Systems Using High-Level Goal Policies 173

the value of the global parameter p of component c to v. For the second ac-
tion, the c.replaceBy(c’) replaces the implementation of c by c′, affecting all
nodes with instances of c. For instance, we can use the first action to change
the global parameter owners of the Infinispan component, and the second
action to update the version of the Infinispan component (that would affect
all instances of Infinispan).

Instance adaptation employ actions that target a component c in a node
n, affecting only that instance of c component in the system. There are
two types of instance adaptation actions: tune a parameter and exchange a
component’s implementation. For the first action, the n.c.setParameter(p,v)
changes the value of the local parameter p of component c to v in node n.
For the second action, the n.c.replaceBy(c’) replaces the implementation of
component c by c′ in node n. For instance, we can use the first action to
change the abortTimeout parameter in a single node containing the Infinis-
pan component and the second action to replace the implementation of the
User component in a specific node.

Node adaptation employ actions that target only a node n. These actions
change the node configuration and can affect the number of instances of
distributed components. There are two types of node adaptations: add and
remove a component. More concretely, the action n.addComponent(c) adds
the component c to node n and n.removeComponent(c) removes the compo-
nent c from node n. If the component is distributed, the first action adds an
instance of c to node n and, hence, it changes the way c is distributed. For
instance, these actions could be used to add/remove an instance of Infinispan
to an inactive/active node.

The available adaptations to change the system’s behavior are defined using the
six types of adaptation actions defined above. Each adaptation, besides a set
of adaptation actions, defines the conditions on its applicability, the impact of
those actions on one or more KPIs and the estimated stabilization period. The
impacts provide an estimate for the value of the affected KPIs after the specified
adaptation actions have been performed. This estimate is expressed using an
impact function that, besides the current value of the KPI, can be defined in
terms of other KPIs or the state of the system configuration. The stabilization
period refers to the time that must be waited for the adaptation to take full
effect, before subjecting the system to a reevaluation.

Below, we present a simplified example of each adaptation type for the exam-
ple application, with the full specification being addressed in Section 6.

ComponentAdaptation Ac t i v a t eTo t a lO rd e r ( c )
Component :
c : JGroups

Act i on s :
c . s e tPa ramete r ( t o t a lO r d e r , on )

Requ i r e s :
c . t o t a lO rd e r = = o f f

Impacts :
l a t e n c y ∗= 1.07
. . .



174 L. Rosa, L. Rodrigues, and A. Lopes

S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

I n s tanceAdap ta t i on I n c r ea s eAbo r tT imeou t ( n , c )
Node :
n

Component :
c : I n f i n i s p a n

Act i on s :
n . c . s e tPa ramete r ( abortTimeout , n . c . abortTimeout+10)

Requ i r e s :
n . c . abortTimeout < 60

Impacts :
n . c . l a t e n c y ∗= 1.1
. . .

S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

NodeAdaptation AddServer ( n )
Node :
n

Act i on s :
n . addComponent (ApacheHTTP )
n . addComponent ( I n f i n i s p a n )
. . .

Requ i r e s :
! n . hasComponent (ApacheHTTP ) // i f n i s a f r e e node

Impacts :
n umbe r s e r v e r s += 1
l a t e n c y ÷= 1.89
n . power += 183.1
. . .

S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

Adaptations can declare to have impact on any KPI that has the same or larger
scope. In particular, any adaptation may declare an impact on a system-sensed
KPI. Ideally, the impact of an instance adaptation on a instance-sensed KPI
kpi should be defined at the instance-level, i.e., it should address the change of
n.c.kpi (where c and n are the target component and node of the adaptation).
However, because it is not always possible or easy to find such fine-grained
impacts, it is also possible to define the impact of an instance adaptation at
higher-levels, i.e., at component, node or even system level. And, in a similar
way for the other two types of adaptations. For instance, the node adaptation
AddServer specifies impacts on the number servers system-sensed KPI and on
the value of n.power, which is a node-sensed KPI. Moreover, the adaptation also
specifies impact on the system value of the latency, which is a component-sensed
KPI. Although the adaptation targets a single node, it affects the latency in all
nodes and, hence, the impact is defined at the system-level rather than at the
node-level.

In addition to the information above, the adaptation specification may also
list dependencies and explicit conflicts between pairs of adaptations, to force or
prevent that these adaptations are executed at the same time. However, some
conflicts are also imposed by our approach, hereafter referred to as implicit
conflicts. An implicit conflict occurs when it is not possible to infer the com-
bined impact of two or more adaptations from the information provided in their



Self-management of Distributed Systems Using High-Level Goal Policies 175

specification. More concretely, any pair of adaptations to which the following
scenarios apply are considered to be implicitly conflicting:

– Instance adaptations that affect the same component, the same node or both,
and have impact over a common KPI;

– Component or instance adaptations that affect the same component and
have impact over a common component or system-sensed KPI;

– Node or instance adaptations that affect the same node and have impact
over a common node or system-sensed KPI;

– Component and instance adaptations that have impact on different compo-
nents but on the same node-sensed KPI (the first on the global value, while
the second on the local node value).

– Component and node adaptations that have impact on the same KPI.

5 Rule Generation and Evaluation

With the knowledge and information necessary for self-management described
in the adaptation model, the planner can determine when and how to adapt the
system behavior. As shown in Figure 4, the activity of the planner encompasses
an offline and an online phase.

During the offline phase, the knowledge and information described in the
adaptation model is used to generate a set of rules. Each rule defines a set of
adaptations that might help to correct a particular deviation in the system be-
havior. The rule generation process does not depend on the system configuration,
thus, can be performed at any time, in particular before system execution.

During the online phase, the rules generated for the system are evaluated.
When the system deviates from the desirable behavior, the corresponding rule is
triggered and it is determined the most appropriate manner to return the system
to a desired state.

Rule Generator

Goal
Policy

Service
Specification

Adaptation
Specification

Adaptation
Rules

Rule Evaluator Best
Adaptation

Execution
State

Online Phase

Offline Phase

KPIs

Fig. 4. Rule generation and evaluation



176 L. Rosa, L. Rodrigues, and A. Lopes

5.1 Offline Phase

During this phase, the knowledge and information described in the adaptation
model is used to generate a set of event triggered rules, where each event signals
a particular deviation in the system behavior with respect to the system goals.
Hence, the rule generation starts by extracting the set of relevant events from
the goals included in the high-level policy. Each goal results in either one or
two generated events. For instance, the preserve redundancy goal results in the
event kpiBelow(num servers,3), that is triggered when number servers is below
3. Table 1 describes which events are generated per type of goal. Exact goals
give rise to events triggered whenever a threshold is exceeded, while optimization
goals result in periodic events, triggered every period of time defined in the goal.

Table 1. Event types generated for each type of goal

Goal Events

k Above x kpiBelow(k, x)

k Below y kpiAbove(k, y)

k Between x y
kpiBelow(k, x)
kpiAbove(k, y)

Maximize k Every θ kpiIncrease(k, θ, true)

Minimize k Every θ kpiDecrease(k, θ, true)

k Close x Every θ
kpiIncrease(k, θ, “<x− kerror”)
kpiDecrease(k, θ, “>x+ kerror”)

After extracting the events from the goals in the policy, the rule generation
proceeds with the identification of the useful adaptations for each event. An
adaptation is useful if it has impact on the KPI or KPIs (if it is a CKPI) that are
employed in the goal and if that impact helps returning the KPI to a desirable
state. Although the actual KPI value, after the adaptation, is only known at
runtime, it is possible to filter out the non useful adaptations. An adaptation
is not useful in two situations: it does not have impact on the KPIs associated
with the goal or, if it has, the impact is negative. An impact is negative if the
adaptation changes the KPI’s value in a direction contrary to the desired. For
instance, if the value of a KPI has become larger than desired, a useful adaptation
decreases the KPI value. The adaptations that decrease the KPI have a positive
impact, while the ones that increase have a negative impact. To determine offline
if an impact is negative or positive the approach relies on the analysis of the
impact function. If this analysis is not able to classify an impact as positive or
negative, it is selected nonetheless, to avoid discarding useful adaptations.

The adaptations that are considered in this process include the instantiation
of all the node and instance adaptations that have been defined as parameterized
with the actual system nodes and concrete components. For instance, if there
are ten nodes available for running the servers, then the instantiation of the
parameterized adaptation addServer would give rise to ten different adaptations.



Self-management of Distributed Systems Using High-Level Goal Policies 177

While in some scenarios a single adaptation may be enough to correct the
system behavior, in other cases putting together several adaptations is neces-
sary. Thus, the rule generation process not only selects the adaptations but also
determines the viable combinations of adaptations, i.e., adaptations that can be
performed at the same time. This process considers any requirements, depen-
dencies and conflicts between adaptations. In the end of the offline phase, there
are several generated rules, one for each extracted event. Each rule associates
a set of combinations of adaptations to a particular event, as depicted below,
where Ci is a viable combination of adaptations useful to deal with an event.

When even t
Se l e c t C1 , . . . , Ck

When it is necessary to change the goal policy during runtime, the offline phase
takes place during runtime, in parallel to the online phase. The generation of the
rules is performed in the same manner as if before runtime, without causing any
disruption to the self-management. However, at the end of the offline phase, it
is necessary to replace the rules used by the online phase and feed the monitor
with the events generated from the new goal policy. This can be done at any
time, except when the online phase is evaluating a rule. If this is the case, the
rule replacement will have to wait until the end of the evaluation.

5.2 Online Phase

In this phase, the rules generated during the offline phase are evaluated. When
the system reaches an undesirable state, the rule triggered by the corresponding
event is evaluated. The aim of this evaluation is to select, among the combination
of adaptations available in the rule, the combination that is optimal with respect
to the ranking of goals in the policy.

Using as input the current system state (available in the monitor), the eval-
uation process starts by discarding all the adaptations in the rule that do not
apply to the current system configuration. For the remaining adaptations, the
KPI values are estimated using the impact functions. Afterwards, the selection
algorithm analyzes the combinations of adaptations with respect to the each goal
(starting with the highest rank goal) until all the goals are addressed or until
no more adaptations are left. If a combination fulfills a gigen goal, it passes to
the next step, otherwise, it is discarded. The selection algorithm is sensitive to
the type of goal. If the goal is an exact goal, all the combinations of adaptations
whose estimated impacts satisfy the goal are selected. If none of the combina-
tions satisfies the goal, then all the adaptations continue to the next goal. If the
goal is an optimization goal, then only the best adaptations are selected. The
best adaptations are those that offer the best improvement to the KPI.

This selection process of the combination of adaptations is optimal with re-
spect to a prioritization of goals based on their rank: when it is not possible
to fulfill all goals, the rule evaluation process will enforce that goals with lower
rank are violated first. A more detailed description of the selection criteria can
be found in [16,17] along with some detailed examples.



178 L. Rosa, L. Rodrigues, and A. Lopes

6 Example Revisited

In this section, we illustrate the use of the approach by applying it to the ex-
ample application introduced in Section 2. We present the full description of the
example application: the KPIs, the component and adaptation specifications,
and the goal policy. While the KPIs and the specifications allow for many adap-
tive behaviors, the goal policy describes one adaptive behavior from the various
alternatives. In this chapter, we focus on adaptations and trade-offs related with
the distributed aspects of the application. Therefore, the goals listed in the pol-
icy described here are a subset of the goals that would cover the entire adaptive
behavior.

6.1 KPIs

To assess the system’s behavior, we rely on several KPIs and one CKPI as
listed, respectively, in Tables 2 and 3. Since some of the KPIs have already been
described in Section 4.1, we only address in detail the newly introduced KPIs.

Table 2. KPIs used in the example application

Type KPI Name Values CF AF Error Description

System number servers int - - 0 active servers

Component latency double Avg - 0.1 reply delay

Component update ratio double Avg - 0.1 fraction of update transactions

Node power int - Sum 1 power consumption

Instance cpu use double Sum Avg 0.1 cpu consumption

Instance load double Sum Sum 0.2 incoming reqs/s

Instance throughput double Sum Sum 0.2 processed reqs/s

Instance fidelity integer Sum Sum 1 content quality

Instance abort ratio double Avg Avg 0.0001 aborts per second

Table 3. CKPI used in the example application

CKPI Name Values JoinFunction Error Description

service ratio [0,1] throughput/load 0.01 service ratio

The only system-sensed KPI — number servers, represents the number of
deployed servers in the system. There are two component-sensed KPIs: latency,
and update ratio, that describes the fraction of update transactions that take
place in the cache tool. There is a single node-sensed KPI — power consumption
and five instance-sensed KPIs: cpu use, load, throughput, fidelity, and abort ratio.
The fidelity level represents the quality of the served content by each of the non-
distributed components. The abort ratio in Infinispan represents the aborted
transactions per second. The caches in Infinispan keep dynamic data used to
generate webpages, but this data may change. For instance, when a user updates
their profile, in addition to updating the database, the cache must be updated



Self-management of Distributed Systems Using High-Level Goal Policies 179

too. When two requests try to write on the same block of data, a conflict happens
and the operations are aborted. Finally, there is a single CKPI — service ratio,
that indicates how adequate the capacity is to the current load.

6.2 Component Specification

The example application makes use of twelve components. The final and com-
plete specification is presented next, including the descriptions already presented
in Section 4.3. Since the specification of the business and private Catalog, User,
and Account components is similar, they are described together.

Abs t r a ct Component S t o r e S e r v i c e
subtype {cpu use,load,throughput,latency}Mensurab le

Abs t r a ct Component Cata l og/Account
subtype S to r eSe r v i c e , fidelityMensurab le
Loca lParameters
mode :{ r e g u l a r , low}

Abs t r a ct Component User
subtype S t o r e S e r v i c e

Component Bu s i n e s sCa t a l o g/User /Account
subtype Cata l og /User /Account

Component Pr i v a t eCa t a l o g /User /Account
subtype Cata l og /User /Account

Abs t r a ct Component Di s tCach i ng

Component I n f i n i s p a n
subtype DistCach ing ,{cpu use,load,throughput,latency,abort ratio,update ratio}Mensurab le
Loca lParameters
abortTimeout : i n t

Globa lParameters
owners : i n t

Abs t r a ct Component Mu l t i c a s t

Component JGroups
subtype Mul t i ca s t ,{cpu use,latency}Mensurab le
Globa lParameters
t o t a lO rd e r :{ on , o f f }
number caches : i n t

Abs t r a ct Component WebServer

Component ApacheHTTP
subtype WebServer ,{cpu use,latency}Mensurab le

Abs t r a ct Component Eng ine
subtype {throughput,latency,fidelity}Mensurab le
Loca lParameters
mode :{ f r e s h , cache}

Component Sea r ches
subtype Eng ine

Component Recommendations
subtype Eng ine



180 L. Rosa, L. Rodrigues, and A. Lopes

In the specification above there are several noteworthy aspects. One is that
not all components contribute to the same KPIs. For instance, in terms of load
and throughput only the non-distributed components and the caching tool con-
tribute, because the web server works as a relay, and the multicast service does
not actually process web server requests. Another noteworthy aspect is that
non-distributed components only declare local parameters. This avoids incorrect
adaptations in scenarios where there are several instances of non-distributed
components running in different nodes. By marking the parameter as local, the
executor will not try to adapt the parameter in all instances, but only on the
targeted node. Finally, another noteworthy aspect is that the use of abstract
components simplifies the specification, avoiding repeating the subtypes and pa-
rameters for children components.

6.3 Adaptation Specification

In this section, we describe the final specification of all adaptations. Six reversible
and two regular adaptations have been defined for the system. Each reversible
adaptation, gives rise to two adaptations — the specified adaptation and its
inverse adaptation. These adaptations can be combined as long as there are no
implicit conflicts. The adaptation specification does not include explicit conflicts
nor dependencies, as the conflicts between adaptations are already covered by
the implicit conflicts.

Reve r s i b l e NodeAdaptation AddServer ( n )
Node :
n

Act i on s :
n . addComponent (ApacheHTTP )
n . addComponent ( I n f i n i s p a n )
n . addComponent ( JGroups )
n . addComponent ( Bu s i n e s sCa t a l o g )
n . addComponent ( P r i v a t eCa t a l o g )
n . addComponent ( Bu s i n e s sU s e r )
n . addComponent ( P r i v a t eUs e r )
n . addComponent ( Bus i n es sAccoun t )
n . addComponent ( Pr i va teAccoun t )

Requ i r e s :
! n . hasComponent (ApacheHTTP )

Impacts :
n umbe r s e r v e r s += 1
l a t e n c y ÷= 1.89
n . power += 183.1
th roughpu t = 1/( up d a t e r a t i o ∗

(1− a b o r t r a t i o )∗cacheWri teTime )
S t a b i l i z a t i o n :
p e r i o d = 100 s e c s

ComponentAdaptation I n c r ea s eOwner s ( c )
Component :
c : I n f i n i s p a n

Act i on s :
c . s e tPa ramete r ( owners , c . owners +1)

Requ i r e s :
c . owners < c . number caches

Impacts :
c . th roughpu t ∗= 1.23
c . l a t e n c y ∗= 1.12

S t a b i l i z a t i o n :
p e r i o d = 120 s e c s

ComponentAdaptation DecreaseOwners ( c )
Component :
c : I n f i n i s p a n

Act i on s :
c . s e tPa ramete r ( owners , c . owners−1)

Requ i r e s :
c . owners > 1

Impacts :
c . th roughpu t ÷= 1.23
c . l a t e n c y ÷= 1.12

S t a b i l i z a t i o n :
p e r i o d = 120 s e c s

Reve r s i b l e In s tanceAdapta t i on
CatalogToLow (n , c )

Node :
n

Component :
c : Ca ta l og

Act i on s :
n . c . s e tPa ramete r (mode , low )

Requ i r e s :
n . c . mode = = r e g u l a r

Impacts :
n . c . l a t e n c y ÷= 0.03



Self-management of Distributed Systems Using High-Level Goal Policies 181

n . power ÷= 0.007
n . c . cpu u s e ÷= 2.01
n . c . th roughpu t ∗= 1.78
n . c . f i d e l i t y −= 1
S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

Reve r s i b l e In s tanceAdapta t i on
AccountToLow (n , c )

Node :
n

Component :
c : Account

Act i on s :
n . c . s e tPa ramete r (mode , low )

Requ i r e s :
n . c . mode = = r e g u l a r

Impacts :
n . c . l a t e n c y ÷= 1.02
n . power ÷= 0.004
n . c . cpu u s e ÷= 1.65
n . c . th roughpu t ∗= 1.38
n . c . f i d e l i t y −= 1
S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

Reve r s i b l e In s tanceAdapta t i on
I n c r ea s eAbo r tT imeou t ( n , c )

Node :
n

Component :
c : I n f i n i s p a n

Act i on s :
n . c . s e tPa ramete r ( abortTimeout , n . c .

abortTimeout+10)
Requ i r e s :
n . c . abortTimeout < 60

Impacts :
n . c . l a t e n c y ÷= 1.1
n . c . th roughpu t ∗= 1.38

n . c . a b o r t r a t i o ÷= 2.9
S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

Reve r s i b l e ComponentAdaptation
Ac t i v a t eTo t a lO rd e r ( c )

Component :
c : JGroups

Act i on s :
c . s e tPa ramete r ( t o t a lO r d e r , on )

Requ i r e s :
c . t o t a lO rd e r = = o f f

Impacts :
l a t e n c y ∗= 1.07
th roughpu t ∗= (11− u p d a t e r a t i o
∗ l o g (1 .2∗ numbe r s e r v e r s ) )
a b o r t r a t i o ÷= 10 .7

S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

Reve r s i b l e In s tanceAdapta t i on
F r e s hGen e r a t i o n s (n , c )

Node :
n

Component :
c : Eng ine

Act i on s :
n . c . s e tPa ramete r (mode , f r e s h )

Requ i r e s :
n . c . mode = = cache

Impacts :
l a t e n c y ∗= 1.34∗ ( P r i v a t eUs e r . l o ad +

Bu s i n e s sU s e r . l o ad )
th roughpu t ÷= 1.4
n . c . f i d e l i t y += 1
S t a b i l i z a t i o n :
p e r i o d = 60 s e c s

In the specification of the adaptations there are some aspects worth noting.
The impacts of the adaptations were derived from experimentation and bench-
marking, and their description may rely on functions employing other KPIs and
constants. For instance, in the IncreaseAbortTimeout adaptation, the description
of the impact on the throughput not only uses the update ratio KPI but also
a constant that is the cacheWriteTime — that describes the average time that
an update will take in a machine with some specific hardware characteristics.
Another noteworthy aspect is the use of parameters, which make the adaptation
specification simpler. The adaptations CatalogToLow, AccountToLow, and Fresh-
Generations are described for components of abstract type. As a result, instead
of describing the six reversible adaptations, only three reversible adaptations are
described, one for each abstract component.

The specification for the example application does not include any depen-
dencies or conflicts. While there are conflicts between some adaptations, the
implicit conflicts already rule out the pairing of those adaptations. For instance,



182 L. Rosa, L. Rodrigues, and A. Lopes

the AddServer adaptation and its inverse have an implicit conflict because both
have impact on the number servers KPI, therefore, it is not necessary to specify
that explicitly.

6.4 Policy

As previously mentioned, in this chapter we only discuss the portion of the policy
that address the aspects related with distribution of components. The high-level
goal policy described in this chapter aims at an adaptive behavior that takes
advantage of the trade-offs related with distribution. Even by narrowing down
the policy to a sub-set of the possible goals, there are still several alternatives
policy specifications. We illustrate the approach using the following policy:

Goal p r e s e r v e r ed undan cy : n umbe r s e r v e r s Above 3
Goal l i m i t a b o r t r a t i o : a b o r t r a t i o Below 0.008
Goal ma x s e r v i c e r a t i o : Maximize s e r v i c e r a t i o MinGain 0 .05 Every 300
Goal min l a t en c y : Minimize l a t e n c y MinGain 0 .05 Every 400
Goal s a v e r e s o u r c e s : Minimize numbe r s e r v e r s MinGain 0 Every 500

The policy consists of five goals. The first goal, which is the most important, is to
maintain the redundancy, i.e., a minimum number of servers to process requests.
This self-healing property is the most important goal because it will allow the
system to recover from fail overs and avoid downgrading the service to a critical
level. The next three goals address performance issues. The limit abort ratio
is ranked as second because an abort ratio higher than the defined threshold
(0.008) renders the system irresponsive due to being blocked most of the time
(we have determined this threshold experimentally, through benchmarks). The
third goal aims at processing as many requests as possible, i.e, to maximize the
service ratio. The fourth goal is to minimize the latency, which is considered less
important than the service ratio. Finally, the last goal minimizes the resource
consumption.

Table 4. Events extracted from the goals

Type Goal Event Trigger

Exact preserve redundancy kpiBelow(number servers,3) number servers< 3

Exact limit abort ratio kpiAbove(abort ratio,0.008 + 0.0001) abort ratio> 0.0081

Approx max service ratio kpiIncrease(service ratio,300,true) Every 300 s

Approx min latency kpiDecrease(latency,400,true) Every 400 s

Approx save resources kpiDecrease(number servers,500,true) Every 500 s

From the goal policy above, five events were extracted, as depicted in Table 4.
Then five adaptation rules are generated, taking into account that the system
runs in ten nodes numbered from 1 to 10 plus a node designated by backendNode.
Next, we show some of the combinations present in each rule.

When kp iBelow ( number s e r ve r s , 3 )
Se l e c t {AddServer (1 ) } , . . .

When kp iAbove ( a b o r t r a t i o , 0 . 0 0 8 1 )
Se l e c t {Ac t i v a t eTo t a lO rd e r ( JGroups ) } ,



Self-management of Distributed Systems Using High-Level Goal Policies 183

{ I n c r ea s eAbo r tT imeou t (1 , I n f i n i s p a n ) } , . . .

When k p i I n c r e a s e ( s e r v i c e r a t i o , 300 , t r u e )
Se l e c t {Ac t i v a t eTo t a lO rd e r ( JGroups ) } ,

{ I n c r ea s eAbo r tT imeou t (1 , I n f i n i s p a n ) } , . . .
{ F r e s hG e n e r a t i o n s I n v e r s e (1 , Sea r ches ) } , . . . ,
{CatalogToLow (1 , Bu s i n e s sCa t a l o g ) } , . . . ,
{CatalogToLow (1 , P r i v a t eCa t a l o g ) } , . . . ,
{AccountToLow (1 , Bus i n es sAccoun t ) } , . . . ,
{AccountToLow (1 , Pr i va teAccoun t ) } , . . . ,
{AddServer (1 ) } , . . .

When kp iDec r ea s e ( l a t en c y ,400 , t r u e )
Se l e c t {Ac t i v a t e To t a lO r d e r I n v e r s e } ,

{ F r e s hG e n e r a t i o n s I n v e r s e (1 , Recommendations ) } , . . . ,
{AddServer (1 ) } , . . .

When kp iDec r ea s e ( number s e r ve r s , 500 , t r u e )
Se l e c t {AddSe r v e r I n v e r s e (1 ) } , . . .

6.5 Prototype

We have built a proof-of-concept prototype implementation of the approach in
the JavaTMprogramming language. The prototype includes the self-management
elements and the example application. In terms of self-management elements, the
monitor, planner and executor are run in a dedicated node. The database, NAS
and engines are also run in a dedicated node. The remaining nodes run servers
of the example application.

The implementation of the self-management support is done entirely using
JavaTMobjects. The specification of components and adaptations is achieved by
declaring component and adaptation interfaces. The KPIs and CKPIs used to
characterize the system are described through the creation of a set of KPI and
CKPI objects in the monitor element. The goal policy is written in the planner
through the creation of a list of goal objects. The rules generated from the goal
policy and adaptation specifications are described using a set of rule objects.

The monitoring of the system and environment is performed by the monitor
and all the sensors associated to components. Each component has a dedicated
sensor that captures the information regarding the mensurable KPIs described
in the component specification (see Section 4.3). Each sensor is designed for a
particular component, as different component provide different KPI information
and have different mechanisms to access that data. To implement some sensors
it was necessary to alter the component implementation, as the data was not
available to elements external to the component. This is the case of the Infinispan
and JGroups components.

The execution of the adaptations selected by the planner is performed by
the executor element and all the effectors associated to the components and
nodes. The implementation of the executor highly depends on the supported
adaptations, and the targeted system and components. The execution of an
adaptation may need to take many aspects in consideration, such as achieving
quiescence, transferring state, or coordinating the instances involved in an adap-
tation, among many others. To address any of these concerns there are several



184 L. Rosa, L. Rodrigues, and A. Lopes

alternatives available, some addressed in [15]. The executor developed for this
prototype and example application is prepared to handle quiescence and node
coordination. The quiescent state is a responsibility of the component, while the
coordination is of the executor and effectors. The executor is prepared to perform
both non-distributed and distributed adaptations. The distributed adaptations
are performed without the need for synchronization barriers, which speeds up
the adaptation execution and minimizes the disruption caused to the system
execution. This is possible due to dedicated mechanisms in JGroups, that help
the effectors executing the adaptation without interrupting the service.

6.6 Evaluation

The prototype uses a cluster of eleven machines with the following configuration:
Dual Intel Xeon Quad-Core, 2.13 GHz clock speed, and 8 GB of RAM running
Linux (kernel 2.6.32-21-server). All machines are connected by a 1 Gbps Ether-
net. We used Infinispan version 5.0.0, extended with a number of sensors and
effectors. Infinispan was deployed in full replication mode (i.e., each data item
is replicated in every active server). Furthermore, we have used JGroups 2.11.0,
which has been also augmented with an effector that is able to activate or de-
activate the total order layer of the JGroups group communication stack. The
workload is emulated by Radargun benchmark [14], version 1.1.0. The bench-
mark simulates the clients, the virtual server load balancer, and the web servers
at each node. The benchmark is able to detect when a new instance of the cache
is added to the cluster, through a monitoring agent present in each node.

To illustrate the operation of our autonomic manager and the effect of the
high-level goal policy, a deployment of the system was subject to a variable
load. All experiments follow the same pattern: we first let the system stabilize
in the best configuration for a given workload, then we change the workload
characterization and observe how the system reacts. Changes to the workload are
made such that different adaptations are more appropriate in each experiment.
The workloads are differentiated by two main characteristics: high contention
(HC) or low contention (LC), and load. The high contention HC-3 workload
captures a scenario where concurrent accesses to the same item occur often,
which creates many opportunities for deadlocks and a potential increase in the
abort ratio. This workload is tailored for the capacity of three servers. There are
three low contention workloads: LC-3, LC-5, and LC-6. They require different
capacities to handle the load, respectively, 3, 5 and 6 servers. Using this set
of workloads, we have experimented 4 different transitions, namely: i) LC-3 to
HC-3; ii) HC-3 to LC-3; iii) LC-5 to LC-6; and iv) LC-6 to LC-5. The results
obtained for each transition are depicted in Figure 5.

In the first scenario, LC-3 to HC-3, the workload changes from low contention
to high contention.When operating with low contention, JGroups is running with-
out total order, as it allows to obtain a lower latency. When the workload changes
there is a significant increase in the abort ratio, which degrades the service ratio,
as fewer requests are served with success. This degradation of the service ratio
can be observed in Figure 5(a) until the vertical line (that marks the adaptation).



Self-management of Distributed Systems Using High-Level Goal Policies 185

As the graphic shows, the abort ratio violates the limit abort ratio goal, because
it is above the threshold specified in the policy. In the planner, the corresponding
rule is evaluated, using the current system state, carried by the event. The selected
adaptation is to ActivateTotalOrder guarantee. As a result, the abort ratio de-
creases and, consequently, the service ratio increases, which can also be observed
in Figure 5(a), after the adaptation, when the system stabilizes.

The second scenario, HC-3 to LC-3, illustrates the inverse adaptation. The
transition of workloads results in a decrease of the contention level and of the
abort ratio, allowing room to improve the latency. The planner determines that
it is possible to improve the latency by using the ActivateTotalOrder Inverse
adaptation (deactivates the total order), without compromising any of the higher
ranked goals. Figure 5(b) shows that not only the service ratio is not degraded by
the adaptation, but the update latency is reduced. This effect is mostly noticeable
by observing the average update time (available as context information).

In the third scenario, LC-5 to LC-6, the system is operating under a low
contention scenario, such that total order is not required, and the load is effi-
ciently handled by 5 servers. With the transition of workloads, the service ratio
drops due to the system overload. The planner element selects the AddServer
adaptation to increase the system capacity, thus, increasing the rate of served
requests and, consequently, the service ratio. Figure 5(c) depicts the service ratio
before and after the adaptation, showing a clear improvement of the service ra-
tio, returning its value back to 1. However, this adaptation results in the system
demanding more power, since the newly active server is no longer idle, as Fig-
ure 5(c) also depicts. We opted to show the average power consumption because
power consumption is not steady over time.

The final scenario, LC-6 to LC-5, is the inverse of the previous scenario. After
the transition, the 6 servers are no longer required to maintain a service ratio
close to 1, with resources being unnecessarily consumed by the sixth server. The
planner will select one AddServer Inverse adaptation (that removes a server) to
decrease the resource consumption. Figure 5(d) shows that after the adaptation,
the service ratio is maintained, still efficiently processing all incoming requests,
and power is saved.

The main goal of the prototype was to demonstrate that that our approach is
viable and useful in the context of distributed systems. The results show that, in
distinct scenarios, the proposed approach is able to automatically guide the sys-
tem adaptation during runtime according to the management goals. As we have
seen, this involves balancing the different trade-offs and selecting the adapta-
tion that best satisfies these goals. Although we have only considered a sub-set
of the possible goals, the number of potential configurations of the system is
large. Therefore, it is not easy to devise sets of adaptations that adequately
balance these trade-offs while, at the same time, have a good coverage for the
possible range of the system’s operational conditions. Larger sets of adaptations,
KPIs, and goals dramatically increase the difficulty of this task and also pose



186 L. Rosa, L. Rodrigues, and A. Lopes

0
0.01
0.02
0.03
0.04

0 1 2 3 4 5

0

1

Time (minutes)

Ab
or

t R
at

io

Se
rv

ic
e 

R
at

io

(a) LC-3 to HC-3: activating the total order guarantee

0

10

20

30

0 1 2 3 4 5

0
1

Time (minutes)

Se
rv

ic
e 

R
at

io

Av
g 

U
pd

at
e 

Ti
m

e 
(m

s)

(b) HC-3 to LC-3: deactivating the total order guarantee

0

1000

2000

3000

4000

0 1 2 3 4 5

0

1

Time (minutes)
Se

rv
ic

e 
R

at
io

Po
w

er
 (W

at
ts

)

(c) LC-5 to LC-6: adding a new server

0

1000

2000

3000

4000

0 1 2 3 4 5

0

1

Time (minutes)

Se
rv

ic
e 

R
at

io

Po
w

er
 (W

at
ts

)

(d) LC-6 to LC-5: removing one server

Fig. 5. Experimental results some minutes before and after the adaptation

scalability issues for the proposed approach. We have addressed these issues
in [17] through an evaluation study of the approach’s performance and scalability,
that shows that the approach scales well up to 400 adaptations.



Self-management of Distributed Systems Using High-Level Goal Policies 187

7 Related Work

In the proposed approach, the planning activity relies on high-level goal policies.
When compared to other approaches in which the adaptation is based on a
portfolio of adaptation strategies (defined at design time), this choice has several
advantages. Approaches that employ goal policies are often better equipped to
address dynamic environments with some level of uncertainty. If the adaptation
is exclusively guided by adaptation strategies, the occurrence of changes not
anticipated (with no adaptation strategy associated), leaves the system without
reaction. Another important advantage is that it also deals better with system
evolution. The addition of new components or more adaptations to existing
components can be done while maintaining the goal policy. The flexibility to
change the system’s adaptive behavior is also better, given that this can be
achieved by changing the goal policy. In what follows, we focus on approaches
that also employ high-level goals to achieve the system’s adaptive behavior.

There are several policy-based approaches that employ high-level or abstract
goals to address the drawbacks posed by low-level action policies. However, we
are not aware of other approaches (or approaches with the means to be easily
extended) that support the adaptation of systems with distributed components.

Approaches that employ goal policies usually rely in some form of mapping
between goal policies and action policies. The approach in [2] relies on a direct
mapping from goal policies expressed in temporal logic to action policies. Not
only the system designer needs to define all the behavior goals and the possi-
ble adaptation actions for the system, but she must also manually describe the
link between goals and actions. The goal policy refinement then relies on abduc-
tive reasoning to find which sequence of operations allows to achieve the goals.
However, neither optimization goals, nor graceful degradation are supported.
Furthermore, the goals only address component properties, excluding any global
system properties. Other approaches like [18] address global system properties,
relying instead on reactive system techniques to perform the selection in a more
systematic manner. However, they do not provide the means to derive the cor-
rect value of a parameter in a set parameter adaptation. Finally, both approaches
cannot change the goal policies during runtime.

In the three-layer reference model [19], the goal policy is also expressed in
terms of temporal logic formulas. These goals, together with a description of
the system capabilities, are used to generate action policies to enforce the goals.
This generation relies in identifying all the states from which it is possible to
lead the system to a correct state, thus, creating a rule for each undesired but
amendable state. This approach suffers from the same issues mentioned in the
previous approach. Nonetheless, it allows changes to the goals during runtime.
Both approaches lack the ability to balance conflicting goals, therefore, the trade-
offs of performing an action.

Goal policies have been also specified using utility functions [20,9,6,8], in alter-
native to temporal logic or ranked goals. This is achieved by defining the utility
(a scalar value) of each possible system configuration as a function of specific
data available in the context (e.g., memory and bandwidth available). Hence, it



188 L. Rosa, L. Rodrigues, and A. Lopes

demands that the user is able to quantify the importance of each goal and find
a delicate balance for all the goals. In these approaches, the aim is to assemble
a configuration tailored to the current situation. For instance, in MADAM [9], a
goal policy is expressed in terms of an utility function that assigns a scalar value
to each possible system variant, as a function of the system properties in a given
context. When the system needs to be adapted, the choice of a system variant
relies on property predictor functions over the associated system properties.

Predictors of the impact of adaptations decisions on the system’s goals are
used in several approaches to self-adaptation, namely they are also used in [6,8].
In Stitch [6], an adaptation tactic is associated with an impact vector, which
determines its expected contribution to the system utility dimensions while Fu-
sion [8] adopts a learning based approach in which the analytical model that
relates the impact of adaptation decisions on the system’s goals is automatically
induced from the monitored data. The learning techniques developed in the con-
text of Fusion are in fact an excellent way of overcoming potential imprecisions
of the impact functions that, in our approach, have to be defined at design-time.
In particular, they would promote the definition of rough approximations for
these functions with obvious advantages in terms of required time and expertise.

8 Conclusions and Final Remarks

Building distributed systems that are able to efficiently cope with dynamic and
unpredictable environments and workloads is still a challenge today. In this chap-
ter, we propose a self-management approach designed for systems with both
distributed and non-distributed components that are customizable. The self-
management relies on a high-level goals policies, described by system managers,
that may express an SLA, performance and resource consumption concerns,
among other considerations. For that purpose, the approach relies on a number
of KPIs to establish goals for the system behavior. The approach also leverages
the knowledge of component developers, namely, information on how the com-
ponents can be adapted and the adaptation trade-offs in terms of KPIs. The
runtime monitors the system and is able to automatically select and deploy the
necessary adaptations to correct deviations in behavior. We have validated the
proposed approach using a prototype of a high traffic web cluster that employs
both distributed and non-distributed components.

In the future, we plan to extend our work in several directions. First, we
would like to allow the maximum number of nodes to be dynamic, where the
number of available nodes changes during runtime. This support demands that
the unfolding of instance and node adaptations is performed during runtime.
Second, we would like to incorporate the cost of performing an adaptation in
the selection algorithm. In the distributed setting this is particularly interesting,
as the cost of an adaptation that involves several instances of a component is
usually larger than a single instance. Therefore, if there are several possible
adaptations, it would be preferable to choose the one with the lowest cost.



Self-management of Distributed Systems Using High-Level Goal Policies 189

Acknowledgements. This work was partially supported by the FCT (INESC-
ID and LASIGE multi annual funding through the PIDDAC Program fund grant
and by the project CMU-PT/ELE/0030/2009).

References

1. Apache, http://httpd.apache.org
2. Bandara, A.K., Lupu, E.C., Moffett, J., Russo, A.: A goal-based approach to policy

refinement. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, p. 229 (2004)

3. Bridges, P.G., Hiltunen, M.A., Schlichting, R.D.: Cholla: A framework for compos-
ing and coordinating adaptations in networked systems. IEEE Trans. Comput. 58,
1456–1469 (2009)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

5. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software Engineering
for Self-Adaptive Systems. Springer, Heidelberg (2009)

6. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: Proceedings of the 2006 International Workshop
on Self-adaptation and Self-managing Systems, pp. 2–8. ACM (2006)

7. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst. 1, 223–259 (2006)

8. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 7–16. ACM
(2010)

9. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Softw. 23(2), 62–70 (2006)

10. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

11. Infinispan, http://www.jboss.org/infinispan
12. JGroups, http://www.jgroups.org/
13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,

41–50 (2003)
14. Radargun: See, http://sourceforge.net/apps/trac/radargun/
15. Rosa, L., Rodrigues, L., Lopes, A.: A framework to support multiple reconfigura-

tion strategies. In: Proceedings of the 1st International Conference on Autonomic
Computing and Communication Systems, pp. 15:1–15:10 (2007)

16. Rosa, L., Rodrigues, L., Lopes, A., Hiltunen, M.A., Schlichting, R.D.: From Local
Impact Functions to Global Adaptation of Service Compositions. In: Guerraoui,
R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 593–608. Springer, Heidelberg
(2009)

http://httpd.apache.org
http://www.jboss.org/infinispan
http://www.jgroups.org/
http://sourceforge.net/apps/trac/radargun/


190 L. Rosa, L. Rodrigues, and A. Lopes

17. Rosa, L., Rodrigues, L., Lopes, A., Hiltunen, M.A., Schlichting, R.D.: Self-
management of adaptable component-based applications. Tech. Rep. 7318,
INESC-ID, Lisbon, Portugal (2011)

18. Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G.: A func-
tional solution for goal-oriented policy refinement. In: Proceedings of the 7th IEEE
International Workshop on Policies for Distributed Systems and Networks, pp. 133–
144. IEEE Computer Society (2006)

19. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: SEAMS 2008: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and Self-managing
Systems, pp. 1–8. ACM (2008)

20. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. In: Proceedings of the First International Conference on Autonomic Com-
puting, pp. 70–77. IEEE Computer Society (2004)



Dealing with Non-Functional Requirements

for Adaptive Systems via Dynamic Software
Product-Lines

Carlo Ghezzi and Amir Molzam Sharifloo

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy

{ghezzi,molzam}@elet.polimi.com
http://deepse.dei.polimi.it/

Abstract. This paper focuses on the development of adaptive software,
i.e., software that can automatically adapt its behavior at run-time in
response to changes in the surrounding context in which it is situated.
Furthermore, we focus on adaptation that is required to ensure contin-
uous satisfaction of non-functional requirements. We propose that the
implementation should be architected as a dynamic software product
line (DSPL), whose target configurations can be generated dynamically.
We discuss how the DSPL can be verified against non-functional require-
ments at design time through model checking. We also discuss how at
run time the appropriate instance of the DSPL can be selected and dy-
namically installed and enacted as context changes are detected that can
be handled correctly by such instance.

1 Introduction

Many modern software applications are embedded in an environment that can
change and must satisfy requirements that also change. Changes are not under
the application’s control; they may occur autonomously and unpredictably. Their
occurrence, on the other hand, may affect the ability of the application to ac-
complish its goals. At the same time, there is an increasing demand for software
solutions that can recognize and tolerate changes, by evolving and dynamically
adapting their behavior to provide continuous service as changes occur. This is
necessary for systems that must be perpetually running and cannot be taken
off-line to be updated. Because of these motivations, research on systematic de-
velopment of self-adaptive systems became increasingly popular in the software
engineering community during the recent years, and various research efforts are
being carried out on different aspects of the development and management of
these systems.

Conceptually, an adaptation is required when a violation of the requirements
is detected. We are of course referring here to a broad notion of requirements,
which includes not only functionality, but also quality of the delivered func-
tionality. In other words, we refer both to functional and non-functional (or

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 191–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://deepse.dei.polimi.it/


192 C. Ghezzi and A. Molzam Sharifloo

extra-functional) requirements [31]. In the rest of this paper, we actually im-
plicitly restrict our focus on non-functional requirements (NFRs). We will in
particular refer to NFRs that can be described quantitatively in probabilistic
terms. Two notable examples, discussed in the paper, are reliability and energy
consumption. While reliability concerns are traditionally considered in the case
of dependable software, energy consumption has been emerging more recently
due to the increasing use of battery operated devices and – more generally –
energy saving concerns.

Changes in the operational environment (the context) are the main sources
that may cause requirements violation ([16]), and hence require adaptive changes
in the application software. Typical examples of environment changes are changes
in the infrastructure on which the software is deployed (e.g., in the network used
to interconnect the nodes of a distributed application), in the components in-
tegrated in the application and/or used as external services (e.g., in a location
service that provides the current spatial coordinates of a device or in a weather
forecast service that provides the weather conditions in given target geographical
locations), in the usage profiles (e.g., in the case of user-intensive applications,
changes in request submission rates from users may significantly affect satisfac-
tion of the application’s requirements). The phenomena that are relevant here
and their changes are called environmental (or contextual) because they are not
under control of the application, but rather they occur spontaneously in the
environment in which the software is embedded. Although most of our discus-
sions in the paper refer to environment changes, the approach we propose can
also handle user requirements changes, provided that possible changes are an-
ticipated during the initial design. Our approach instead does not try to take
into account implementation flaws that may generate failures at run time, which
also require changes in the running system. These are ignored here; that is, we
assume the implementation to be correct with respect to the specification.

This paper discusses how software systems may be made self-adaptive to en-
vironment changes that may cause requirements violations at run time. The goal
of self-adaptation is indeed to support dynamic configuration of a running soft-
ware system so that it keeps compliance with the requirements or—at worst—in
such a way that the running implementation generates minimum disruption. The
proposed solution is based on a holistic approach that covers both the design and
the run-time phases of the application lifetime. A design-time verification phase
is integrated with continuous run-time verification and reconfiguration that sup-
port the adaptation. The need for such a holistic approach has been motivated
in [2]. The solution that aims at supporting the approach is presented in this
paper.

The main contributions of our work can be summarized as follows. First, at de-
sign time, the software application is designed as a dynamic software product line
(DSPL). A software product line ([9,29]) defines a family of software products that
can be viewed as configurations. In our case, configurations differ in the way they
satisfy the same requirements in different contexts. The different contexts are rep-
resented during design as variation points in product-line terms. The product line,



Dealing with Non-Functional Requirements 193

in our approach, is dynamic in the sense that the different instances are generated
dynamically at run time. Moreover, our notion of a “product” is unconventional,
in the sense that it does not refer to code, but to higher-level models. The models
we refer to are the ones that are used by software engineers during design to rea-
son about the NFRs of interest for applications. Because our main focus here is
on reliability and energy consumption, we refer to Discrete Time Markov Chains
(DTMCs) as our reference modelling formalisms. DTMCs, briefly summarized in
Section 2, proved to be a suitable formalism to deal with our target NFRs.

All our reasoning and manipulation is performed at the model level. In par-
ticular, models are also used to describe configurations. The way models are
transformed into implementations and then into deployed units is ignored in
this paper. We simply assume that this can be done by following some system-
atic model-driven development strategy. We focus instead on how design models
(in our case, DTMCs) for the various configurations can be generated from re-
quirements. The method we propose starts from a higher level specification of
the system and of the environment, given in terms of sequence diagrams (SDs).
These provide a notation that is widely used and mastered by software develop-
ers. SDs are also extended with variants and variation points and from them it
is possible to derive DTMCs in a mechanical way.

At design time, the DTMCs that describe the entire (model level) product
line are verified against the requirements. Conceptually, all models of all config-
urations are verified to satisfy the requirements in the environment conditions
for which they have been designed. Environment conditions are in fact also de-
scribed as part of the models. A main contribution of this paper is to show how
to avoid separate verification of each configuration through a novel approach
that exploits commonalities among different configurations, which are factored
out to support efficient verification, as we will discuss in Section 4. At run time,
whenever the (model of the) currently running instance of the application is
found to violate the requirements, because of environmental changes, another
instance is identified (and the corresponding target implementation is deployed)
that does satisfy the requirements under the new external conditions.

To support our run-time approach, the following framework must be in place:

1. Suitable monitors collect data that characterize the environment phenomena
of interest, which may indicate potentially relevant changes.

2. The low-level data collected by monitors are abstracted into the correspond-
ing parameters of the model M of the currently running configuration and
the updated values yield a modified updated model M ′. As we anticipated
earlier, the models represent the behavior of both the application and the
environment.

3. The updated model M ′ is verified against the requirements. Because we
use probabilistic models, verification is performed by means of probabilistic
model checking tools.

4. If requirements are violated, a new configuration M ′′ that satisfies the
requirements is selected and the corresponding target implementation is de-
ployed.



194 C. Ghezzi and A. Molzam Sharifloo

In previous papers [12,13] we described how continuous model update (steps
(1), (2)) and verification (step (3)) can be accomplished for DTMCs. It is also
important to observe that since verification is performed on the model of the
application, it verifies all its possible behaviors. Therefore, it may detect a vi-
olation of requirements even for behaviors that have not been observed yet in
the running system. A violation of the requirements may thus be viewed as a
prediction that the requirements will be violated, and indicate the need for a
suitable preventive reconfiguration action to be performed. This issue is dis-
cussed more thoroughly in [16]. Step (4)—which can be viewed as the heart of
self-adaptation—is instead the main contribution of this paper. In addition, the
paper advocates a DSPL-based design approach and shows how model check-
ing can be applied both at design time—to verify NFR properties of the DSPL
being developed—and at run time—to guide the selection of the appropriate
configuration that best satisfies the requirements.

The remainder of the paper is structured as follows. Section 2 presents related
work and background approaches on which this work is founded. Section 3 in-
troduces a motivating running example. The proposed framework is then fully
illustrated in Section 4. Finally, Section 5 discusses the current challenges and
future work.

2 Related Work and Background Approaches

Many research efforts are presently undertaken to design self-adaptive systems
that can dynamically adapt to external changes. The reader may refer to [6] and
to the series of proceedings of the SEAMS workshop (now symposium) series
for a comprehensive view of the different approaches being investigated. Due to
the lack of space, and because of our focus, hereafter we only position our work
in the context of efforts that explicitly concentrate on NFRs. We subsequently
review related work in two research areas on which this paper is also rooted:
dynamic software product lines and probabilistic model checking.

2.1 Self-Adaptive Systems for NFRs Satisfaction

The Rainbow framework described by Garlan et al. [7] represents one of the
earliest attempts to support self-adaptation of software systems. Adaptations
are prescribed as script rules for different foreseen problems at design time. Ca-
linescu and Kwiatkowska [4] introduce a framework to implement autonomic
systems in order to optimize satisfaction of NFRs. The framework mainly relies
on policies specified by users, which are defined over configurable parameters.
Adaptation planning is performed by exhaustively searching for optimal val-
ues of configurable parameters. Maximum size of a queue and database pool
are two examples of configurable parameters. This approach does not support
architectural adaptation. This can be a shortcoming because most of modern
systems are comprised of black box components and only architectural adapta-
tions are possible [26]. Adding and replacing components are two examples of



Dealing with Non-Functional Requirements 195

architectural adaptations. Also the approach applies classical model checking
against all possible configurations. This may result in inefficiencies due to large
number of possible configurations.

To make adaptation planning flexible, Kim et al. [21] and Elkhodary et al.
[11] exploit the use of learning algorithms. In particular, Kim et al [21] investi-
gate the use of reinforcement learning techniques to enact dynamic adaptation
plans at run time. They propose an approach to Q-Learning-based action plan-
ning in which in any given situation an appropriate adaptation is selected. After
performing an adaptation, the system receives a reward that represents the ef-
fectiveness of the applied adaptation. The reward is used to tune the parameters
of the learning functions which select the next adaptations. The main problem of
the learning-based approaches is the learning period that the algorithms require
for tuning parameters.

The above approaches and their characteristics are summarized in Table 1.
An approach like the one pioneered by [7] uses design-time incomplete knowl-
edge to provide adaptation rules, while others like [21] [11] are based on run-time
learning. Both of them may lead to failure in adaptation planning. Prescribing
adaptation plans at design time can be very risky due to incomplete knowledge.
On the other hand, applying only run-time approaches needs a long learning
time after system deployment. Our aim is to reach a balance between design
time and run time. We embed adaptation points into system models and make
sure that possible configurations can satisfy NFRs with respect to design-time
assumptions. If design-time assumptions are not violated, then the running sys-
tem is guaranteed to satisfy the requirements. However, in case the assumptions
are violated, we apply light-weight run-time planning techniques. To be more
clear, at run time we collect environmental data, update models, and apply evo-
lutionary techniques to find candidate configurations. We ensure that a selected
reconfiguration improves NFRs satisfaction. Our verification-based run-time ap-
proach is efficient because we use parametric verification techniques that are
computationally expensive only at design time. Thus, the run-time overhead of
planning is minimized.

Table 1. Model-based approaches to build adaptive systems

Approach Specification Planning Adaptation Run-time Overhead

Garlan et al [7] static design time architectural rule reasoning

Calinescu et al [4] behavioral run time parametric exhaustive search

Kim et al [21] static run time architectural learning

Another distinctive feature of our approach is the use of high-level behavioral
models for system modelling and NFRs analysis. This is important specially due
to the nature of NFRs like reliability and cost, which are highly dependent on
system behaviors. For example, the number of repetitions of an activity can have
an impact on reliability of a system scenario. Behavioral models can precisely
predict future satisfaction of NFRs. Calinescu et al. [4] also base their approach
on the use of formal models of NFRs, but they do not focus on architectural



196 C. Ghezzi and A. Molzam Sharifloo

adaptations. To achieve this goal, we exploit the application of DSPLs in the
design of adaptive system.

2.2 Dynamic Software Product Lines

A software product line SPL is defined by Software Engineering Institute as “a
set of software-intensive systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way” [9]. SPL
engineering (SPLE) is thus an approach to reducing the time and effort of devel-
oping a family of products. SPLE mainly focuses on developing a static product
in which variation points are bound to specific variants before the application is
deployed and run.

Mobile environments and modern networks demand high adaptive software
systems, because their user requirements and resource constraints continuously
change. These are the reasons why DSPLs become important in developing self-
adaptive systems. The main difference between a SPL and a DSPL is the binding
time of variation points to variants. In a SPL the binding is established before
run time, while in a DSPL the binding is established later at run time. Indeed,
while SPLs are used to deal with variability of the market, DSPLs are applied
to cope with changing environments and individual requirements.

According to Cetina et al. [5], “DSPLs encompass systems that are capable of
modifying their own configuration with respect to changes in their
operating environment by using run-time reconfigurations”. According to Hall-
steinsen et al. [19] [18], DSPLs support dynamic variability, frequent run-time
binding, and user requirements change. Moreover, they may provide the capa-
bilities for context-awareness, self-adaptation, and autonomic decision making.
In [23], context-awareness, resource-aware decision making, permanent service
delivery, and consistent dynamic reconfiguration are considered as the major
properties of DSPLs.

There exist a few research efforts aiming at modeling and developing DSPLs.
Morin et al. [27] describe how DSPLs may be architected to manage dynamic
adaptations. Trinidad et al. [30] model a DSPL by using feature models. Ben-
como et al. [3] discuss how to capture and model variability of adaptive systems
through SPL modeling approaches. They use feature models to provide a struc-
tural view of system variability, and apply transition diagrams to specify system
reconfigurations in response to environmental changes. In [24,28], the authors
discuss the application of aspect-oriented methods in developing DSPLs.

Lee and Kang [23] point out the importance of DSPL to address unexpected
changes in environment and focus on dynamic reconfiguration as important
means. They describe how to use feature models to represent variation points
and how to switch between different configurations with respect to system con-
text. Our approach follows a similar path, although our main focus is on using a
DSPL-based software architecture to achieve run-time adaptations that enable
continuous satisfaction of NFRs. The approach relies on efficient formal analysis
of NFRs, which dynamically supports architectural adaptation planning.



Dealing with Non-Functional Requirements 197

2.3 Probabilistic Models for Non-Functional Requirements

Probabilistic models provide very useful and expressive power to specify uncer-
tain and unpredictable behavior in a quantitative manner. Using randomization
in distributed protocols of computer networks is one of the examples leading
to unpredictable behaviors. Probabilistic model checking has been developed in
the recent past to verify models that exhibit stochastic behaviors. It has been
used in various domains from biological systems and chemistry to sensor net-
works. It can be also used for verifying and predicting non-functional properties
of software systems, such as reliability, performance, and cost. The underlying
models used in probabilistic model checking are different kinds of Markov mod-
els including Discrete-Time Markov Chains (DTMCs), Continuous-Time Markov
Chains (CTMCs), Markov Reward models, etc. Recently, there have been great
improvements on tools and techniques for probabilistic model checking. PRISM
and MRMC are two important probabilistic model checkers that are currently
being used [22].

In our work, to support formal analysis of requirements, we generate Markov
models that are amenable to model checking. We generate DTMCs for reliability
analysis and DTMCs with rewards for energy consumption. For space reasons, we
only provide a sketchy introduction to DTMCs and to the property language in
which properties may be expressed and analyzed. The reader may refer to [22] for
details. Since in this paper we only focus on reliability and energy consumption,
we ignore CTMCs, which instead are very useful to model performance.

A DTMC can be viewed as a state machine, where transitions are annotated
with probabilities. For example, the DTMC in Figure 1 describes a system where
in the initial states two actions may be chosen (A, with probability 0.7 and B,
with probability 0.3). Execution of A may then succeed with probability 0.9,
leading to state C or fail, leading to state D. Similarly, B may succeed with
probability 0.99 (or fail with probability 0.01). DTMCs with reward also label
transitions with real numbers representing costs (which may, for example, model
the energy consumption of the activity that causes the state transition).

As for the property languages, PCTL (Probabilistic Computation Tree Logic)
and cost/reward formulae have been proposed by the research community [1].
These property languages belong to the family of temporal logic languages. For
example, in PCTL we can express a property concerning the reachability of a
failure (or success) state. Similarly, using cost/reward formulae we can express
properties on the energy consumption of a certain transaction. As an example
P => 0.98[F (State = C)] evaluated in state S represents the following property:
”The probability of eventually reaching state C is greater than or equal to 0.98”.
The temporal operator F stands here for ”eventually”. Other examples will be
given later in the paper.

Although a language like PCTL can express quite sophisticated forms of re-
quirements, in this paper we restrict ourselves to a specific subclass (reachability
formulae), which can describe the most common kinds of reliability requirements.
For example, in this restricted language one can state that the probability that
a complex transaction eventually reaches a state indicating a failure should be



198 C. Ghezzi and A. Molzam Sharifloo

Fig. 1. A Sample DTMC

lower than a certain threshold. A similar constraint might be expressed for en-
ergy consumption, in the case where the transaction is run by a low power device.
The reason for focusing just on reachability properties is to avoid delving into
the details of probabilistic temporal logic. The approach we described in [13],
which can be used to perform run-time verification, applies to full PCTL.

In the work we describe here, we refer to a new variation of probabilistic model
checking that has been recently proposed ([10], [13]), in which probabilities of
some transitions of Markov model are replaced with variables (called parame-
ters). The resulting model is called a parametric Markov model. The probability
of reaching a certain state (as expressed by a reachability property) can be com-
puted as a rational function instead of a constant value. To evaluate the function,
we need to provide real values for the parameters appearing in the function. In
the rest of the paper we call these functions as parametric formulae.

The use of parametric model checking fits the application domain of adap-
tive software. In fact, the DTMC transitions that model changeable phenomena
can be represented symbolically as parameters whose value becomes known at
run time. Instead of running the classic model checker each time the values of
parametric transitions change, one can much more efficiently feed values into the
rational formula that describes the reachability property and perform a rather
simple computation. This approach can be implemented using the PARAM
model checker [17]. PARAM supports parametric model checking of parametric
DTMCs and parametric DTMCs with Reward [17].

The use of formal models and model checking to verify SPLs has been pio-
neered by [8]. This work, however, does not deal with quantitative probabilistic
requirements and does not deal with dynamic verification, two features that are
instead necessary for DSPLs.

3 Running Example

In the following, a running example is described for which we aim at building
an adaptive system.

“The Happy Hour Organizer (HHO) is a system to help people socialize as
they move around in a modern city. The system is developed in order to make
organization of daily social events easy and as automatic as possible. One of the
scenarios that this system supports is about “grouping” in impromptu meet-
ings. To achieve that, the system helps people, who have the same interests,



Dealing with Non-Functional Requirements 199

to find each other and perform a social activity (which we call Happy Hour).
For instance, someone may like to meet other people who study the same foreign
language to practice in conversation. Thus they may have a nice evening in a bar
while sharing their knowledge about the language. To organize such impromptu
meetings, the HHO application running on the user’s smartphone looks into a
social network and searches for other people around city and especially near her
place. The system obtains the user’s current position, and takes it into account
while selecting and contacting people. The application finds a group of people
and communicates with their devices to make an agreement on the appointment
time. Later, the application searches and books a place like a bar or pub in which
the event can be held.

The system is to satisfy two NFRs concerning reliability and energy consump-
tion. More precisely, the whole scenario shall be performed with a reliability
higher that 0.95 and maximum energy consumption of 1000.”

The running example described above includes variation points both in the
system and environment. For example, the mobile system needs to detect the
current position of the user through a locator device. This functionality can be
performed via two embedded components: GPS or GSM. Another example is the
communication service between different devices, which can be performed either
via WiFi or SMS. These two are examples of internal variabilities developed as
a part of system. Examples of the variation points in the environment are the
social network and the place booking services. Many external applications exist
to support these services, and their invocation corresponds to external varia-
tion points, whose variants can be found in the environment. Different variants
may be visible or not depending on the physical location; they may appear and
disappear over time; they may provide low or high-level QoS. Therefore, it is
important for the system to switch between the variants which can better fit
HHO’s functional and non-functional requirements. Indeed, the main challenges
are how to select a configuration and how to make sure that it continuously
satisfies the non-functional properties. One issue is that different non-functional
requirements may have a conflicting nature. For example, a reliable component
may consume more energy than an unreliable one. Therefore, finding a set of
variants that altogether provide a good quality with respect to the requested
properties can be a difficult task.

4 The Proposed Approach

The overall view of the approach is shown in Figure 2. As illustrated, the frame-
work covers both design time and run time. During design time, the aim is to
design a DSPL, specify architectural models, and analyze them against expected
NFRs. At run time, while the DSPL starts operating in environment it keeps
monitoring quality data that may affect NFRs satisfaction. The requirements
are continuously verified with respect to run time data that may reflect changes
in the environment’s behavior. In the case of detection of any violations, adap-
tation plans are generated and applied. In the following, we discuss each phase
in turn and describe the relevant activities.



200 C. Ghezzi and A. Molzam Sharifloo

Fig. 2. The Proposed Framework

4.1 Design Time

The framework starts at design time when the architecture of the DSPL is de-
signed through a feedback loop. The key point of design is to introduce variation
points through which adaptations can be performed. The architectural design
is then verified against expected NFRs by using parametric model checking. As
we will see below, the different configurations—resulting from different instan-
tiations of variants—are model checked in the different environment conditions
for which they are conceived. The goal is to show whether or not the different
configurations can satisfy NFRs. The designer can check the analysis results and
may modify the architecture accordingly. In the sequel, we briefly discuss the
techniques used in design-time activities.

Modeling. The main issue of modeling a DSPL is to specify variation points
and variants. The system is designed as usual but the adaptive parts are specified
as features, for which there exist alternative choices. The abstract feature model
of the running example is shown in Figure 3. Every feature is a functionality
that may be achieved using different variants. Variants can be implemented as
a part of the system or may be hired as external services in environment.

In our framework, the behaviors of a system are specified by using
Sequence Diagrams (SDs). Furthermore, new stereotypes (<<variation point>>
and <<variable>>) are added to represent varying behaviors. The former (see
Figure 4-a) describes the choice between variants in the system’s architecture



Dealing with Non-Functional Requirements 201

(internal variability). The variation points are represented by fragments
combined through the alternative (labelled alt and else) and stereotyped as
<<variation point>>. External services whose selection may be performed at
run time to achieve dynamic binding are modeled as an invocation from a com-
ponent, stereotyped as <<variable>>. Figure 4 shows the two kinds of varying
behaviors and Figure 5 illustrates the SD for the running example. This repre-
sents an external variability. Concerning external services, every variation point
is modeled as an invocation of a service from an abstract component, which is
discovered in environment at run time. Social Network and Place Booker are
two examples of external services, while Location is an internal variation point
in the running example, referring to GPS and GSM as variants.

 

  

GPS GSM SMS WIFI ? ?

Happy Hour
Organizer

Place
Booker

Mobile
 Communication

Locator Social Network

?

Alternative Mandatory External Service

Fig. 3. The feature model for the running example

(a) Variation Point (b) Variable

Fig. 4. Varying behaviors

To evaluate NFRs, SDs can be annotated with quality data by following the
UML MARTE profile. In particular, each message is annotated with two tags:
prob and energy. The former represents the probability that a message is suc-
cessfully transmitted; the latter expresses the amount of energy consumed to



202 C. Ghezzi and A. Molzam Sharifloo

transmit a message. Figure 6 shows the annotated SD for the running example.
More details of modeling and annotating SDs with quality data are described
in [14].

Model-to-Model Transformation and Parametric Verification. Our goal
is to ensure that non-functional requirements are satisfied by the system while it
is executed. One possibility would be to use traditional model checking to achieve
this goal. In this case, at design time we would model check all configurations
in the different environment conditions in which they are supposed to work.

Fig. 5. The SD for the running example



Dealing with Non-Functional Requirements 203

Fig. 6. The annotated SD for the running example

Whenever at run time the current configuration is executed, its model would
also be analyzed by the model checker in the current environment conditions.
A failure of the model checker to satisfy the requirements would then drive the
selection of an alternative configuration. This approach, unfortunately, is un-
likely to work in practice, especially because of the time required by the analysis
step, which may lead to unacceptably late reactions. This is where parametric
model checking comes into play. To make run-time verification feasible, we ap-
ply a parametric verification approach instead of the classical one. In this case,
parametric verification is performed at design time and a formula is generated,
which is later evaluated quite efficiently at run time when updated real data are
available.



204 C. Ghezzi and A. Molzam Sharifloo

SPL
Specification

Core 
Architecture

Variant N

Variant 2

Variant 1

...

Core
Formula

Formula 
N

Formula 2

Formula 1

...

Verification 
Result

Development Time Runtime

MM1

MM2

MM 
N

Core
MM

value 1

value 2

value N

Monitoring/Forecasting

Evaluation

Fig. 7. Parametric Verification of SPLs - MM stands for Markov Model

Our approach is intuitively shown in Figure 7. For the sake of simplicity
of presentation, we assume here that variants themselves do not contain any
variation point. Note that handling nested variation points requires a simple
hierarchical process, and does not impose extra effort. As illustrated, a DSPL
model—an annotated SD—is divided into a core part and its variants. Through
such process, variation points are transformed into messages annotated with
variables. If a variation point represents an internal variability, it is transformed
into a self-message annotated with two variables P# and E# standing for prob
and energy respectively, meaning that their values depend on the alternative that
is chosen in the configuration. The values for these variables may be computed
by model checking each alternative, treated as an independent behavior. Each
alternative thus goes through a similar verification process, since in general (but
not in the simplified case assumed in Figure 7) it can contain further variation
points and variants.

Figure 8 shows the parametric SD generated for the running example. As
shown, GetLocation is an example of the self-message replaced for the variation
point Location. In the case of external variation points (external services), their
quality annotations are represented as variables P# and E#. For instance, this
applies to the place booking service of our running example. Variables are also
used to label transitions that correspond to environment phenomena that may
change at run time. For example, in some other interactive application we may
lack information about user preferences, such as the probability that one of two
alternative options may be chosen by users and may affect the way requirements
may be satisfied. To model this situation, it is possible to introduce an alternative
in the SD and labelling each option with a (variable) probability 1. In conclusion,
this design-time step leads to the derivation of a parametric SD, where variables
instead of constant values are used as annotation tags.

1 There must be an additional constraint that their sum equals 1.



Dealing with Non-Functional Requirements 205

Fig. 8. The proposed framework at run time

To evaluate NFRs, parametric SDs are transformed into parametric Markov
models. The transformations from SDs into Markov models are performed by
following the approach described in [14], [15]. Regarding Markov models, para-
metric DTMCs are used to verify reliability properties, while parametric DTMCs
with Rewards are used to verify cost properties (typically, energy, CPU, or net-
work usage). NFRs are expressed as formulae written in formal languages PCTL
or as Cost/Reward properties. Figure 9(a) represents the parametric DTMC cor-
responding to the SD in Figure 8, which can be used to reason about reliability
concerns. Examples of non-functional properties we would like to state are ex-
pressed as below. Note that state 13 of the parametric DTMC (Figure 9(a))
is the state that corresponds to the condition PlaceBooked mentioned in the
properties.

P => 0.95[F (State = PlaceBooked)] (1)

R =< 1000[F (State = PlaceBooked)] (2)

The first property states that the probability of reaching a state in which the
meeting place is successfully booked shall be greater or equal to 0.95. Note that
this is the final state of the whole scenario, so the property expresses a constraint
on the probability of having whole scenario successfully completed. Similarly, the
second property states that the whole energy consumption shall be less or equal
to 1000. As mentioned earlier, both belong to the class of reachability properties.



206 C. Ghezzi and A. Molzam Sharifloo

1

2

3

4

5 6

7

8

9

10 11

12

13

P1

PL

P2

P3

P2

P4

P4

P5

1-PL

P6

P7

P6PL

1-
PL

0 0

1-
P1

1-P2

1-P3

1-P2

1-
P4

1-
P5

1-P6

1-P4

1-
P7

1-
P6

(a) Parametric DTMC for the core behavior of the
running example - state ’0’ is drawn two times to
make the figure readable.

1

2

3

0.9999

Pgps

0.0001

04

0.00010.9999

1-Pgps

(b) Parametric DTMC
for the alternative be-
havior of using GPS

Fig. 9. Parametric DTMCs

To evaluate requirements satisfaction, the parametric Markov models and the
property formulae are fed into PARAM model checker. The resulting formulae of
the verification for the reliability and energy properties of the running example
are presented below. These formulae are used for two purposes. First they are
used for design time verification of different configurations. In this case, we have
to make assumptions about quality data for the parameters. The values we
select represent the environment conditions we predict as possible, and for which
we want to prove that an appropriate configuration exists that can satisfy the
NFRs. In case no configuration is able to satisfy the NFRs, the designer should
change the DSPL architecture. Furthermore, these formulae are used for run-time
analysis and planning to perform continuous verification and self-adaptation.

Reliability = (P62∗P1∗LP∗P7−P62∗P1∗P7)/(PL∗P3∗P22∗P5∗P42−1) (3)

EnergyConsumption = (2 ∗E6 ∗ PL− 2 ∗ E6 + 1 ∗ E1 ∗ PL− E1− PL ∗ E3−
2 ∗ PL ∗ E2− PL ∗E5− 2 ∗ PL ∗ E4 + PL ∗E7−E7)/(PL− 1)

As mentioned, each variant is also transformed into parametric Markov models.
Figure 9(b) shows the parametric DTMC corresponding to the selection of the
GPS locator. For each variant, reachability properties are in turn evaluates on
the respective Markov models. Note that in fact every variant has a behavior that
starts from a starting state and ends in one or more final states. The properties
are shown in the formulae below.



Dealing with Non-Functional Requirements 207

P =?[F (State = End)] (4)

R =?[F (State = End)] (5)

The verification of Markov models against every property also results in a for-
mula. After providing quality data for the parameters, the formula is evaluated
by substituting real numbers. The real number is the quality (reliability or en-
ergy) that a variant can provide. To evaluate the quality of the whole scenario,
the quality of variants are fed into the parameters of the main formula.

4.2 Run Time

When the framework moves to run time, its activities are inspired by MAPE-K
cycle shown in Figure 10, popularized by the autonomic computing research com-
munity (see [20]). The quality data collected through monitoring must be trans-
formed into values that can be used to feed the parametric model checker. This
transformation in general depends on the abstraction that model parameters re-
alize on the physical data measurable in the environment. As a typical example,
physical data may represent the detected failures of external service invocations,
whereas model parameters may represent service reliability expressed as a failure
probability. In general, the transformation process from environmental data col-
lected by monitors to model parameters can be quite complex and may require
approaches based on machine learning. An example is presented in [12].

Hereafter we assume that suitable transformations from monitored data to
model parameters exist in the run-time environment. Updated parameters are
used to evaluate the parametric formulae in order to analyze the current satis-
faction and also to foresee future NFR violations.

As for the knowledge base, parametric formulae and NFR properties are kept
at run time for analysis and planning purposes. In case the analysis detects
or predicts any violations, planning techniques are used to generate adaptation
plans by which the system can optimize its behaviors. For this purpose, we em-
ploy evolutionary algorithms and in particular Hill Climbing (HC), which is able
to find a solution that represents a good trade-off between precision of the re-
sults and timeliness of the provided response. As a result, adaptation plans are
generated and applied as a new configuration from the DSPL. An architectural
adaptation can therefore be simply seen as set of variant substitutions for given
variation points2. However, the main issue of planning is to find a configuration
of variants that optimizes the satisfaction of possibly conflicting properties. In
general, there might be various NFR properties (e.g. performance and energy
consumption) that may have competing nature in the way they can be taken
care of in an implementation. For example, regarding a variation point X, there
may be different variants providing the same functionalities but different qual-
ity properties. Variant A may provide a high response time with a low energy

2 The problems involved in performing the actual run-time reconfiguration are the
target of another research carried out in our group [25].



208 C. Ghezzi and A. Molzam Sharifloo

Fig. 10. The proposed framework at run time

consumption, variant B may provide a low response time and a high energy con-
sumption, and finally variant C may provide an average quality for both cases.
Due to the existence of different variation points, finding a configuration that
optimally satisfies most of the NFR properties is very crucial.

If the verification of the current DSPL configuration fails at run time after
updated quality parameters are fed into the verification formulae, a reconfigu-
ration plan is activated to perform a chain of adaptations. In terms of DSPL,
an adaptation is a substitution of a variant with another one that can help the
system to better achieve its requirements. However, exploring all possible com-
binations of variants needs exponential time, and is inherently an NP-Complete
search problem. It is true that by using parametric model checking and avoiding
the whole run-time model checking process, the required time is reduced [15],
but in case of a large number of variation points and variants, evaluating all
combinations can be impossible at run time within the time limits within which
a reaction to NFR violations must be enacted. Therefore, we apply an evolution-
ary approach, like HC, which takes into account the constraint on the available
reconfiguration time and finds a sub-optimal configuration. The algorithm is able
to provide a more accurate solution (i.e., one that is closer to the optimum) if
more time is allocated to the search. The HC algorithm, in general, searches to
find a sub-optimal solution considering a budgeted time. The search continues
until a solution is reached, which represents good candidate to be chosen for
adaptation, given the limited time available to perform the search.

HC is an optimization method that iteratively searches for better solutions. It
starts with a random solution, then tries to improve it by iteratively changing a
single element of the solution. If the change leads to a better solution, the change
is applied. The process is continued until new improvements cannot be found.
HC does not guarantee that the resulting solution is the best possible solution.
However, it can find a better solution than other algorithms when the available
search time is limited. The remainder of this section provides an intuitive, high-
level description of how we apply HC to generate a new configuration of a DSPL.

Let us consider P = {p1, p2, ..., pN} be the satisfaction degree of the set of
NFR properties that a DSPL is supposed to satisfy. The elements of the set rep-
resents the degree that a given configuration satisfies the properties. For each



Dealing with Non-Functional Requirements 209

property, a weight number is introduced that expresses the importance of the
property. Theweights are expressed as a set of real numbersW = {w1, w2, ..., wN}.
Therefore, the total utility of a selected configuration can be specified as:

UC = w1 ∗ p1 + w2 ∗ p2 + ...+ wN ∗ pN (6)

Regarding our running example, there are two properties (p1, p2) corresponding
to reliability and energy consumption, respectively. We consider (w1 = 2, w2 =
1) as the weights for those properties, which means that the importance of
reliability is “twice” the importance of energy consumption. Note that the energy
consumption property is normalized by dividing the currently measured value
by the maximum energy consumption expressed in the requirement.

Algorithm 1 shows the pseudocode for the HC approach. The algorithm starts
with the current configuration of DSPL. It iteratively searches for any other
configuration that can better satisfy the properties. To do that, the algorithm
randomly chooses a variation point and replaces one of its variants. Then, the
total utility of the new configuration is calculated. If it is greater than the utility
of the current configuration, it is selected as a candidate configuration. The
algorithm continues to randomly search for other candidates that are better than
the new selected configuration. This procedure is carried out until the limited
time is finished. In the end, the difference between the initial configuration and
the selected configuration is calculated in terms of variant substitutions.

Algorithm 1. Hill Climbing Algorithm

HillClimbing(V arationPoint[]V P, V ariant[]V R,Configurationcf)

tempCf ← cf
while timeLimit < 0 do

vnt ← ChooseV ariant(V P, V R)
newCf ← Combine(tempCf, vnt)
if Utility(newCf) > Utility(tempCf) then

tempCf ← newCf
end if

end while
return Diff(tempCf, cf)

Let us consider as an example how the proposed approach works for our run-
ning example. Of course, the example does not show the real value of HC, which
would become evident only in the case of a very high number of alternatives to
evaluate. Assume that (see Figure 11) the currently running configuration for
the HHO application uses GPS and SMS as the internal variants. Also assume
that the user moves around and changes her physical context. It may then hap-
pen that the quality parameters change and the NFR properties (1) and (2) are
not satisfied any more. The updated quality parameters are shown in Table 2.
A violation is discovered by evaluating the parametric formulae (3) and (4) for



210 C. Ghezzi and A. Molzam Sharifloo

both reliability and energy consumption considering the updated parameter val-
ues. In fact, the evaluation results in 0.73 for the reliability property (1), which
is much less than 0.95 as the expected minimum. To deal with such violation,
the HC algorithm is applied and a configuration using GSM and WiFi is selected
as the new configuration (Figure 12). As the result, the application shall apply
two adaptations: substituting GSM for GPS, and WiFi for SMS. Using this con-
figuration, the reliability and energy consumption properties are evaluated to
0.95 and 836, which satisfy both NFR properties. The updated parameters of
the new configuration are shown in Table 3.

Table 2. Reliability and energy parameters of the running example

Reliability P1 P2 P3 P4 P5 P6 P7

- 0.9 0.998 0.995 0.95 0.998 0.995 0.998

Energy E1 E2 E3 E4 E5 E6 E7

- 50 60 70 40 50 40 30

The application keeps monitoring and updating the quality parameters, and
feeds them into the parametric formulae in order to discover future violations. For
the sake of simplicity, we did not discuss the QoS changes of external services in
this example. In the example, Facebook and BookMilano are used as the external
services. Similarly to internal variabilities, it can be the case that their QoS
changes which may lead to property violations and further adaptation planning.

 

  

GPS SMS

Happy Hour
Organizer

Locator
Mobile

 Communication

Facebook BookMilano

Social Network
Place

Booker

Fig. 11. The violated configuration using GPS and SMS

Table 3. New reliability and energy data for the quality parameters

Reliability P1 P2 P3 P4 P5 P6 P7

- 0.995 0.998 0.995 0.999 0.998 0.995 0.998

Energy E1 E2 E3 E4 E5 E6 E7

- 55 60 70 45 50 40 30



Dealing with Non-Functional Requirements 211

 

  

GSM WiFi

Happy Hour
Organizer

Locator
Mobile

 Communication

Facebook BookMilano

Social Network
Place

Booker

Fig. 12. The new configuration after applying the adaptations

5 Conclusion

The work described in the paper is still on going. Prototype implementations
exist for various components of the development of an design environment, sup-
porting the development of a DSPL from the requirements, and of the run-time
environment, supporting dynamic verification and reconfiguration. Our future
efforts will be devoted, on the one side, to developing a full-fledged environ-
ments that can support the overall framework and the seemless transition from
design time to run time. On the other side, we explore other alternatives to
our current approach to dynamic reconfiguration based on replanning and HC.
We are currently in the process of developing an experimental evaluation of the
efficiency of the HC approach on large-scale systems with many variants us-
ing simulation. We wish to explore both how the approach scales and whether
alternative approaches can be devised to support continuous adaptation.

Acknowledgments. This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-SMScom.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

2. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research, FoSER 2010, pp. 17–22. ACM, New York (2010)

3. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability
of adaptive systems. In: Workshop on Dynamic Software Product Lines, pp. 23–32
(2008)

4. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement auto-
nomic it systems. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 100–110 (2009)



212 C. Ghezzi and A. Molzam Sharifloo

5. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Designing and Prototyping Dynamic
Software Product Lines: Techniques and Guidelines. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 331–345. Springer, Heidelberg (2010)

6. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.):
Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Hei-
delberg (2009)

7. Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B.R., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 276–
277 (2004)

8. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, ICSE 2010, vol. 1, pp. 335–344. ACM, New York (2010)

9. Clements, P., Northrop, L.: Software product lines: practices and patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

10. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: International Colloquium on Theoretical Aspects of Computing, pp. 280–294
(2004)

11. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2010, pp. 7–16 (2010)

12. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 111–121. IEEE Computer Society, Wash-
ington, DC (2009)

13. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proceeding of the 33rd International Conference on Software En-
gineering, ICSE 2011, pp. 341–350. ACM, New York (2011)

14. Ghezzi, C., Sharifloo, A.M.: Quantitative Verification of Non-functional Require-
ments with Uncertainty. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier,
J., Walkowiak, T. (eds.) Dependable Computer Systems. AISC, vol. 97, pp. 47–62.
Springer, Heidelberg (2011)

15. Ghezzi, C., Sharifloo, A.M.: Verifying non-functional properties of software product
lines: Towards an efficient approach using parametric model checking. In: Software
Product Line Conference, pp. 170–174 (2011)

16. Ghezzi, C., Tamburrelli, G.: Reasoning on non-functional requirements for inte-
grated services. In: IEEE International Conference on Requirements Engineering,
pp. 69–78 (2009)

17. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A Model Checker for
Parametric Markov Models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

18. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41, 93–95 (2008)

19. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques
to build adaptive systems. In: Proceedings of the 10th International on Software
Product Line Conference, pp. 141–150. IEEE Computer Society, Washington, DC
(2006)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)



Dealing with Non-Functional Requirements 213

21. Kim, D., Park, S.: Reinforcement learning-based dynamic adaptation planning
method for architecture-based self-managed software. In: International Workshop
on Software Engineering for Adaptive and Self-Managing Systems, pp. 76–85 (2009)

22. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic model checking for
performance and reliability analysis. ACM Performance Evaluation Review 36(4),
40–45 (2009)

23. Lee, J., Kang, K.C.: A feature-oriented approach to developing dynamically recon-
figurable products in product line engineering. In: International Software Product
Line Conference, pp. 131–140 (2006)

24. Lundesgaard, S.A., Solberg, A., Oldevik, J., France, R., Aagedal, J., Eliassen, F.:
Construction and Execution of Adaptable Applications Using an Aspect-Oriented
and Model Driven Approach. In: Indulska, J., Raymond, K. (eds.) DAIS 2007.
LNCS, vol. 4531, pp. 76–89. Springer, Heidelberg (2007)

25. Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V. Luy, J.: Version-consistent
dynamic reconfiguration of component-based distributed systems. In: Proceedings
of ESEC/FSE 2011, pp. 245–255. ACM (2011)

26. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. Computer 37, 56–64 (2004)

27. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@ runtime
to support dynamic adaptation. Computer 42, 44–51 (2009)

28. Parra, C., Blanc, X., Cleve, A., Duchien, L.: Unifying design and runtime software
adaptation using aspect models. Sci. Comput. Program. 76, 1247–1260 (2011)

29. Pohl, K., Bckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

30. Trinidad, P., Cortes, A.R., Pena, J., Benavides, D.: Mapping feature models onto
component models to build dynamic software product lines. In: Workshop on Dy-
namic Software Product Lines, pp. 51–56 (2007)

31. Van Lamsweerde, A.: Requirements engineering: from system goals to UML models
to software specifications. Wiley, Chichester (2009)



Uncertainty in Self-Adaptive Software Systems

Naeem Esfahani and Sam Malek

Department of Computer Science
George Mason University

{nesfaha2,smalek}@gmu.edu

Abstract. The ever-growing complexity of software systems coupled
with their stringent availability requirements are challenging the manual
management of software after its deployment. This has motivated the
development of self-adaptive software systems. Self-adaptation endows
a software system with the ability to satisfy certain objectives by au-
tomatically modifying its behavior at runtime. While many promising
approaches for the construction of self-adaptive software systems have
been developed, the majority of them ignore the uncertainty underlying
the adaptation. This has been one of the key inhibitors to widespread
adoption of self-adaption techniques in risk-averse real-world applica-
tions. Uncertainty in this setting is a vaguely understood term. In this
paper, we characterize the sources of uncertainty in self-adaptive software
system, and demonstrate its impact on the system’s ability to satisfy its
objectives. We then provide an alternative notion of optimality that ex-
plicitly incorporates the uncertainty underlying the knowledge (models)
used for decision making. We discuss the state-of-the-art for dealing with
uncertainty in this setting, and conclude with a set of challenges, which
provide a road map for future research.

Keywords: Self-Adaptive Software Systems, Uncertainty.

1 Introduction

Self-adaptation is an effective approach in dealing with the changing dynamics
of many application domains, such as mobile and pervasive systems. In response
to changes in the environment or requirements, a self-adaptive software system
modifies itself to satisfy certain objectives [1–3]. While the benefits of such sys-
tems are plenty, their development has shown to be more challenging than tra-
ditional software systems [2,3]. One key culprit is that self-adaptation is subject
to uncertainty [2, 3].

In general, in the field of software engineering, uncertainty is considered as a
second-order concept [4]. A common misconception is that by a set of practices
the effect of uncertainty can be removed to allow focusing on the “normal”
behavior. Although, it is generally true that having more information decreases
the amount of uncertainty [5], it is typically not possible to eliminate uncertainty
altogether as it is not practical nor desirable to collect all of the information
about a system. Engineering self-adaptive software is no exception. While the

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 214–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Uncertainty in Self-Adaptive Software Systems 215

level of uncertainty could vary, it is rarely the case that a self-adaptive software
system is completely free of uncertainty.

Uncertainty can be observed in every facet of adaptation, albeit at varying
degrees. For instance, one reason behind uncertainty is the fact that the sys-
tem’s user, adaptation logic, and business logic are loosely coupled, introducing
numerous sources of uncertainty [6]. Consider that users often find it difficult
to accurately express their quality preferences, sensors employed for monitoring
often have uncontrollable noise, analytical models used for assessing the system’s
quality attributes by definition make simplifying assumptions that may not hold
at runtime, and so on. We refer to these factors as sources of uncertainty. All of
these factors challenge the confidence with which the adaptation decisions are
made. We believe considering uncertainty as a first-class concept improves the
quality or sometimes even the correctness of adaptation decisions.

In spite the fact that uncertainty is prevalent in self-adaptive software systems,
it is often considered in an ad hoc fashion. One reason for this is that the term
uncertainty is a vaguely understood concept in the community, as there are many
different sources for uncertainty, and not all sources of uncertainty have similar
characteristics.

Some sources of uncertainty are external, while others are internal. External
uncertainty arises from the environment or domain in which the software is
deployed. For example, external uncertainty for a software system deployed in
an unmanned vehicle may include the likelihood of certain weather conditions
occurring. Software self-adaptation is one approach in dealing with the effects of
external uncertainty, e.g., in a snow storm the vehicles navigator component may
be replaced with a more conservative navigator to avoid a collision. On the other
hand, internal uncertainty is rooted in the difficulty of determining the impact
of adaptation on the systems quality objectives, e.g., determining the impact of
replacing a software component on the systems responsiveness, battery usage,
etc.

Moreover, not all sources of uncertainty have similar characteristics. Some-
times uncertainty is due to lack of knowledge, while other times it is due to the
variation in a parameter that affects the adaptation decisions (adaptation pa-
rameter). Techniques used to mitigate one type of uncertainty may be different
from techniques used to mitigate another type.

In this paper, we aim to change the status quo by first enumerating the com-
mon sources of uncertainty in self-adaptive software. We illustrate the sources of
uncertainty using a robotic software system developed in our prior work. This
also provides the intuition behind the challenges posed by uncertainty in this do-
main. We provide a more elaborate definition of uncertainty by enumerating its
characteristics in the context of prior literature. To that end, we present a concep-
tual model for better understanding the impact of uncertainty on self-adaptive
software. We also present an overview of mathematical techniques commonly
used for representing uncertainty and reasoning about it.

The crux of this paper is an intuitive, yet novel, definition of what is con-
sidered to be the optimal adaptation decision under uncertainty. Realizing the



216 N. Esfahani and S. Malek

same definition using fuzzy mathematical techniques in our recent work [7] has
produced promising results. Finally, we provide a discussion of the state-of-the-
art approaches targeted at addressing the different faces of challenge posed by
uncertainty in this setting.

The rest of this paper is organized as follows: Section 2 provides an overview of
a self-adaptive robotic application that is used throughout the paper for illustra-
tion purposes; Section 3 enumerates the sources of uncertainty in self-adaptive
software systems; Section 4 demonstrates the impact of uncertainty on making
adaptation decisions; Section 5 establishes a new definition for what is typically
considered to be the optimal adaptation decision; Section 6 provides a framework
for understanding uncertainty based on its characteristics; Section 7 discusses the
commonly used mathematical approaches for representing and reasoning about
uncertainty; Section 8 provides an overview of the state-of-the-art in this area;
and finally the paper concludes in Section 9 with a summary of contributions
and a set of remaining research challenges.

2 Illustrative Example

To demonstrate the ideas and help the discussion, we use a robotic software
system that have been developed in our previous work [8] as a running example.
The robotic software is part of a distributed search and rescue system [8] aimed
at supporting the government agencies in dealing with emergency crises (e.g.,
fire, hurricane). Fig. 1b provides an abridged view of the robotic system’s ar-
chitecture. The software components comprising the robotic system range from
abstractions of the physical entities, such as software controlled sensors and
actuators on board the robot, to purely logical functionalities, such as image
detection and navigation. Such a system may be comprised of many different
execution scenarios. For instance, the bold path in Fig. 1b indicates the Maneu-
ver execution scenario, which aims to safely steer the robot. The Camera feed is
sent to Obstacle Detector, which runs an image processing algorithm to identify
obstacles. Obstacle information is used by Navigator to plan the direction and
speed of movement, which are then put into effect by the Controller.

The software components comprising this system are customizable, meaning
that they can be configured to operate in different modes of operation. Fig. 1a
shows some of the available configuration dimensions. For instance, Power is
a configuration dimension for the Controller component. A Controller could
operate in either Energy Saving or Full Power mode. A component may have
many configuration dimensions.

The configuration of a software component determines its quality attributes
(e.g., response time) and resource usage (e.g., memory), which could also impact
the properties of the entire system. For instance, given the resource-constrained
nature of the mobile robots, the configuration decisions of each component have
a significant impact on the system’s performance as well as its battery life. Such
decisions can only be effectively made at runtime, since the system properties
(e.g., available bandwidth) are often not known at design-time and may change
at runtime.



Uncertainty in Self-Adaptive Software Systems 217

Fig. 1. A subset of the robotic software: (a) configuration dimensions and alternatives
for components of the robot, (b) software architecture, and (c) utility functions defined
in terms of quality attributes

As shown in Fig. 1c, for making runtime decisions, utility functions capturing
the user’s satisfaction with different levels of quality attribute (e.g., availability)
are used. The adaptation logic uses analytical models to estimate the effect of
configuration decision on the system’s quality attributes, and in turn the result-
ing utility. For example, given the configuration of the robot’s components, an
analytical model, such as Queueing Network model [9], may be used to quantify
the response time of a particular scenario. The objective of the self-adaptive
system is to maintain a configuration for the system that achieves the maximum
overall utility.

In the next section, we elaborate on the various forms of uncertainty faced by
a self-adaptive software system such as this.

3 Sources of Uncertainty in Self-Adaptive Software

We borrow concepts from FORMS, a reference architecture for self-adaptive
software systems developed in our prior work [10], to describe the sources of
uncertainty, and exemplify them in the robotics software system. Fig. 2 depicts
the high level view of a self-adaptive software system according to FORMS. In
this model, the self-adaptive software system can be broken down into two parts:
Meta-Level and Base-Level. The base-level subsystem provides the main func-
tionality of the software (i.e., application logic), while the meta-level subsystem



218 N. Esfahani and S. Malek

manages the base-level subsystem by reflecting on its behavior (i.e., adaptation
logic). Inside the meta-level subsystem we have the MAPE-K feedback control
loop [11] from IBM. In this architecture, there are four types of components that
operate on the managed subsystem (i.e., base-level) and are devoted to Moni-
toring, Analysis, Planning, and Execution (MAPE ). MAPE components share
various models using what is known as Knowledge (MAPE-K ).

The other two entities in Fig. 2 are User and Environment. The user uses the
services of base-level subsystem and provides her expectations from the base-level
subsystem to the meta-level subsystem by specifying objectives. For instance,
Fig. 1c shows user’s expectations for the robotic software system in terms of two
QoS parameters (i.e., Response Time and Reliability) of the Maneuver execu-
tion scenario. These expectations are depicted using utility functions. The self-
adaptive software system operates in an environment and hence the base-level
subsystem interacts with entities from that environment. Since the meta-level
subsystem is responsible for keeping the base-level subsystem on track (i.e., en-
sure it satisfies the user’s objectives), it also needs to monitor the environment.
For instance, in the robotic software system depicted in Fig. 1, the meta-level
subsystem uses sensors to estimate the amount of light in the environment to
adjust the Camera accordingly.

The entities in Fig. 2 are loosely coupled. The meta-level subsystem needs to
use models of other entities in Fig. 2 as their abstractions to make adaptation
decisions. The loose coupling between the meta-level subsystem and the other
elements of a self-adaptive software (i.e., User, Base-Level, and Environment) is
the root cause of uncertainty in self-adaptive software. Sometimes this separation
among the elements of a self-adaptive software is unavoidable (e.g., distinction
between system and environment), while other times it is simply necessary for
enabling reuse and to manage the complexity of constructing such systems (e.g.,
distinction between managing parts and managed parts of a system [10,12]). We
discuss the sources of uncertainty due to this loose coupling as well as a few
others in the following:

Fig. 2. High level view of self-adaptive software



Uncertainty in Self-Adaptive Software Systems 219

• Uncertainty due to simplifying assumptions: This source of uncer-
tainty is related to the “Manages” interface in Fig. 2 and is due to inac-
curacy in the analytical models representing complex base-level subsystem.
These analytical models are used to reason about the impact of adaptation
choices on system’s quality attributes. The error in those estimates is magni-
fied when the modeling abstractions become inaccurate representation of the
system. One of the reasons for inaccuracy is that sometimes the assumptions
underlying the model are not held at runtime. For instance, an analytical
model quantifying the system’s response time may account for the dominant
factors, such as execution time of components, and ignore others, such as
the transmission delay difference between TCP and UDP. Response time
estimates provisioned by such a formulation are not only error-prone, but
also the magnitude of error varies depending on the circumstances. In other
words, although the models are not wrong, simplifying assumptions decrease
their accuracy.

• Uncertainty due to model drift: This source of uncertainty is related
to “Is Monitored” and “Manages” interface. As we discussed earlier, for
the sake of generality and reuse, the meta-level subsystem should be sepa-
rated from the rest of elements in Fig. 2; therefore, due to loose coupling
between the meta-level subsystem and base-level subsystem, models (knowl-
edge) used for making decisions in the meta-level subsystem may become
inaccurate representations of the base-level subsystem. Another reason for
inaccuracy is the adaptation itself. Certain changes may not be enacted ex-
actly as meta-level subsystem requests, creating a drift between the models
and actual base-level subsystem. In the above example, consider the sce-
nario in which the meta-level subsystem requests the base-level subsystem
to change the communication protocol from TCP to UDP (i.e., replace a con-
nector). If the base-level subsystem fails to enforce this change, the models
used for reasoning by the meta-level subsystem become inconsistent rep-
resentation of the actual base-level subsystem. Compared to the previous
source of uncertainty, here we are talking about the models that over time
become wrong and do not represent the base-level subsystem correctly.

• Uncertainty due to noise: This source of uncertainty corresponds to “Is
Monitored” interfaces and is due to variation in a phenomenon, such as a
monitored system parameter, which rarely corresponds to a single value, but
rather a set of values obtained over the observation period. Consider that
a sensor monitoring the available network bandwidth may return a slightly
different number every time a sample is collected, even if the actual value
of the bandwidth is fixed. This type of uncertainty is referred to as noise to
indicate the error in the employed probes.

• Uncertainty of parameters in future operation: This source of uncer-
tainty is also related to “Is Monitored” interfaces and is due to the actual
changes in the monitored phenomenon. Without considering the behavior
of the system in its future operation, a self-adaptive software may not be
able to achieve its objective. For instance, our robotic software system uses
sensors to measure the amount of light, which may change as the robot



220 N. Esfahani and S. Malek

navigates a terrain, to adjust the configuration of Camera component. The
changes in light can be predicted based on the trajectory of robot movement.
If the robotic software system does not consider the predictions and make
decisions only based on the current amount of light, the adjustments to the
Camera may not result in optimal improvement. Such a system is also sus-
ceptible to continuous adaptation of the system, and loss of stability, as the
self-adaptation logic optimizes the system for current operating conditions,
which are continuously invalidated due to changes.

• Uncertainty due to human in the loop: Self-adaptive software sys-
tems are increasingly permeating a variety of domains, including medical,
industrial automation, and emergency response. This is partially caused by
a paradigm shift from software systems used merely as data processing en-
tities deployed on isolated servers to becoming ubiquitous and engaging the
users in their daily activities. These new breeds of software often depend
on correct human behavior. However, human behavior is inherently uncer-
tain [4, 13], which in turn creates uncertainty in the software system. This
type of uncertainty is related to “Uses” interface between the base-level sub-
system and the user. For instance, in the case of the robotic software system
depicted in Fig. 1, it is expected for the robot to interact with the rescue
crew to fulfill its assignment. However, as described before, the behavior of
the crew may be very unpredictable.

• Uncertainty in the objectives: This type of uncertainty corresponds to
the “Specifies Objectives” interface and is due to the complexity of express-
ing users’ requirements and eliciting preferences. While the previous source
is rooted in software’s dependency on human behavior, uncertainty in the
objectives is the reverse relationship, i.e., it is related to human’s dependency
on software. In a large-scale multi-user system, users often have multiple con-
cerns, some of which may be conflicting with one another. Eliciting user’s
preferences in terms of utility functions, such as those depicted in Fig. 1c,
is a well-known challenge [2], as the users often have difficulty expressing
their preferences and expectations using mathematical functions. Thus, the
overall accuracy of such preferences remains subjective, making the analysis
based on them prone to uncertainty.

• Uncertainty due to decentralization: In a self-organizing system sev-
eral meta-level subsystems manage different base-level subsystems [3]. They
create a decentralized system, where the knowledge is scattered among the
self-organization units comprising the system. A self-organizing unit typ-
ically does not have complete control over the actions of other units. In
such a setting, the meta-level subsystems are expected to work collectively
and collaboratively to reach the system’s objectives. In other words, in
self-organizing software systems, the meta-level subsystem is decentralized
among different entities, which makes the system prone to uncertainty. For
instance, in our robotic software system, different robots may collaborate
with each other to devise and update a plan for searching an area (e.g., a
building that is damaged due to an earthquake) for victims with the goal of
covering the area as fast as possible. This high-level collaboration adds to



Uncertainty in Self-Adaptive Software Systems 221

uncertainty as no robot may have complete knowledge of the entire system
in real-time and may not be able to control the other robots.

• Uncertainty in the context: Many self-adaptive software systems are in-
tended to be used in different execution contexts. To that end, the meta-level
subsystem is expected to detect the change in the context and adapt the base-
level subsystem to behave appropriately. Portable and embedded computing
devices (e.g., cell-phones) are representative of systems in this category. Here,
software developers are forced to cope with additional sources of complex-
ity introduced by the growing class of mobile and pervasive software, which
are innately dynamic and unpredictable. The performance of these software
systems heavily depends on availability of the resources [4], which is subject
to change as the context of execution changes. For instance, in the robotic
software system, a robot may move to a place in which a barrier shields its
signal and prevents it from communicating with other robots, making the
status of that robot unknown to the rest of system.

• Uncertainty in cyber-physical systems: As computation continues to
become cheaper and more widespread, software and physical spaces become
increasingly intertwined and tightly integrated. As a result, physical con-
cepts are becoming increasingly important in software systems. In fact, self-
adaptation capabilities are often sought after to manage the interactions
between software and physical entities. This increases non-determinism and
uncertainty in the software due to the fact that the physical world itself
is inherently uncertain. Uncertainty caused by the effect of physical world
on the software is a subset of context, which was described in the previ-
ous source. However, software can also effect the physical world, and this
interaction can also host uncertainty. For instance, a robotic software sys-
tem’s ability to maneuver a terrain is not only a function of the accuracy
of its software (e.g., routing algorithms), but also the precision in the phys-
ical steering components, as well as the physical conditions of the terrain.
A self-adaptive software aimed at ensuring the robot’s ability to maneuver
the terrains would have to take into account the uncertainty due to the
interaction between software, hardware, and physical entities in its analysis.

To mitigate uncertainty in self-adaptive software systems one should consider its
sources enumerated above. Some of these sources (e.g., cyber-physical systems)
have been observed in other fields of science and there are well-established ap-
proaches for addressing them. On the other hand, some of these sources (e.g.,
model drift) are relatively new and specific to self-adaptive systems, hence new
approaches may need to be devised for addressing them.

4 Impact of Uncertainty on Self-Adaptive Software

Uncertainty has a significant impact on a self-adaptive software system’s abil-
ity to satisfy its objectives. Prior research for the most part have ignored the
challenges posed by uncertainty, which hamper their adoption in real-world risk-
averse domains. We collectively refer to these as the traditional approaches. We



222 N. Esfahani and S. Malek

Fig. 3. Impact of uncertainty on the process of making adaptation decisions to satisfy
the system’s objectives: (a) 16 candidate configurations in a battery usage and response
time trade-off, (b) application of utility function to resolve the trade-offs, (c) battery
usage versus response time under uncertainty, where each rectangle represents the space
of values that an architecture may take, and (d) the range of utility values expected
for the 16 configurations under uncertainty

illustrate their shortcoming using an instance of the robotic software system in
which the objective is to choose from a pool of 16 candidate configurations, such
that battery usage and response time are minimized.

The traditional approaches assume that the impact of candidate configura-
tions on properties of interest can be precisely estimated. If that was the case,
then one could visualize the situation as in Fig. 3a. Here, for the sake of clarity,
the values for response time and battery usage are normalized between zero and
one. Assuming both properties have the same level of importance, to compare
the 16 configurations, for each configuration we first sum up the values obtained
from the corresponding utility function. Recall that utility functions are used to
quantify the users’ preferences with the values attained in properties. Fig. 3b
achieves just that, as it shows the overall value for the candidate configurations.
In this space, configurations can be compared with one another. For example, we
can see that A13 is the best configuration, as it obtains the largest total value.



Uncertainty in Self-Adaptive Software Systems 223

While the aforementioned approach is theoretically sound, it is not useful in
practice, as it does not incorporate the underlying uncertainty in every facet of
the approach, including the fact that analytical models often cannot precisely
quantify the impact of alternative configuration on properties of interest (i.e.,
there is always some amount of noise), the utility functions may not be accurately
representing the users’ preferences, etc.

The complexity of incorporating uncertainty in the analysis is shown in Fig. 3c.
Here, the uncertainty is represented in terms of range of impact that a configu-
ration candidate may have on the properties of interest. For example, the impact
of a given configuration on battery usage is no longer a single number, but rather
a range of values. As a result, each configuration candidate may obtain a value
anywhere within the area occupied by the corresponding rectangle. Clearly, com-
paring two configurations with overlapping rectangles is difficult.

The rectangles in Fig. 3c can be transformed to a space where the trade-off
analysis can be performed by applying the utility function on the most optimistic
and pessimistic behavior of a given configuration. Fig. 3d shows the resulting
range of behavior that one would expect, assuming that uncertainty in various
facets of the system can be quantified. Unlike the earlier example, it is not clear
what is the optimal configuration, as the behavior of each configuration is now
specified as a range, and the ranges offer trade-offs. As described in the next
section, there is a need for an alternative definition of optimality in this setting
that explicitly takes the uncertainty into consideration.

To gain a better appreciation for the complexity of this problem consider that
the simple example used in Fig. 3 consists of only 16 configuration candidates and
2 properties of interest, but a typical self-adaptive software system often consists
of many more candidates and properties. Manually exploring and solving this
problem is a big burden. Incorporating uncertainty into the analysis makes a
problem that is already challenging, so overwhelmingly complex that a manual
assessment without the appropriate tools and techniques becomes impossible,
which has been the motivation for this research.

5 Reconceptualizing Optimality under Uncertainty

We argue that to tackle the complexity introduced by uncertainty, we need to
reconceptualize the definition of the optimality in self-adaptation decision mak-
ing process to account for the uncertainty underlying the analysis. We provide an
intuitive overview of a new definition of optimality and use the robotic software
example from the previous section to illustrate it.

Figure 4a shows the shortcomings of the prevalent definition of optimality in
making adaptation decisions while ignoring uncertainty. The system is initially
executing with utility U1 prior to time T1. At time T1, due to either an internal or
external change, the systems utility drops to U2. By time T2, the self-adaptation
logic detects this drop in utility, finds and effects an optimal configuration, which
is conventionally defined as the one achieving the maximum utility. As shown
in Fig. 4a, this corresponds to U3, which represents the expected utility of the



224 N. Esfahani and S. Malek

Fig. 4. The utility of a self-adaptive system based on the decision using: (a) traditional
definition of optimality, where the uncertainty is not considered, and (b) advocated
approach, which considers uncertainty

best configuration for the system. In practice, however, the actual utility of the
system may vary between the two dashed lines, representing the likely positive
and negative consequences of uncertainty. By not accounting for uncertainty, the
approach is vulnerable to gross overestimation of the utility. In other words, the
selected optimal solution is rather risky, and in the worst case may be a very
poor choice.

We propose an alternative definition of optimality in making adaptation de-
cisions that incorporates uncertainty. Similar to the scenario of Figure 4a, a
new configuration is effected at time T2, except we say a configuration is opti-
mal if it concurrently satisfies the following three objectives: (1) maximizes U3,
which represents the most likely utility for the system under uncertainty; (2)
maximizes the positive consequence of uncertainty, which represents the likeli-
hood of the solution being better than U3; and (3) minimizes the negative conse-
quence of uncertainty, which represents the likelihood of the solution being worse
than U3.

The new concept of optimality defined above can be realized using several
alternative mathematical approaches (e.g., both probabilistic and fuzzy num-
bers could be used to indicate the extent of uncertainty). Regardless of how
the optimality criteria is realized, we can make a general observation. As de-
picted in Figure 4, concurrent satisfaction of the three objectives may result
in a smaller value of expected utility (i.e., U3) using this approach compared
to that of the traditional approach. But since the information used to estimate
the expected utility is uncertain, expected utility is not guaranteed to occur in
practice. Therefore, it is reasonable to argue that the true quality of a solution
is determined by the range of possible utility.

Furthermore, we argue that the new notion of optimality could be extended
to also account for uncertainty in the future operation of a software system.



Uncertainty in Self-Adaptive Software Systems 225

Figure 5a depicts a configuration picked by the traditional approach in which
uncertainty in future operation of the system is neglected. As a result, a solu-
tion with the highest utility may actually be a very bad choice, since due to
uncertainty in future operation of the system, it may in effect obtain a very low
utility. Note that for illustration in Figure 5 the behavior over time is depicted
linearly, but in general the behavior over time may follow a different trajectory.

Given the variability in system and environmental parameters, an optimal
solution is not the one that achieves the highest utility at the point in time in
which the decision is made, but the one that anticipates the future behavior
(potentially in the form of a probabilistic prediction such as the ones obtained
from Hidden Markov Models [14]) of the selected configuration over time. As
depicted in Figure 5b, the optimal solution is the one that considers the behavior
of the selected configuration over time, i.e., selects a configuration that may have
a lower utility at the moment in which the decision is made with the expectation
of achieving a better utility over a period of time in future. Another benefit of the
new optimality criteria advocated here, but not depicted in the figure, is that
since under the reconceptualized notion of optimality the system is expected
to maintain a higher utility in its future operation, our approach decreases the
number of adaptations compared to the traditional approach. This in essence
results in more stable self-adaptive software systems.

These two extension (i.e., Figures 4 and 5) can also be combined. As a result,
the range will be formed around the trend line and the size of the range can vary
for different points in time.

We believe this new model of reasoning about optimality provides a good
foundation for studying the role of uncertainty in self-adaptive software. In our
recent work [7] we have used fuzzy mathematical techniques to realize the new

Fig. 5. The utility of a self-adaptive system over time: (a) traditional approach, where
the behavior over time is not considered in the selection of a configuration, and (b)
advocated approach, which considers the behavior a system in a given configuration
over time



226 N. Esfahani and S. Malek

model of optimality, which has produced promising results. Our experience shows
that the revised definition of optimality increases the accuracy of adaptation
decisions, and allows for construction of self-adaptive software that is resilient
to fluctuations in the system properties and environmental parameters. While
our experience with realizing this approach using fuzzy mathematics has been
promising, we believe there are other methods of realizing the approach outlined
above (e.g., Bayesian probabilities), as further detailed in Section 7. Finally, as
we describe in Section 8, some researchers have already observed the limita-
tion of the existing definition of optimality (i.e., traditional approach) and have
investigated possible solutions to this limitation.

6 Uncertainty Distilled

All sources of uncertainty in self-adaptive software do not have the same charac-
teristics. Although there are some philosophical debates about the true
distinction between the different types of uncertainty (e.g., [15]), it is commonly
agreed that it is useful to categorize different types of uncertainty in practice.
This is because the approaches for modeling different kinds of uncertainty are
very different from one another. For instance, often times it is not possible to
represent the user’s uncertainty in the specification of objectives in terms of
utility functions as a probability distribution, since the uncertainty is due to the
lack of knowledge, and not variability. In the following subsections we enumerate
the different characteristics of uncertainty, which we believe in turn sheds light
on the appropriate techniques that should be used to tackle the different sources
of uncertainty.

6.1 Reducibility versus Irreducibility

When something is inherently unknowable, the uncertainty associated with it is
irreducible. On the other hand, the uncertainty associated with knowable things
which are unknowns at a given time is reducible. Sometimes distinction between
these two kinds of uncertainty becomes a philosophical problem, which depends
on the point of view. One of the main reasons behind irreducible uncertainty is
intractable complexity of phenomena with existing progress in science. For in-
stance, it is a known fact that the physical world behaves in a non-linear fashion;
however, there is little known about non-linear mathematics. Instead, non-linear
phenomena are modeled using linear mathematics and hence the models have
irreducible uncertainty. One may argue that this kind of uncertainty is not in-
herently irreducible as it can be mitigated by studying non-linear mathematics.
In this paper, we stay away from philosophical debates as we want to study the
practical aspects of uncertainty.

6.2 Variability versus Lack of Knowledge

From a different perspective uncertainty can be categorized as aleatory or epis-
temic [5]. The root of aleatory is the Latin word ãleãtor, which means gambler,



Uncertainty in Self-Adaptive Software Systems 227

while the root of epistemic is the Greek word epistemé, which means scien-
tific knowledge. Aleatory uncertainty captures the uncertainty that is caused
by randomness and is usually modeled using probabilities. On the other hand,
epistemic uncertainty corresponds to lack of knowledge and sometimes is re-
ferred to as parameter uncertainty. This distinction is motivated by the location
of the uncertainty — in the decision-maker or in the physical system. [5] In other
words, variability is considered as uncertainty in the studied system, while lack
of knowledge is considered as uncertainty on the decision-maker’s side.

It may be tempting to map variability to irreducibility and lack of knowledge
to reducibility. However, this is not generally true. For instance, if irreducible un-
certainty directly implies variability, the next recipient of Turing Award, which
in not known right now, would be a random phenomenon! Similar to the philo-
sophical argument about reducibility versus irreducibility, there are arguments
about distinction between aleatory and epistemic uncertainties. For instance,
some argue that variability observed in the world is due to limitation of scien-
tific models and hence lack of knowledge [15]. While these arguments are true,
we should mention that these distinctions are relative and depend on the point
of view. In other words, it is true that sometimes a phenomenon, which is un-
certain due to variability from a given point of view, can be uncertain due to
lack of knowledge from a different point of view, but, this does not mean that
variability is not a characteristic of uncertainty.

Both the reducible and irreducible uncertainties can have aleatory and epis-
temic components. Aleatory and epistemic represent the essence of uncertainty,
while irreducible and reducible represent the managerial aspect of uncertainty.

6.3 Spectrum of Uncertainty

Fig. 6 depicts the spectrum of uncertainty. Current Information falls anywhere
between Ignorance and Certainty. The range between the Current Information
and Certainty is the Imprecision. Complete Information indicates the thresh-
old where all the knowable are known and falls anywhere between the Current
Information and Certainty (i.e., inside Imprecision). In a sense, the Complete
Information is a limit for the Current Information indicating the maximum
amount that the uncertainty can be reduced. Therefore, the range between the

Fig. 6. The spectrum of uncertainty based on the knowledge (adopted and extended
from [5])



228 N. Esfahani and S. Malek

Current Information and the Complete Information is the Reducible Uncer-
tainty. On the other hand, the range between the Complete Information and
Certainty indicates the Irreducible Uncertainty.

Based on the nature of a given system, the length of any of these ranges (i.e.,
imprecision, reducible uncertainty, and irreducible uncertainty) can be zero. For
instance, when the complete information and certainty point to the same spot,
there is no irreducible uncertainty. This definition also implies the fact that, as
the current information increases and approaches the complete information, the
imprecision becomes mainly due to irreducible uncertainty. Usually as the cur-
rent information gets closer to the complete information, increasing the knowl-
edge becomes more expensive. Sometimes increasing the knowledge may not even
worth spending resources, as the added value becomes limited. We revisit this
issue in the next section.

6.4 Characterizing the Sources of Uncertainty

Table 1 characterizes the sources of uncertainty based in relation to the spec-
trum of uncertainty. To that end, we specify if a source of uncertainty is due to
variability or lack of knowledge.

Uncertainty related to Simplifying assumptions, Drift, Human in the loop,
Objectives, Decentralization, and Cyber-physical systems are due to the lack of
knowledge. Be it for the complexity of the models, loose coupling, ambiguity, or
distribution, the lack of complete knowledge in these facets of self-adaptation
makes the adaptation decisions prone to uncertainty.

On the other hand, uncertainty related to Noise, Parameters over time, and
Context is due to the variability. In this case, uncertainty is rooted in the
fact that the behavior of the system may change after the adaptation decision
is made.

We drew the conclusions presented in Table 1 from examples of the sources
of uncertainty that we have found in the literature, as well as our own prior
experiences with the construction of such systems. Some of these examples were
enumerated in Section 3. Since it is possible to have several sources of uncer-
tainty in a single phenomenon, uncertainty related to that phenomenon may be

Table 1. Characteristics of different sources of uncertainty

S
im

p
li
fy
in
g

a
ss
u
m
p
ti
o
n
s

M
o
d
e
l
d
ri
ft

N
o
is
e

P
a
ra

m
e
te

rs
o
v
e
r
ti
m
e

H
u
m
a
n

in
th

e
lo
o
p

O
b
je
c
ti
v
e
s

D
e
c
e
n
tr
a
li
z
a
ti
o
n

C
o
n
te

x
t

C
y
b
e
r-
p
h
y
si
c
a
l

sy
st
e
m
s

Variability � � �
Lack of Knowledge � � � � � �



Uncertainty in Self-Adaptive Software Systems 229

both due to variability and lack of knowledge. For instance, one may make a
Simplifying assumptions and approximate the Noise of a given parameter by a
well-known probability distribution even if the value of that parameter does not
exactly follow the distribution.

7 Mathematical Techniques for Representing and
Incorporating Uncertainty

This section provides an overview of two widely applicable approaches for rep-
resenting and incorporating uncertainty in self-adaptation. As will be described
in the next section, existing state-of-the-art has often relied on one of these
approaches.

7.1 Probability Theory

Probability theory [16] is the most widely used approach to represent uncertainty.
Humans have long observed that some events are to some extent predictable.
Mathematical probabilities, which are dated from 18th century, were an ap-
proach to study the regularities in the games of chance. Nowadays, probability
is learned mainly through Kolmogorov’s axioms [17], which allows for adoption
of probability theory in broader class of problems (e.g., physical, social, indus-
trial, etc.). Most researchers are familiar with the mathematics of probability
but quite few are aware of philosophical debates regarding different interpreta-
tions of probability. Therefore, here we focus on interpretations of probability.
The prominent interpretations of probability until late twentieth century were
classical and frequentist interpretations.

Probability theory was originally conceived with the classical interpretation.
As we mentioned, probability was originally rooted in the games of chance, and
so was the classical interpretation. A fundamental assumption in classical prob-
ability is the fact that all the outcomes of a phenomenon are equally probable.
This assumption is shown to cause inconsistencies when it is used in more gen-
eral problems (i.e., beyond games of chance). Motivated by the limitations of the
classical interpretation, the frequentist interpretation was developed. In this in-
terpretation the probability of an event is defined as limit of its relative frequency
in large number of trials, hence the name of this interpretation is frequentist.
Although this definition goes beyond classical definition, it narrows the scope of
the frequentist interpretation to repeatable, random phenomena.

Bayesian theory [18] is based on subjective interpretation of the probability. In
this interpretation the probability is defined as an expression of a rational agent’s
degrees of belief about uncertain propositions. The scope of this interpretation is
more general than frequentist interpretation as it extends the definition of prob-
ability by allowing probability assignment to a single experiment regardless of
whether it is part of a larger number of experiments or not. Therefore, Bayesian
could be used in the problems in which there is not enough data for frequentist



230 N. Esfahani and S. Malek

interpretation. For instance, frequentists cannot analyze a new disease for which
enough data is not available, while Bayesians can use subjective information
based on related diseases to analyze the new disease.

Bayesian inference is as old as probability. However, it was disfavored due to
positive orientation of Western nineteenth and twentieth century science, which
was considering subjectivity to be non-scientific. Moreover, complex Bayesian
models require large amount of computation, which were not possible until late
twentieth century. With computational advances in the late twentieth century
there has been a resurgence towards Bayesian approaches as they are a uni-
fied theory for both data-rich and data-poor problems. Many modern machine
learning methods are based on Bayesian principles.

7.2 Fuzzy Sets and Possibility Theory

Fuzzy set theory [19] is an extension of classical set theory. In classical set theory,
the membership of an element in a set is a binary condition: the element is either
in the set with membership value of 1 or it is not in the set with the membership
value of 0. However, in fuzzy set theory, the membership of an element in a
set is not a binary condition, but rather a “sort of” concept. To that end, the
membership value of an element with regard to a set is any value between 0 and
1. The higher the membership value is, the more likely that element belongs to
the set. Therefore, the boundary of a fuzzy set is not clearly defined, whereas
the boundary of a classical set is crisply defined.

Fuzzy sets can be applied to domains where the information is incomplete
or imprecise. For instance, fuzzy sets have been used in linguistics to deal with
vagueness and ambiguity of the statements. For instance, temperatures that
are considered to be cold and warm are not uniquely defined and they may
be different from person to person. In fact, there are some temperatures that
can be considered both cold and warm to some extent. A program that tries to
understand written text can use the fuzzy definition of coldness and warmness
to have a better understanding of the text.

Possibility theory [20] is a theory for handling incomplete information, which is
based on fuzzy sets. Among several interpretations of possibility theory, the basic
interpretation is the most common one. This interpretation defines possibility as
a mapping from the power set of sample space to any value between 0 and 1. In
other word, any event, which is a subset of sample space, has a possibility defined
by this mapping. One of the reasons that fuzzy logic is adopted in engineering
is the simplicity and efficiency of its operations.

While probability theory deals with the statistical characteristic of data, pos-
sibility theory focuses on the meaning of data. There are several studies [21,22]
about the relationships of the two theories. Although, sometimes the two the-
ories can be used interchangeably, it has been shown that the two theories are
different. Some researchers have described the usability of two theories using an
spectrum: possibility theory is useful when there is little information, however,
when more information becomes available it is better to use probability theory.



Uncertainty in Self-Adaptive Software Systems 231

8 State-of-the-Art

The research community has made great strides in tackling the complexity of
constructing self-adaptive software systems [1–3]. However, as corroborated by
others [2, 3], there is a dearth of applicable techniques for handling uncertainty
in this setting. A few researchers have recently begun to address uncertainty.
Table 2 summarizes their work with regard to the sources of uncertainty they
are dealing with. In the following subsections we provide an overview of these
approaches.

8.1 Rainbow

Cheng and Garlan [6] described three specific sources of uncertainty in
self-adaptation (problem-state identification, strategy selection, and strategy
outcome) and provided high-level guidelines for mitigating them in Rainbow
framework [12]. Problem-state identification is related to Monitoring and Analy-
sis activities from the MAPE loop, while strategy selection and strategy outcome
are related to Planning and Execution activities, respectively. In other words,
they try to mitigate uncertainty in the activities of the adaptation feedback
control loop.

To mitigate uncertainty in problem-state identification, they use running
average in monitoring to counter variability and stochastic properties of the
environment. The observations are then compared with architectural descrip-
tions that are augmented with probabilistic information to detect trend of
behavior. Once the problem is detected, a strategy is selected to resolve the
problem. The uncertainty in strategy selection is mitigated by using the Stitch
language. This language allows for modeling uncertainty in strategies. Therefore,
when Rainbow attempts to select a strategy at runtime, it can decide based on
the expected value (which is capturing the uncertainty) of different strategies.
Finally, once a strategy is selected and put into effect, it may succeed or fail. In-
stead of dealing with this uncertainty in the next adaptation loop, they consider
the uncertainty in strategy outcome by specifying how long Rainbow should
monitor the implementation of the strategy before committing to the change.
This is another attribute of the approach that can be modeled using the Stitch
language.

By augmenting architectural models with probabilistic models, Rainbow mit-
igates the uncertainty due to simplifying assumptions and noise. Moreover, by
monitoring the system after adaptation Rainbow mitigates the uncertainty due
to drift in the architectural models.

8.2 RELAX

Whittle et al. introduced RELAX [23], a formal requirements specification lan-
guage that relies on Fuzzy Branching Temporal Logic to specify the uncertain
requirements in self-adaptive systems (i.e., as indicated in Table 2, RELAX



232 N. Esfahani and S. Malek

uses possibility theory to deal with the uncertainty of the Objectives). RE-
LAX allows for explicit expression of environmental uncertainty and its effect on
requirements. Depending on the state of environment, RELAX specifies the re-
quirements that can be disabled or “relaxed”. To that end, RELAX introduces
a set of operators that can be used in forming the requirements. These opera-
tors also define how the requirement can be relaxed at runtime. Moreover, the
operators capture the kind of uncertainty (uncertainty factor) that can initiate
the relaxation of requirements.

In a subsequent publication [24], Cheng et al. extended RELAX with goal
modeling to specify the uncertainty in the objectives. They first build the goal
lattice and then use it in a bottom-up fashion to look for sources of uncertainty,
which are the elements of domain/environment and can endanger satisfaction
of goals. In their approach, they identify uncertainty through a variation of
threat modeling, which is used to identify security threats in a system. Once the
uncertainty is identified, its impact is assessed to devise mitigation tactics. The
ultimate tactic for mitigating uncertainty (when all other tactics fail) is to add
flexibility to the goal by “relaxing” it.

8.3 FLAGS

FLAGS [25] also uses possibility theory to mitigate the uncertainty of the Ob-
jectives. Similar to RELAX, FLAGS aims to achieve the basic goal of adaptive
systems at the requirements level: mitigate the uncertainty associated with the
environment and new business needs by embedding adaptability in the software
system as early as requirement elicitation. In other words, FLAGS considers self-
adaptation as a special kind of requirement, which affects other requirements.
These special requirements are called adaptive goals and FLAGS allows for the

Table 2. The mathematical theories that are used by existing approaches for dealing
with sources of uncertainty

S
im

p
li
fy
in
g

a
ss
u
m
p
ti
o
n
s

M
o
d
e
l
d
ri
ft

N
o
is
e

P
a
ra

m
e
te

rs
o
v
e
r
ti
m
e

H
u
m
a
n

in
th

e
lo
o
p

O
b
je
c
ti
v
e
s

D
e
c
e
n
tr
a
li
z
a
ti
o
n

C
o
n
te

x
t

C
y
b
e
r-
p
h
y
si
c
a
l

sy
st
e
m
s

Rainbow Prob. Prob.

RELAX Poss.

FLAGS Poss.

FUSION Prob. Prob. Prob.

ADC Prob.

RESIST Prob. Prob. Prob. Prob. Prob.

POISED Poss. Prob. Poss.



Uncertainty in Self-Adaptive Software Systems 233

definition of counter measures that must be performed if some goals are not
fulfilled as expected (due to predicted uncertainty).

FLAGS also deals with another source of uncertainty in addition to the uncer-
tainty in the context of the software: the uncertainty in the goals themselves. As
satisfaction of some goals cannot be specified by simple yes–no answer, FLAGS
relies on fuzzy goals for which properties are not fully known, the complete speci-
fication is not available, and small temporary violations are tolerated. Therefore,
FLAGS ends up with two sets of goals: crisp goals and fuzzy goals. It formal-
izes the crisp goals using Linear Temporal Logic (LTL), and fuzzy goals using
fuzzy temporal language, which in the end is unified with the LTL specification.
Therefore, all the software requirements can be specified in a single coherent
language.

8.4 FUSION

FUSION [26] is a learning based approach to engineering self-adaptive systems.
Instead of relying on static analytical models that are subject to simplifying
assumptions, FUSION uses machine learning, namely Model Trees Learning
(MTL) to self-tune the adaptive behavior of the system to unanticipated changes.
This allows FUSION to mitigate the uncertainty associated with the change in
the context of software system as it gradually learns the right adaptation be-
havior in the new environment. The result of learning is a set of relationships
between the adaptation actions in the system and the quality attributes of in-
terest (e.g., response time, availability). These rules consider the interaction of
adaptation actions and hence to some extent mitigate the uncertainty caused due
to synergy. The quality attributes of interest could be measured and collected
from the running system through instrumentation of the software or sensors
provided by the implementation platform. The adaptation actions correspond
to variation points in the software that could be exercised at runtime.

FUSION has two complementary cycles: learning cycle and adaptation cycle.
The learning cycle relates the measurements of quality attributes to the adap-
tation actions. The learning cycle constantly monitors the environment to find
possible errors in the learned relations. Persistence of such errors, which can
be either due to drift or change in the context, triggers relearning the new be-
havior. When quality of software decreases over time and drops below a certain
threshold, the adaptation cycle kicks in and uses the learned knowledge to make
informed adaptation decision to improve the quality attributes. The quality of
the software system is defined as aggregate collection of individual quality at-
tributes. However, since some quality attributes may conflict with each other,
the notion of utility is used to allow for making trade-offs.

8.5 Anticipatory Dynamic Configuration (ADC)

Poladian et al. [27] studied dynamic configuration of resource-aware services,
where they showed how to select an appropriate set of services to carry out a
user task, and allocate resources among those services at runtime. The original



234 N. Esfahani and S. Malek

work did not consider the uncertainty in the environment. Subsequently, the
work was extended to make anticipatory decisions [28], and considered the in-
accuracy of future resource usage predictions. To that end, they built on the
previous work of one of the authors [29] and used historical profiling to find
an application’s resource requirements for different configurations. Considering
resource availability over time mitigates the uncertainty in monitoring as it pro-
vides more accurate models of the environment being monitored. As indicated in
Table 2, they use probability theory to achieve this (i.e., Mitigate the uncertainty
related to Parameters over time).

By considering the resource availability prediction, the anticipatory model of
configuration chooses a configuration that maximizes the cumulative expected
value of utility over time. This reduces the number of possible future reconfig-
urations and as a result disruptions in the system. In making the adaptation
decisions, the cost of switching between the configurations is also considered. If
the cost of switching is low, this approach selects a configuration that performs
better at the moment and when the quality of selected configuration drops the
configuration is switched. On the other hand, if the cost of switching is high,
a temporal under-optimum configuration is accepted. That is, from the begin-
ning an alternative configuration, which performs better over time, is selected
to prevent switching later on.

8.6 RESIST

RESIST [14] uses information from several sources, such as monitoring internal
and external software properties, changes in the structure of the software, and
contextual properties to continuously furnish refined reliability predictions at
runtime. The up-to-date reliability predictions express the reliability of the sys-
tem in near future using probabilities. These predictions are then used to decide
about changing the configuration of the software to improve its reliability in a
proactive fashion. RESIST is targeted for situated software systems, which are
prominently mobile, embedded, and pervasive. The uncertainty in these systems
are prevalent as they have highly dynamic configuration, unknown operational
profile/context, and fluctuating conditions, yet they are usually deployed in mis-
sion critical environments (e.g., emergency response) and have stringent relia-
bility requirements. RESIST mitigates the uncertainty due to the context and
simplifying assumptions through constant learning. Moreover, slight changes in
the reliability are modeled as probability distributions indicating the noise.

RESIST takes a compositional approach to reliability estimation; the process
starts with analysis at the component level, which in turn makes it possible to
assess the impact of the adaptation choices on the system’s reliability. The com-
ponent level reliability is estimated stochastically using a Discrete Time Markov
Chain and in terms of the fraction of the time spent in failure state by the compo-
nent. Once the reliability of all components is obtained, a compositional model
is used to determine the reliability of specific system configurations. RESIST
models the uncertainty in the learning using probabilities.



Uncertainty in Self-Adaptive Software Systems 235

8.7 POISED

POISED [7] is a quantitative approach for tackling the complexity of automat-
ically making adaptation decisions under uncertainty. It builds on possibility
theory and fuzzy mathematics to assess both the positive and negative conse-
quences of uncertainty. The goal in POISED is to improve the quality attributes
of a software system through reconfiguration of its components to achieve a
global optimal configuration for the software system. POISED redefines the con-
ventional definition of optimal adaptation decision to one that has the best range
of behavior. In turn, the selected solution has the highest likelihood of satisfying
the system’s quality objectives, even if due to uncertainty, properties expected
of the system are not borne out in practice. This is different from conventional
approaches, which do not incorporate uncertainty in their analysis. Such ap-
proaches consider the behavior of the system as a point estimate, while POISED
consider a range of behavior.

POISED provides a framework to gather and build up uncertainties into a co-
herent representation, which lends itself well to decision making. POISED relies
on Possibilistic Linear Programming to make the trade-off between different con-
figuration alternatives. The configuration knobs in POISED allow the decision
maker to specify what aspect of uncertainty is more important: in some cases a
solution capable of providing certain guarantees in the worst case scenario would
be desirable, in others a solution with higher risk, but the potential of higher
quality may be desirable.

9 Conclusion

Uncertainty is a well-known challenge in the construction of dependable self-
adaptive software, yet it is a relatively unexplored topic in this area of research.
We believe lack of a coherent understanding of uncertainty has hindered the
development of suitable techniques to mitigate it. This in turn has prevented
the application of solutions developed and evaluated in the academic settings to
real-world software systems that are often risk-averse. We believe for widespread
adoption of self-adaptation capabilities in real-world application, the research
community needs to first develop suitable and practical mechanisms to control
the risk associated with self-adaptation of software under uncertainty.

This paper has aimed to address this issue by shedding light on the role of
uncertainty in self-adaptive software and distilling its characteristics. We used
a robotic software system to illustrate the impact of uncertainty in process of
making adaptation decisions, and proposed an alternative method of reasoning
about optimality of adaptation decisions that takes imprecision and variability of
the knowledge into account. We also provided an overview of the state-of-the-art
approaches that have tackled the different facets of uncertainty in self-adaptive
software.

While a series of recent publications in this area of research have provided
a good foundation for addressing uncertainty issues in self-adaptation, several
research challenges remain. One of the most critical issues is that the majority of



236 N. Esfahani and S. Malek

mathematical techniques for dealing with uncertainty are computationally very
expensive. For instance, the standard operations research technique for making
decisions under probability theory is called stochastic programming. However,
stochastic programming is known to be computationally expensive for execution,
which makes it unsuitable for use at runtime, where often decisions have to be
made very fast.

Another challenge is the ability to quantify uncertainty, which is necessary to
be able to reason about uncertainty and adopt the new definition of optimality
advocated in this paper (recall Section 5). This is particularly difficult when
the uncertainty is in sources that are not necessarily under the control of self-
adaptive software (e.g., uncertainty is in the environment). While generally this
is a challenging problem that requires further research, our recent work [7] shows
that even if uncertainty can only be partially quantified (i.e., roughly estimated),
by incorporating it in the analysis, self-adaptation logic is able to make better
choices than if it was to completely ignore uncertainty.

Acknowledgments. This work is partially supported by grant CCF-0820060
and CCF-1217503 from the National Science Foundation and grant N11AP20025
from Defense Advanced Research Projects Agency.

References

1. Kramer, J., Magee, J.: Self-Managed systems: an architectural challenge. In: Int’l
Conf. on Software Engineering, Minneapolis, Minnesota, pp. 259–268 (2007)

2. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

3. De Lemos, R., Giese, H., Muller, H.A., Shaw, M., Andersson, J., Baresi, L., Becker,
B., Bencomo, N., Brun, Y., Cikic, B., Desmarais, R., Dustdar, S., Engels, G.,
Geihs, K., Goeschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer,
J., Litoiu, M., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R.,
Mylopoulos, J., Nierstrasz, O., Pezze, M., Prehofer, C., Schafer, W., Schlichting,
W., Schmerl, B., Smith, D.B., Sousa, J.P., Tamura, G., Tahvildari, L., Villegas,
N.M., Vogel, T., Weyns, D., Wong, K., Wuttke, J.: Software engineering for Self-
Adpaptive systems: A second research roadmap. In: Lemos, R.d., Giese, H., Muller,
H., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems, Dagstuhl,
Germany (2011)

4. Garlan, D.: Software engineering in an uncertain world. In: FSE/SDP Wrkshp. on
the Future of Software Engineering Research, Santa Fe, New Mexico (2010)

5. Aughenbaugh, J.M.: Managing uncertainty in engineering design using imprecise
probabilities and principles of information economics. PhD thesis, Georgia Institute
of Technology (2006)



Uncertainty in Self-Adaptive Software Systems 237

6. Cheng, S.W., Garlan, D.: Handling uncertainty in autonomic systems. In: Int’l
Wrkshp. on Living with Uncertainty, Atlanta, Georgia (2007)

7. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in Self-Adaptive soft-
ware. In: The Joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Szeged, Hungary (2011)

8. Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I., Medvidovic,
N., Mikic-Rakic, M., Sukhatme, G.S.: An architecture-driven software mobility
framework. Journal of Systems and Software 83, 972–989 (2010)

9. Menasce, D.A., Dowdy, L.W., Almeida, V.A.: Performance by Design: Computer
Capacity Planning By Example. Prentice Hall PTR (2004)

10. Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-
adaptation. In: Int’l Conf. on Autonomic Computing, Washington, DC, pp. 205–214
(2010)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36, 41–50 (2003)

12. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self-Adaptation with reusable infrastructure. IEEE Com-
puter 37, 46–54 (2004)

13. Trouwborst, A.: Precautionary rights and duties of states. Martinus Nijhoff (2006)
14. Cooray, D., Malek, S., Roshandel, R., Kilgore, D.: RESISTing reliability degra-

dation through proactive reconfiguration. In: Int’l Conf. on Automated Software
Engineering, Antwerp, Belgium (2010)

15. Winkler, R.L.: Uncertainty in probabilistic risk assessment. Reliability Engineering
& System Safety 54, 127–132 (1996)

16. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Probability, 2nd edn. Athena Sci-
entific (2008)

17. Kolmogorov, A.: Foundations of Probability (1933)
18. Hoff, P.D.: A First Course in Bayesian Statistical Methods, 2nd printing edn.

Springer (2009)
19. Zadeh, L.A.: Fuzzy sets. Information and control 8, 338–353 (1965)
20. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100,

9–34 (1999)
21. Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a

unifying view. Fuzzy Sets and Systems 144, 227–249 (2004)
22. Dubois, D., Prade, H.: Possibility theory, probability theory and Multiple-Valued

logics: A clarification. Annals of Mathematics and Artificial Intelligence 32, 35–66
(2001), ACM ID: 590454

23. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: incor-
porating uncertainty into the specification of Self-Adaptive systems. In: Int’l Re-
quirements Engineering Conf., Atlanta, Georgia, pp. 79–88 (2009)

24. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling
Approach to Develop Requirements of an Adaptive System with Environmental
Uncertainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp.
468–483. Springer, Heidelberg (2009)

25. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for Requirements-Driven adap-
tation. In: Int’l Requirements Engineering Conf., Sydney, Australia, pp. 125–134
(2010)

26. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering
Self-Tuning Self-Adaptive software systems. In: Int’l Symp. on the Foundations of
Software Engineering, Santa Fe, New, Mexico, pp. 7–16 (2010)



238 N. Esfahani and S. Malek

27. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic configuration of
Resource-Aware services. In: Int’l Conf. on Software Engineering, Scotland, UK,
pp. 604–613 (2004)

28. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., Sousa, J.:
Leveraging resource prediction for anticipatory dynamic configuration. In: Int’l
Conf. on Self-Adaptive and Self-Organizing Systems, Boston, Massachusetts, pp.
214–223. IEEE Computer Society (2007)

29. Narayanan, D., Satyanarayanan, M.: Predictive resource management for wear-
able computing. In: Int’l Conf. on Mobile Systems, Applications and Services, San
Francisco, California, pp. 113–128 (2003), ACM ID: 1189041



A Software Lifecycle Process to Support

Consistent Evolutions

Paola Inverardi1 and Marco Mori2

1 Dip. di Informatica, Università dell’Aquila
paola.inverardi@di.univaq.it

2 IMT Institute for Advanced Studies Lucca
marco.mori@imtlucca.it

Abstract. Ubiquitous software systems evolve their behavior at run-
time because of uncertain environmental conditions and changing user
needs. This paper describes our approach for a model-centric software
evolution process of context-aware adaptive systems. Systems are rep-
resented following the feature engineering perspective and this model-
ing supports foreseen and unforeseen evolution. The first one deals with
foreseen contexts while unforeseen evolutions address new user needs
arising at run-time possibly in response to unforeseen context changes.
The main contribution of this paper is a generic software lifecycle process
for context-aware adaptive systems that allows systems to be managed
both at design time and at execution time by exploiting suitable models.
The approach supports both static and dynamic decision-making mech-
anisms to enact evolutions and to check the evolution consistency.

Keywords: Context-aware adaptive systems, software lifecycle process,
variability model, consistent evolution.

1 Introduction

In the era of ubiquitous computing, software systems have to be designed and
developed taking into account the information coming from the surrounding
environment. This new dimension, called context, has to be exploited to make
systems flexible and adaptive. Context is not completely known at design time
thus making the process of designing and developing ubiquitous applications con-
tinue at execution time [13,18,25]. Software engineers define software alternatives
having in mind a partial representation of the context in which the system is
going to operate. Since it is not always possible to have a complete representa-
tion of the environment, the software engineer cannot provide all the software
alternatives at design time. In addition resource-constrained devices limit the
number of admissible alternatives. Thus the set of software alternatives pro-
vided at design time may have to be augmented in order to face new unforeseen
environmental conditions.

We consider two systems-related characteristics: context-awareness expresses
the ability of accessing and exploiting environmental information [7,21,28], and

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 239–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



240 P. Inverardi and M. Mori

adaptivity which makes a system flexible by supporting behavioral variations
[47,3,43]. However, systems should evolve in a consistent way with respect to the
context in which they operate. Models can play a key role for developing and
evolving context-aware adaptive applications since they support the consistent
evolution required by context variations. Different models are required to achieve
a consistent evolution:

– a model for representing the system and its variability;
– models to represent the context surrounding the system;
– requirement engineering models;
– models representing executable artifacts;
– a software process model for the adaptive application.

All mentioned models should be exploited and managed at run-time when the
development of the system is still required [10,44]. Therefore, on one hand models
should provide the right level of adaptivity for the system while on the other
hand they should be suitable in terms of required computational effort. This
means that the time required to accomplish the model-based consistency check
should be negligible with respect to the interval between consecutive evolution
requests.

Models should be exploited by an integrated support in order to automate, as
much as possible, the process of developing and evolving adaptive applications.
This would enable the software engineer to reuse a set of “good practice” and
tools for building and maintaining such applications [37].

This paper defines a generic software lifecycle process for context-aware adap-
tive systems. The process we propose supports two kinds of evolution while keep-
ing the system consistent with the context. Foreseen evolution addresses foreseen
context variations whereas unforeseen evolution deals with unforeseen context
variations. Figure 1 shows how context affects both system evolutions. In the
foreseen evolution the system evolves in order to keep satisfied a fixed set of re-
quirements by switching among different software alternatives provided at design

Fig. 1. System evolutions



A Software Lifecycle Process to Support Consistent Evolutions 241

time for different known contexts. In the unforeseen evolution the system evolves
to satisfy changing user needs (requirements) that may emerge as a consequence
of an unforeseen context variation. The system evolves by switching to a new
un-anticipated software alternative whose behavior includes new functionality
necessary to satisfy the emerging requirement. We represent the system following
the Software Product Line Engineering (SPLE) perspective since it breaks the
system complexity into feature components thus reducing the impact that any
change may have on the system [29]. In addition the SPLE perspective already
provides models to manage the system and to support consistent evolution.

This paper extends preliminary work [22] on the use of feature engineering
for modeling the evolutions of context-aware adaptive systems. Our process is
amenable to develop and evolve highly-configurable systems with interfering fea-
tures. It exploits the SPLE perspective in order to provide a uniform abstraction
to all the development approaches that consider a system to be made out of a
combination of basic software entities, such as the Component Off The Shelf
(COTS) approach or the service-oriented one. We assume that we have a set of
basic behavioral elements as input to our software process. These basic elements
will contain implementation artifacts with corresponding requirements specifi-
cations. It is worth stressing that while we do address the problem of managing
model-centric evolution we will only briefly comment on the mechanisms to en-
act the evolution. We will assume that the system may be reconfigured when
it is in a state in which the evolution is allowed (e.g. quiescent state or weaker
notions [30,46]).

In this paper we also define a generic evolution framework to support our
software process in performing its run-time activities. To this end, the framework
implements a control loop to monitor and to evolve the adaptive application.

The contributions of this paper are:

– a process methodology to design and develop context-aware adaptive appli-
cations;

– a set of models to represent the system and the context along with their
evolutions;

– a methodology to check the consistency based on the context;
– an architecture implementing the support for the evolutions.

We will explain our approach by means of an adaptive application which elabo-
rates a Mandelbrot fractal [33] that better fits the characteristics of the mobile
device (CPU, memory, number of display colors,...). The application require-
ments consist in visualizing a fractal image to the user through the device screen.
The higher the level of context resources available, the more beautiful will be
the fractal image shown to the user. The fractal context-aware adaptive system
will be modeled through a set of features which represent the basic alternative
behaviors to color, build and view the fractal image. At run time features may
need to be activated or de-activated based on the context-resource availability
changes. In addition because of environment unpredictability, the user may want
to introduce new unforeseen behavior as the system operates in an unforeseen



242 P. Inverardi and M. Mori

context. For example whenever the unforeseen device characteristics makes the
visualization of the fractal image format impossible, the user may guide the
introduction of a new software plug-in to decode that specific format.

The remainder of this paper is structured as follows. Section 2 describes re-
lated work to address system evolutions while Section 3 introduces the basic
models of our generic evolution framework. In Section 4 we define the soft-
ware lifecycle process to design and develop context-aware adaptive applications.
Section 5 describes how our process supports foreseen and unforeseen evolu-
tions. Section 6 proposes the interface architecture which implements the generic
evolution framework along with a possible instance with current practice tech-
nologies. Section 7 provides a summary of our contribution and a discussion of
future work.

2 Related Work

In the literature several frameworks address system evolution. They exploit
models with different granularity such as context-aware requirements models,
context-aware architectural models and context-aware implementation models.

The Rainbow framework [17] enables architectural self-adaptation by ex-
ploiting predefined adaptation rules. System components are reconfigured based
on decisions taken at design time while no un-anticipated adaptations can be
achieved. The framework supports non-functional reconfigurations while it does
not consider the consistency checking of the evolution. The context is not ex-
plicitly modeled but simple variables are considered in the framework.

The PLASTIC approach [4] applies reconfigurations at the implementation
level by exploiting an explicit definition of context model. The approach sup-
ports non-functional reconfigurations of statically defined Java artifacts driven
by context variations. The framework only deals with foreseen evolution while
run-time evolution is not allowed. The Javeleon framework [20] as well as the
JavAdaptor framework [41] aims to support the run-time evolution by means
of transparent dynamic updates of running Java applications. Developers can
simply evolve their applications at run-time and they can trigger an on-line
update without stopping the running application. Javeleon and JavAdaptor do
not support a definition of context for the evolution but the developers is di-
rectly in charge of injecting new behaviors in the application at run-time. These
approaches as well as the PLASTIC framework do not provide a process to
assess the consistency of foreseen and unforeseen evolution. Ali et al. [2] pro-
pose a goal-based framework to enact the evolution among system variants at
requirement level. This approach provides a context analysis phase to discard
variants that are inconsistent based on the context predicates. Nevertheless, it
only supports the design-time analysis on the contextual goal model. Qureshi
and Perini [42] have defined a framework for requirement engineering to distin-
guish activities at design-time from activities at run-time. They have provided
a mechanism to evolve the requirement specification at run-time driven by the
user thus supporting a notion of unforeseen evolution. Nevertheless the proposed



A Software Lifecycle Process to Support Consistent Evolutions 243

method is not applied to a real case study and no definition of consistency is con-
sidered in the framework. Kramer and Magee [31] have presented a three-layered
conceptual model to support the architectural reconfiguration of self-managing
systems. They consider a Component layer, a Change management layer and
a Goal management layer. The Goal layer identifies the plan to execute while
the Change layer enacts the plan execution by interacting with the Component
layer. This feature supports reconfigurations required by new requirements aris-
ing at run-time, i.e. unforeseen evolutions. The framework provides functional
and non-functional evolutions but it lacks a definition of consistency checking
for the composition of components.

To the best of our knowledge the frameworks presented in the literature only
apply reconfigurations at specific granularity levels, either at requirements mod-
els, or at architectural models or at implementation models. Only a few of them
support evolution at run-time while there is almost no support to check the con-
sistency of the evolution. In order to provide high-assurance for context-aware
adaptive applications it is necessary to support a definition of consistency as
proposed by Zowghi and Gervasi [48]. They suggest that an effective support to
consistency is based on system models at the different granularity levels, rang-
ing from the problem space models to the solution space models. We claim that
adaptive applications are not developed and evolved following a software process
which considers all these models together thus making it difficult to effectively
support the consistency of the evolution.

3 Evolution Framework

The evolution framework we propose is characterized by different building blocks
to represent the system along with its variability. The system is represented by
units of behavior which are composed through a feature diagram into different
system configurations. The context model enacts the switching process among
configurations and it supports the consistency checking process for the evolution.

Our evolution framework implements a MAPE (Monitoring Analyze Plan and
Execute) cycle in order to support the supervision, execution and evolution of
adaptive applications [12]. In Figure 2 we show how the framework implements
each of the four phases.

A monitoring phase activity collects information from the environment and
from the user in order to establish if evolution is required or not. On the one
hand, foreseen context variations and user preferences variations may both enact
foreseen evolutions. The first influences the admissibility of the system variants,
whereas the second influences the fitness of the system variants. On the other
hand, unforeseen context variations may force the user to introduce a new re-
quirement into the running variant.

The analyze phase determines if the variant to adopt is consistent or not.
In case of foreseen evolution we consider the set of system variants that are
consistent at the current context state. The consistency at each different context
state is proven at design time. In case of unforeseen evolution the analysis is



244 P. Inverardi and M. Mori

Fig. 2. MAPE cycle

performed at run-time by checking the consistency for the un-anticipated variant.
This variant will contain the same set of features as the current variant plus a
new feature that implements the new requirement specified by the user.

After the analyze phase the planning phase supports the decision-making
process for the variant to adopt. For the foreseen evolution, a ranking mechanism
establishes the most suitable variant based on context and user preferences. For
the unforeseen evolution the new variant which has been proven consistent at
the analyze phase is put forward to the execution phase.

Finally at the execution phase the system switches from the current to the
target variant. The target variant is enacted through its entry point method. For
the unforeseen evolution it is also necessary to incorporate a new code artifact
into the target variant before enacting its execution.

In the following we define the elements of our approach before describing the
software development process for context-aware adaptive systems in Section 4.

3.1 Context Model

In our approach the context model expresses the set of external entities that are
beyond the system’s control but which may influence the system execution. Our
context model consists of key-value pairs and it is defined using two perspectives:
the context structure and the context space. The context structure expresses re-
sources in term of types and categories. We adopt the resource taxonomy where
each context element belongs either to the system, to the user or to the physical
environment. In addition we consider the resource types enumerate, boolean and
natural [32]. In Figure 3 is depicted a context structure which conforms to the
meta-model shown at the left side of the figure.



A Software Lifecycle Process to Support Consistent Evolutions 245

Fig. 3. Context structure: meta-model and model

The context space expresses the variability for the resource assignment. Each
resource is identified through a tag ResId and it can assume one among its
admissible values contained in dom(ResId). The context space for the resources
ResId1, ..., ResIdn is defined as the Cartesian product:

S =
⊗

dom(ResIdi) s.t. i = 1, ..., n (1)

Each valid assignment of resources −→c ∈ S will be considered as a different
context state. Let us consider four different resources respectively expressing
the free memory, the CPU clock rate, the number of screen colors and the
network availability (0 if false, 1 if true): dom(mem) = {100, 150, 250, 350},
dom(cRate) = {200, 400, 600}, dom(sc) = {256, 4096}, dom(conn) = {0, 1}.
The context model space will be composed of 4 ∗ 3 ∗ 2 ∗ 2 = 48 states.

3.2 Unit of Behavior

In our vision we represent context-aware adaptive applications in terms of sets
of dynamic units called features. A feature is the smaller part of a service that
can be perceived by the user. We define a feature by a context-independent re-
quirement, a context-dependent constraint requirement, and an implementation
part. The notion of requirements we adopt follows the taxonomy proposed by
Glinz [19]. The definition of requirements is based on the concern to which a re-
quirement pertains. Given that a concern is a matter of interest in a system, the
taxonomy considers functional requirements which pertain to functional con-
cerns, performance requirements which pertain to performance concerns and
specific quality requirements which pertain to quality concerns. In addition con-
straint requirements limit the solution space of functional, performance and
specific quality requirements. We adopt this taxonomy and we exploit the fea-
ture definition in [14] in order to propose our definition of a feature as a triple
fi = (Ri, Ii, Ci), where:

– Ri is a conjunction of functional, performance and specific quality require-
ments (context-independent); an example of a functional requirement is:



246 P. Inverardi and M. Mori

Compute and visualize each fractal pixel. A quality requirement is: The im-
age is visualized a pixel at a time which in terms of implementation consists
in assigning the value Immediate to the quality property DisplayModel.

– Ii is the the component/service implementing the feature. It is expressed as
Java code, e.g. see Figure 4.

pub l i c c l a s s MandelCanvas{
. . .
pub l i c vo id g en e r a t e Immed i a t eF r a c t a l ( ){
image = Image . c r ea te Image ( width , h e i g h t ) ;
G raph i c s imageGraph i c s D i r ec tCanva s = image . g e tG r a ph i c s ( ) ;
f o r ( i n t x = 0 ; x < width ; x++) {
f o r ( i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l D i r e c t C an v a s = d r awF r a c t a l P i x e l ( x , y ) ;
r e p a i n t ( ) ;

}}
} . . . }

Fig. 4. Example: feature implementation

– Ci is a context-dependent constraint requirement defined as a predicate over
the context entities, e.g. mem ≥ 120kb.

3.3 System Configuration

A system configuration is obtained assembling a set of features. Each configura-
tion expresses the set of functionalities that a system shows to a user at a certain
step of the evolution. Given the set of features F , a system configuration is a triple
obtained combining each feature in F as GF = (RF , IF , CF ). At this level of de-
scription we do not explain how to combine features. We just suppose to have an
abstract union operator among features which is defined in terms of union oper-
ators for context-independent requirements, context-dependent requirement and
implementation components. The actual implementation of these union operators
will depend on the specific formalisms that may be used to express these three el-
ements. Given two features f1 =<R1, I1, C1,> and f2 =<R2, I2, C2> their union
is defined as: f1 ∪f f2 =< R1 ∪R R2, I1 ∪I I2, C1 ∪C C2 >. In the following we
show a possible example on how to merge context requirements and implementa-
tion components for a system configuration starting from its features.

The union operator ∪C merges context requirements depending on the nature
of resources. For example if we have two requirements demanding bandwidth
for 20 kbps each one, their union will express a demand of bandwidth for 40
kbps. For the implementation portion I the software engineer combines the code
artifacts in order to have a single access point to the whole configuration. Each
configuration is composed by a Java class for each single feature plus a Java
class which is the entry point for the system configuration. This class entails the
method execute to trigger the execution of the configuration (e.g. see Figure 7).

Given a system definition it is necessary to model in which different future
system configurations the system may evolve. The variability model that we have



A Software Lifecycle Process to Support Consistent Evolutions 247

chosen is inspired by the feature model which has been first introduced in the
Feature-Oriented Domain Analysis method [27]. Since then, feature modeling
has been widely adopted by the SPL engineering community and a number
of extensions have been proposed [45]. In our approach we consider a possible
abstract syntax for the feature model defined starting from nodes (features) and
arcs between nodes:

– The root node of the model is the label which stands for the system.

– Each node expresses a feature which can be either optional or mandatory.

– Each edge between two nodes expresses a decomposition relation (consist-
of) between the parent node and the child node. It enables the possibility to
add behavior to the parent feature. We consider two decomposition relations:
AND decomposition and XOR decomposition.

– “Requires” constraint is a directed relation between two features. If one
feature is present in the configuration the second has to be present as well.

– “Mutex” constraint enables the mutual exclusion between two features; there-
fore they cannot be in the system configuration simultaneously.

Starting from the feature model (abstract syntax), the feature diagram (con-
crete syntax) is commonly expressed as a tree structure. We adopt a subset
of the syntax presented in [15]. In this diagram, features are represented in a
tree-like format. Dark circles represent mandatory features, while white circles
represent optional features. An inverted arc among multiple arcs expresses a
XOR decomposition meaning that exactly one feature can be selected. Multiple
arcs that start from a parent node express an AND decomposition.

Starting from the feature diagram, the set of possible system configurations
is obtained by combining the features in subsets compliant to the diagram. The
diagram shown in Figure 5 concerns our case study and contains 8 features
which give rise to 10 system configurations. Each configuration contains only
one feature to generate the image and only one feature to color it. An admissible
configuration contains the features to download a predefined image from a remote
server. We further discuss the features of the fractal application in Section 4.1.

Each system configuration is mapped to its implementation which enables
its execution. Let us consider the system configuration G4 = {fgenPro, fcolB}
implemented by the class diagram depicted in Figure 6. Each feature in G4 is
implemented as a single Java class. The classMandelCanvas, which implements
fgenPro, provides the interface generateProgressiveFractal that generates and
draws the fractal image progressively a row at a time exploiting the operation
drawFractalP ixel. The class Colouring, which implements fcolB, provides the
interface pixelColourAsBands and the operation initColourAsBands in order
to color the image with different bands of colors. The only class which does not
correspond to any of the features within the configuration is LocalFractalApp
that is the external interface to access the whole application variant. The
configuration is enacted through its method execute which implements the logic
of the variant. Figure 7 shows an excerpt of the Java specification for configura-
tion G4.



248 P. Inverardi and M. Mori

Fig. 5. Feature diagram

Fig. 6. Example: class diagram (G4)

3.4 Consistency Checking

We propose a notion of consistency that is based on the notion of feature inter-
action. A feature interaction occurs when two or more features run correctly in
isolation but they give rise to undesired behavior when jointly executed [1,9,38].
A certain system configuration is consistent if its features does not give rise to
any feature interaction phenomenon. Following the Problem Frame approach
[26] as exploited in [14], we formalize our notion of consistency for a certain
configuration G = (RF , IF , CF ) as:

IF , CF 	 RF (2)

This definition entails three different problems:

– (CF )[−→c /−→x ]: this formula checks the joint context requirement (predicate)
CF assigning the current context values −→c to the formal parameters −→x ;

– RF is Satisfiable: this formula checks if the joint context-independent re-
quirement can be satisfied;

– IF 	 RF : this formula validates the joint implementation with respect to the
joint requirement either by means of model checking or through a testing
process.



A Software Lifecycle Process to Support Consistent Evolutions 249

pub l i c c l a s s Loca lF ra c ta lApp extends MIDlet {
MandelCanvas mandelCanvas ;
. . .
pub l i c Loca lF ra c ta lApp (){
mandelCanvas = new MandelCanvas ( ) ;

}
p ro tected vo id execu te (){
c u r r e n t D i s p l a y = D i s p l a y . g e tD i s p l a y ( t h i s ) ;
c u r r e n t D i s p l a y . s e tCu r r en t ( mandelCanvas ) ;
mandelCanvas . g e n e r a t eP r o g r e s s i v e F r a c t a l ( ) ;
e x i t A c t i o n ( ) ;

} . . . }
pub l i c c l a s s MandelCanvas extends Canvas {
. . .
pub l i c vo id g e n e r a t eP r o g r e s s i v e F r a c t a l ( ){
i n t co lumn ArrayCanvas [ ] = new i n t [ h e i g h t ] ;
f o r ( i n t x = 0 ; x < width ; x++){
f o r ( i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l A r r a yCan va s = d r awF r a c t a l P i x e l ( x , y ) ;
co lumn ArrayCanvas [ y ] = p i x e l C o l o r ( p i x e l A r r a yCan va s . i s I n s i d e F r a c t a l ( ) ,
p i x e l A r r a yCan va s . g e t I t e r a t i o n s ( ) , p i x e l A r r a yCan va s . g e tD i s t a n c e ( ) ) ;

}
o f f s e t X = x ;
image = Image . createRGBImage ( co lumn ArrayCanvas , 1 , h e i gh t , f a l s e ) ;
r e p a i n t ( ) ;

}} . . . }
pub l i c c l a s s Co l o u r i n g{
. . .
p r i v a t e i n t p i xe lCo l ou rAsBands ( boo lean i n t e r n o , i n t i t e r a z i o n i ,
doub le d i s t ){
i n t tmp= ( i n t e r n o ? 0 : c o l o r s [ i t e r a z i o n i % pa l e t t eNumCo lo r s ] ) ;
r e tu r n tmp ;

}
p r i v a t e vo id i n i tCo l o u rA sBand s (){
i n t [ ] tm pCo l o r s I t e r a t i o n s L im i t e d P a l e t t e = { −256, −16711681 ,−65281 ,−256 ,
−4194304 , −16728064 , −16777024 , −8323073 , −32513, −128 } ;
c o l o r s = tmpCo l o r s I t e r a t i o n s L im i t e d P a l e t t e ;
pa l e t t eNumCo lo r s = c o l o r s . l e n g t h ;

} . . . }

Fig. 7. Example: implementation (G4)

Since our aim is to support a notion of consistency that can be performed at run-
time we should take into account the computational effort for the corresponding
three algorithms. Among them, checking the context requirement against a cer-
tain context state is the less expensive in terms of time and space. Although
it is only a necessary but not sufficient condition for a complete notion of con-
sistency it plays a key role to check the consistency of ubiquitous applications.
Indeed, the serendipity of the environment that characterizes this kind of sys-
tems makes them very vulnerable to context variations. Therefore a weak notion
of consistency can be based only on context requirements satisfiability:

Definition 1. G is weakly consistent in −→c iff CG[−→c /−→x ] is True

Let us consider the configuration Gx = {fgetRem, fsockConn, ftiffV iewer} where
each feature is characterized by the correspondent context requirement:

(i) CtiffV iewer ::= cRate ≥ 300 ∧mem ≥ 35
(ii) CgetRem ::= mem ≥ 100
(iii) CsockConn ::= conn = 1



250 P. Inverardi and M. Mori

We assume thatGx has to be checked at the context state−→c = (100, 300, 4096, 1).
This state provides 100 Kb of memory, a CPU clock rate of 300 Mhz, a screen
device with 4096 colors and an Internet connection. Although each context re-
quirement is weakly consistent separately at −→c , the whole configuration is not
weakly consistent because of the limited availability of free memory. Indeed, if
we combine the request of memory coming from the context requirement (i)
and (ii) we obtain a total request for 135Kb of memory that cannot be satis-
fied at the context state −→c . Therefore it is not possible to execute the features
fgetRem, fsockConn and ftiffV iewer together at −→c .

In our previous paper [23] we have extended this notion of weak consistency
by defining a mechanism to check the configuration requirements with respect
to the implementation artifacts. This enables us to catch also interactions that
arise at the code level.

4 Software Development Process

In this section we describe how we support the development of a context-aware
adaptive application. We have defined a software lifecycle process which follows
the structure presented by Autili et al. [6]. Our software process implements four
different activities, namely Explore, Integrate, Validate and Evolve as shown in
Figure 8. The exploration phase exploits a feature library containing the code
implementation and the correspondent requirements descriptions. The integra-
tion phase takes these features as input and it produces the space of the system
variants as a feature diagram. Each variant is checked though a validation phase
which performs the context analysis [24] and model checking [23]. Finally, the
evolution phase reconfigures the system by switching from the current configu-
ration to the new one.

Fig. 8. Software process

In the remainder of this section we describe how our generic evolution frame-
work supports the software process. The problem we face is the complexity for
the software engineer to specify the context conditions under which each system



A Software Lifecycle Process to Support Consistent Evolutions 251

configuration is admissible. Given n features it could be required to set the con-
text conditions for 2n configurations in the worst case. Our methodology makes
the generation of the system configuration automatic by exploiting the models
provided in the SPLE as described in Section 3.

At the exploration phase the software engineer defines the set of features of
interest. Starting from a standard component it is possible to define a feature
f = (R, I, C) by considering the requirements of the component and its code.
The feature code will be exactly the same as the code of the component. R
will contain the requirements of the component that are not context-dependent.
In general the requirements of the component will always contain requirements
about the execution context, thus they will be added to C. Further context
requirements, for example concerning resources consumptions can be obtained
through suitable static code analysis. For example in our environment we use
the Chameleon framework [5] in order to extract the consumption of resources
caused by I (e.g. memory and CPU clock rate). At the end of the exploration
phase we obtain a set of features defined in terms of their basic components, i.e.
A = {f1, .., fn}.

At integration phase the software engineer combines the features in A through
the feature diagram definition. Architectural constraints will be defined here at
the integration phase. Starting from the feature diagram an automatic process
generates all the system configurations:

G = {G1, G2, ..., Gm} s.t. m ≤ 2|A| (3)

We assume that the requirements belonging to each configuration imply the
system requirements. We further assume that each configuration satisfies its re-
quirements: IGi 	 RGi ∀i = 1, ..,m. An automatic process generates the context
structure and the context space S considering the context entities exploited by
the context requirements belonging to the created configurations.

At validation phase we create the data structure to support the evolution.
This phase takes place by means of two main steps. The first step consists in
labeling each context state −→c in S with all the features which are consistent in−→c (Eq. 2). The feature consistency table is built inserting value 1 each time a
feature is consistent in the corresponding context state. The second step consists
in labeling each context state −→c in S with all the system configurations that
are consistent in −→c . The configuration consistency table is built inserting value
1 each time a configuration is consistent in the correspondent context state.
Finally, we aggregate the context states that make the same set of configurations
consistent. Nevertheless, we do not address the scalability problems arising from
the number of context states and configurations within the mentioned tables.
Different approaches [11] have been presented to reason about the configurations
belonging to the feature diagram. Moreover the exponential growth of context
states could be mitigated by clustering the states [16].

The evolution phase reconfigures the system whenever either a foreseen or
an unforeseen evolution is required. In the first case we query the configuration



252 P. Inverardi and M. Mori

consistency table to retrieve the space of the admissible configurations. Among
them we select the most suitable one based on the data structures provided at
the validation phase. In the second case we have to re-iterate the first three
phases of our software process in order to evolve the system. We query a remote
feature library to retrieve the feature implementing the new requirement and we
integrate the new feature with the current configuration. Finally, we have to val-
idate the new unforeseen configuration before we can add it to the configuration
consistency table. The evolution processes are further discussed in Section 5.

4.1 Working Example

In this section we show how we design and develop the adaptive application to
visualize a Mandelbrot fractal. To this end, the software engineer defines the set
of features A in terms of requirements and code implementations:

A = {fgenShot, fgenPro, fgenImm, fcolB, fcolNB, fcolS, fremGet, fsockConn}

The set A contains the features to generate and color the fractal pixels and the
features to download a standard fractal image from a remote server. The gener-
ation may be performed by visualizing a pixel at a time (fgenImm), a pixel row
at a time (fgenPro) or the whole fractal image at the end of the drawing process
(fgenShot). The pixel colors are defined following three different schemas: fcolB
colors pixels as bands exploiting a limited number of tones; fcolNB colors pixels
as bands exploiting a wide spectrum of tones while fcolS follows a smooth schema
to color pixels exploiting a wide spectrum of tones. Finally, fsockConn connects
the device to the Internet whereas fremGet retrieves and views a standard fractal
image from a remote server.

Figure 9 shows an excerpt of the features entailed in A. It is possible to define
the context requirement of each feature by exploiting the Chameleon framework
in order to obtain the consumption of resources, e.g. CPU clock rate and memory.
Further, context requirements can be defined by extracting the requirement on
the number of screen colors derived from the requirement of the component.

In order to design the fractal application the software engineer combines the
features and produces the feature diagram as shown in Figure 5. The logic op-
erators in the feature diagram guide the automatic generation of 10 system
configurations as shown in Table 1. The first nine configurations are obtained
combining the three different building mechanisms with three different coloring
schemas. The last one simply gets an already defined fractal image from a re-
mote server. Each configuration is characterized by the context requirement and
by the offered qualities. The DisplayModel quality represents the modality of
showing the fractal while ColorModel quality expresses the coloring modalities.

After creating the configurations, the integration phase generates the context
model which contains the relevant resources for the fractal application as shown
in Figure 3. In our example the context space will be defined as S = mem ×
cRate× sc× conn.



A Software Lifecycle Process to Support Consistent Evolutions 253

fgenPro = (RgenPro, IgenPro,CgenPro)
RgenPro : Compute each f r a c t a l p i x e l and show i t a p i x e l row at a t ime
IgenPro :
pub l i c c l a s s MandelCanvas extends Canvas{ . . .
pub l i c vo id g e n e r a t eP r o g r e s s i v e F r a c t a l ( ){
i n t co lumn ArrayCanvas [ ] = new i n t [ h e i g h t ] ;
f o r ( i n t x = 0 ; x < width ; x++){
f o r ( i n t y = 0 ; y < h e i g h t ; y++){
F r a c t a l P i x e l p i x e l A r r a yCan va s = d r awF r a c t a l P i x e l ( x , y ) ;

}
o f f s e t X = x ;
image = Image . createRGBImage ( co lumn ArrayCanvas , 1 , h e i gh t , f a l s e ) ;
r e p a i n t ( ) ;

} } . . . }
CgenPro : mem ≥ 200

fcolS = (RcolS, IcolS,CcolS)
RcolS : Pa in t the f r a c t a l p i x e l s as smooth ly n i c e co l o r ed bands
IcolS :
pub l i c c l a s s Co l o u r i n g { . . .
p r i v a t e i n t p i x e l Co l o r Smoo th l y ( boo lean i n t e r n o , i n t i t e r a z i o n i , doub le d i s t ){
i f ( i n t e r n o ) r e tu r n 0 ;
i t e r a z i o n i = i t e r a z i o n i + 2 ;
doub le mu I t e r a t i o n sD i s t a n c e = i t e r a z i o n i −
( F l oa t11 . l o g ( F l oa t11 . l o g ( d i s t ) ) ) / l og2 ;
i n t tmp= DBL ToRGB( mu I t e r a t i o n sD i s t a n c e ) ;
r e tu r n tmp ;}

p r i v a t e vo id i n i tCo l o r s Smoo t h l y ( ) {
l o g2 = Floa t11 . l o g ( 2 . 0 ) ;

} . . . }
CcolS : crate ≥ 500 ∧ sc ≥ 4096

fremGet = (RremGet, IremGet,CremGet)
RremGet :Re t r i e v e and view the f r a c t a l image from the s e r v e r
IremGet :
pub l i c c l a s s RemoteViewer extends Canvas { . . .

pub l i c vo id v i ewRemoteFra c ta l ( ){
t h i s . image = g e t F r a c t a l ( s ta r tT ime ∗1000 , maxExecutionTime ) ;
r e p a i n t ( ) ;

} . . . }
CremGet : mem ≥ 100

Fig. 9. Application features

As far as the validation of the fractal application is concerned we only show
the consistency based on context analysis (Def. 1). The validation phase creates
the feature consistency table (Table 2) by checking the weak consistency for
each feature at each context state in S. It evaluates the validity for the context
requirements (predicates) of each feature by assigning all the possible context
values. The table assigns value 1 if it is possible to select a feature in a certain
context state and 0 otherwise. After defining the feature consistency table the
context analysis phase creates the configuration consistency table (Table 3) by
considering the features included in each configuration. This table contains value
1 only if all the features in a certain configuration are jointly weakly consistent
at a certain context state. The process checks the validity of the joint predicate
as shown in Section 3.4.



254 P. Inverardi and M. Mori

Table 1. System configurations

System Configuration Context Requirement Offered Quality

G1 = {fgenShot, fcolB} mem ≥ 300 ∧ cRate ≥ 100 DisplayModel = Shot
ColorModel = BandOfColors

G2 = {fgenShot, fcolNB} mem ≥ 300 ∧ cRate ≥ 300∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = NiceBandOfColors

G3 = {fgenShot, fcolS} mem ≥ 300 ∧ cRate ≥ 500∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G4 = {fgenPro, fcolB} mem ≥ 200 ∧ cRate ≥ 100 DisplayModel = Progressive
ColorModel = BandOfColors

G5 = {fgenPro, fcolNB} mem ≥ 200 ∧ cRate ≥ 300∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = NiceBandOfColors

G6 = {fgenPro, fcolS} mem ≥ 200 ∧ cRate ≥ 500∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G7 = {fgenImm , fcolB} mem ≥ 120 ∧ cRate ≥ 100 DisplayModel = Immediate
ColorModel = BandOfColors

G8 = {fgenImm , fcolNB} mem ≥ 120 ∧ cRate ≥ 300∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = NiceBandOfColors

G9 = {fgenImm , fcolS} mem ≥ 120 ∧ cRate ≥ 500∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G10 = {fremGet, fsockConn} mem ≥ 100 ∧ conn = 1 DisplayModel = Shot
ColorModel = BandOfColors

Table 2. Feature consistency table

C(mem,cRate, sc, conn)/fj fgenShot fgenPro fgenImm fcolB fcolNB fcolS fremGet fsockConn

C0 = (100, 200, 256, 0) 0 0 0 1 0 0 1 0
... ... ... ... ... ... ... ... ...
C33 = (150, 400, 4096, 1) 0 0 1 1 1 0 1 1
... ... ... ... ... ... ... ... ...
C43 = (350, 200, 4096, 1) 1 1 1 1 0 0 1 1
... ... ... ... ... ... ... ... ...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1

Table 3. Configuration consistency table

C(mem,cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1
... ... ... ... ... ... ... ... ... ... ...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1
... ... ... ... ... ... ... ... ... ... ...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1

5 System Evolution

Our development process supports the system evolution required by the context
variations. In the following we show that in the foreseen evolution system and



A Software Lifecycle Process to Support Consistent Evolutions 255

context models are queried to support the reconfigurations, while in the case of
unforeseen evolution the same models may have to be refined as a consequence
of incoming user needs.

5.1 Foreseen Evolution

In the foreseen evolution we consider only configurations that have already been
proven weakly consistent. A monitoring process notifies the context variations
which invalidate the context requirement belonging to the running configura-
tion. Whenever such a new assignment of resources is discovered, the framework
queries the configuration consistency table to get the possibly new admissible
configurations. In order to perform the static decision-making process among
weakly consistent configurations we take into consideration context and user
preferences. Since we want to make our mechanism resilient to future contexts
we take into consideration which is the probable future evolution for each context
state. We consider the predictions for the user centric information (user task,
user mobility) and the predictions for the evolution laws of resources obtained as
explained in [40]. Exploiting such information we build a probabilistic automa-
ton according to the approaches in [34,8]. Each different state corresponds to a
different context and each arc expresses the probability to move from a context
to another (e.g. Figure 10).

Fig. 10. Probabilistic evolution automata

If the user preferences are not fixed but they change over the execution we can
include the possible preference variations within the automaton. Then we exploit
the probabilistic model to evaluate the degree of suitability of each configuration
to the context and to the user preferences. In [36] we have formalized and we
have experimented a decision mechanism process that considers both factors
within our probabilistic model.

5.2 Working Example

In the following we show a possible decision-making process that considers fixed
user preferences and probable context evolutions in order to evaluate the overall
fitness of each configuration Gi. Starting from the automaton in Figure 10 we
evaluate the steady-state probability vector −→p = [0.2794 0.2794 0.2647 0.1765]



256 P. Inverardi and M. Mori

which expresses how often the context belongs to a certain state. Then we ob-
tain the context fitness vector by multiplying the vector −→p with the matrix m
representing the configuration consistency table:

f = p ·m (4)

This vector assigns a fitness value at each configuration that depends on the
number of states in which the configuration is admissible and on the relevance
for the states as evaluated by the steady-state probability vector. This rank-
ing mechanism considers only how often the context belongs to a certain state
whereas it ignores which is the current state and its future transitions thus lead-
ing to globally optimum solutions. Parallel to f we also evaluate a user fitness
vector t expressing how each configuration is suitable with respect to the user
preferences. We express preferences as weights over the quality attributes which
characterize the variants. Each weight wq (from 0 to 1) indicates the interest
for the user towards a certain quality q. We use a predefined utility function
uq(Gi) to assign a value from 0 to 1 at each quality dimension q provided by
each Gi. The software engineer defines the utility functions and the weights for
each quality since they are strictly application dependent. The user fitness vector
is evaluated as:

t(Gi) =
∑

q∈Qualities

wq × uq(Gi) (5)

Our decision-making process will consider together the user fitness t(Gi) and
context fitness f(Gi) to evaluate the overall fitness of each configuration Gi.

Let us consider the scenario as depicted in Table 3 and let us suppose that
the configuration G4 = {fgenPro, fcolB} is running at the context state C43 =
(350, 200, 4096, 1) whereas the user preferences assign higher weight to the
DisplayModel quality. The system is producing a fractal image drawing a row at
a time and coloring pixels as bands of colors. Let us now suppose that because of
a new application started on the mobile device, the current memory availability
changes and the monitoring detects a context variation. By looking at the new
context state C33 = (150, 400, 4096, 1) in Table 3 we obtain the set of admissi-
ble (weakly consistent) configurations. Among them we select the one with the
highest overall fitness. Therefore the current fractal application is stopped and
it is evolved towards the configuration G7 = {fgenImm, fcolB} which represents
the best trade-off between user and context fitness.

5.3 Unforeseen Evolution

Let us assume that during the execution phase the set of requirements the system
needs to satisfy evolves because of changing user needs. For example the user
has to deal with a new context situation that has not been foreseen by the
software engineer at design time. Since a new behavior may have to be injected
into the system it is necessary to modify at run-time the context-based decision
table presented in the earlier sections. In addition also the models related to



A Software Lifecycle Process to Support Consistent Evolutions 257

the system variability and context may have to be refined at run-time. Two
different cases can arise: either a new requirement has to be added to the current
configuration or an already existing requirement has to be deleted from the
current configuration. We suppose that the requirement to add or to delete does
not imply other requirements causing side effect phenomena to be managed.
Thus, in order to evolve the application with a new requirement we augment
the current selected configuration with a new feature implementing the new
requirement. This leads to a new configuration that has not been anticipated
at design time. Adding new requirements is more problematic than deleting
requirements, thus we only discuss the first. Further, adding new behaviors seems
to be appropriate for facing unforeseen situations.

In our approach we only evolve the current selected configuration whereas
we do not consider how to augment the whole space of variants with the new
requirement. We neither discuss how the addition of a new requirement to a
configuration may affect the qualities attributes offered from the configuration.

The user may press a specific button within the application interface in or-
der to communicate to the framework the variation of his/her needs. Then the
user should specify the new requirement RNew, for example in natural lan-
guage. The unforeseen evolution phase has to upgrade the running configuration
with a new feature implementing the requirement RNew. We assume to have
a search engine that given a requirement is able to return the set of features
implementing it (exploration phase). Among them, we select the first feature
fNew = (RNew , INew, CNew) that is weakly consistent with the current running
system configuration GF = (RF , IF , CF ) at the current context −−→ccurr:

(CF ∪C Cnew)[−−→ccurr/−→x ] (6)

The integration phase creates the new configuration GF ∪f fNew and the val-
idation phase checks the weak consistency of the configuration at the current
context state. The configuration is added to the configuration consistency table
and since new resources may be required by the new feature it could be nec-
essary to augment the context. Also the feature diagram is kept up-to-date by
adding the incoming feature. We recall that in our approach, the integration of
a new feature to the feature diagram only leads to a new configuration. We do
not consider how to perform the integration of the new feature with all possible
configurations since we only evolve the current configuration.

5.4 Working Example

Let us suppose that at the context state C33 = (150, 400, 4096, 1), our framework
completes a foreseen evolution for the fractal application. It puts in execution the
configuration G10={fremGet, fsockConn} which visualizes a precomputed fractal
image after it has been downloaded from a remote server. The retrieved image
complies to the TIFF image format. Because of unforeseen characteristics of the
mobile device, the user cannot visualize the retrieved image. The device cannot
decode TIFF images and therefore the fractal application has to be upgraded.



258 P. Inverardi and M. Mori

To this end, the user interacts with the framework to add a new requirement
in the application. After accessing to the upgrading wizard, he/she specifies the
new requirement in natural language:

RNew = The system shall visualize TIFF format images (7)

This requirement has not been foreseen at design time but arises only at run-
time when the unforeseen device characteristics (context) make the fractal vi-
sualization impossible. Thus after the evolution process, we have to re-iterate
the exploration, integration and validation phases at run-time in order to evolve
the application with the feature (i.e. the software codec) to view TIFF format
images. This will lead to a new configuration with same features of the current
configuration plus the new feature.

The exploration phase queries the search engine in order to retrieve a feature
which implements the new requirement, e.g. see Figure 11.

ItiffV iewer :
pub l i c c l a s s Viewer{ . . .
pub l i c RenderOp t i f f V i e w e r ( Object s t ream ){
ParameterBlock params = new ParameterBlock ( ) ;
params . add ( s t ream ) ;
TIFFDecodeParam decodeParam = new TIFFDecodeParam ( ) ;
RenderedOp image = JAI . c r e a t e ( ” t i f f ” , params ) ;
r e tu r n image ;

} . . . }
CtiffV iewer : cRate ≥ 300 ∧ mem ≥ 35

Fig. 11. Example: new feature

The integration phase augments the feature diagram with the new feature as
shown in Figure 12. An optional feature ftiffV iewer is added to the diagramwhich
only leads to a new configuration GNew = {fremGet, ftiffV iewer , fsockConn}.

For the validation phase we consider how the new context requirement affects
the context requirements provided at design time. The new context requirement
CtiffV iewer , that we consider for weak consistency, refers to the resources cRate
and mem which have been already foreseen at design time; thus a context model
extension is not required. To establish if the new configuration GNew = G10 ∪f

ftiffV iewer is weakly consistent we evaluate the new context requirement jointly
with the context requirement for G10, i.e.:

CNew = cRate ≥ 300 ∧mem ≥ 135 ∧ conn = 1

This predicate is true at the context state C33 since this state provides enough
memory, cpu speed and an Internet connection. Only if the new predicate is false
the framework does restart the evolution process by the exploration phase in
order to consider other features. Finally, if the configuration is weakly consistent
(the new predicate is true with the current context values), the validation phase
adds the new configuration GNew to the consistency table as shown in Table 4
by checking the weak consistency property also for the other context states.



A Software Lifecycle Process to Support Consistent Evolutions 259

Fig. 12. Refined feature diagram

Even if it is not shown in the example, a new feature may also require new un-
foreseen context entities in its context requirements. Thus, it may be necessary
to refine also the context model in order to consider the values for the new re-
sources. As a consequence it would be also necessary to augment the consistency
table with the new context states arising from the augmented context space.

Table 4. Refined configuration consistency table

C(mem,cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 GNew

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1 1
... ... ... ... ... ... ... ... ... ... ... ...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1 0
... ... ... ... ... ... ... ... ... ... ... ...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1 1

6 Evolution Framework Architecture

In Figure 13 is shown the architecture that can be implemented by any evolution
framework in order to support the development and the execution of adaptive
applications. This architecture implements the MAPE cycle as described in Sec-
tion 1 and it supports our lifecycle process for context-aware adaptive systems.
The application, configuration and feature blocks represent the basic compo-
nents. They enable the definition of the application along with its variability.
The context manager component is able to monitor the resources and to man-
age their definitions and values by accessing to the context model component. It



260 P. Inverardi and M. Mori

performs the monitoring phase and it triggers the required evolution phases. The
decision-making component maintains the context-based tables and the proba-
bilistic automaton in order to support the decision-making mechanisms; it also
supports the consistency checking phase and the ranking process for the configu-
rations. A component for each kind of evolution is provided in the framework. As
shown by the arrows, while the foreseen evolution accesses the decision-making
component to select the most suitable configuration, the unforeseen evolution
interacts with the user who specifies variation to the requirements. Finally the
execution component enacts the system reconfiguration for both evolutions.

6.1 Framework Instantiation

We have instantiated the architecture in Figure 13 by exploiting current practices
technologies available in the literature. We represent requirement R as Linear
Time Temporal Logic expressions [39], whereas we represent the context require-
ments as predicates. We evaluate the context states in which a configuration is
admissible by formalizing and solving a Constraint Satisfaction Problem (CSP)
[35] by using the Java API available with the JaCoP tool1. Implementation ar-
tifacts are coded in Java, thus making it possible to verify the implementation
components I with respect to the requirement R. To this end, our approach
proposed in [23] defines a model checking phase which exploits the Java Path
Finder tool2.

Our framework supports the foreseen evolution by deciding which is the most
suitable variant to execute whenever the current context state makes the running
configuration not anymore admissible. To this end, the framework stops the
execution of the running configuration and it puts the target variant in execution.
Our earlier approach [36] describes how to select the most suitable variant based
on the trade-off between user benefit and reconfiguration cost. The framework
presented in this paper also supports the unforeseen evolution by exploiting a
mechanism for the dynamic loading of Java classes. The user interacts with the
application to specify a new requirement in a similar way as a programmer can
add a new plug-in to the Eclipse or NetBeans IDE. If there is no configuration
that can satisfy the augmented set of requirements, then the framework searches
for a feature which implements the new requirement by interacting with a remote
library of features. It creates a new configuration that contains the same set
of features of the current configuration plus the new feature. The framework
checks if the new set of features is free from interactions by evaluating context
requirements. Once the framework has found such a new feature it gives as
result the implementation for the new configuration. The framework supports
the code replacement for the configuration and a mechanism for re-loading the
new compiled classes (based on Javeleon3). Finally, the new configuration will
be enacted trough its entry point method.

1 http://jacop.osolpro.com/
2 http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
3 http://javeleon.org/

http://jacop.osolpro.com/
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://javeleon.org/


A Software Lifecycle Process to Support Consistent Evolutions 261

Fig. 13. Evolution framework architecture

7 Conclusion and Future Work

We have defined a generic model-centric software lifecycle process for context-
aware adaptive systems. Our process supports concrete mechanisms to achieve
consistent evolution both at design time and at run-time through a static and a
dynamic decision-making procedure. We have proposed feature-oriented models
to represent the system along with its variability and we have modeled context
entities as the basis for the notion of weak consistent evolution.

We have defined a generic evolution framework in order to support the soft-
ware process for adaptive systems. We have implemented a possible instance of
the evolution framework applying current practice technologies.

As for future work, we will carry out extensive experimentations in order to
evaluate advantages and disadvantages of adopting the framework to develop
adaptive applications.

Acknowledgments. This work has been partially supported by the EU IST
CONNECT (http://connect-forever.eu/) No 231167 of the FET - FP7 program
and the EU IST CHOReOS (http://www.choreos.eu/) No 257178 of the FP7
program.



262 P. Inverardi and M. Mori

References

1. Alférez, M., Moreira, A., Kulesza, U., Araújo, J., Mateus, R., Amaral, V.: Detecting
feature interactions in spl requirements analysis models. In: FOSD, pp. 117–123
(2009)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requir. Eng. 15(4), 439–458 (2010)

3. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: SEAMS, pp. 27–47 (2009)

4. Autili, M., Di Benedetto, P., Inverardi, P.: Context-Aware Adaptive Services: The
PLASTIC Approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 124–139. Springer, Heidelberg (2009)

5. Autili, M., Benedetto, P.D., Inverardi, P.: Hybrid approach for resource-based com-
parison of adaptable java applications. Journal of Science of Computer Program-
ming (SCP) - Special issue of BElgian-NEtherlands software eVOLution seminar
(BENEVOL) on Software Evolution, Adaptability and Maintenance (2012)

6. Autili, M., Cortellessa, V., Ruscio, D.D., Inverardi, P., Pelliccione, P., Tivoli, M.:
Eagle: engineering software in the ubiquitous globe by leveraging uncertainty. In:
SIGSOFT FSE, pp. 488–491 (2011)

7. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems.
IJAHUC 2(4), 263–277 (2007)

8. Berardinelli, L., Cortellessa, V., Di Marco, A.: Performance Modeling and Analysis
of Context-Aware Mobile Software Systems. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 353–367. Springer, Heidelberg (2010)

9. Bisbal, J., Cheng, B.H.C.: Resource-based approach to feature interaction in adap-
tive software. In: WOSS, pp. 23–27 (2004)

10. Blair, G.S., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10),
22–27 (2009)

11. Brataas, G., Hallsteinsen, S.O., Rouvoy, R., Eliassen, F.: Scalability of decision
models for dynamic product lines. In: SPLC (2), pp. 23–32 (2007)

12. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feed-
back Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

13. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Self-
Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)

14. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a Feature: A Requirements
Engineering Perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 16–30. Springer, Heidelberg (2008)

15. Czarnecki, K., Eisenecker, U.W.: Generative programming: Methods, Tools and
Applications. Addison-Wesley (2000)

16. Dorn, C., Dustdar, S.: Weighted fuzzy clustering for capability-driven service ag-
gregation. In: SOCA, pp. 1–8 (2010)

17. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenkiste, P.: Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. IEEE Com-
puter 37(10), 46–54 (2004)

18. Ghezzi, C., Inverardi, P., Montangero, C.: Dynamically Evolvable Dependable Soft-
ware: From Oxymoron to Reality. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 330–353. Springer,
Heidelberg (2008)



A Software Lifecycle Process to Support Consistent Evolutions 263

19. Glinz, M.: On non-functional requirements. In: RE, pp. 21–26 (2007)
20. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of java applications - balanc-

ing change flexibility vs programming transparency. Journal of Software Mainte-
nance 21(2), 81–112 (2009)

21. Hong, J., Suh, E., Kim, S.-J.: Context-aware systems: A literature review and
classification. Expert Syst. Appl. 36(4), 8509–8522 (2009)

22. Inverardi, P., Mori, M.: Feature oriented evolutions for context-aware adaptive
systems. In: EVOL/IWPSE, pp. 93–97 (2010)

23. Inverardi, P., Mori, M.: Model checking requirements at run-time in adaptive sys-
tems. In: Proceedings of the 8thWorkshop on Assurances for Self-adaptive Systems,
ASAS 2011, pp. 5–9 (2011)

24. Inverardi, P., Mori, M.: Requirements models at run-time to support consistent
system evolutions. In: Proceedings of the 2nd International Workshop on Require-
ments@Run.Time, pp. 1–8 (2011)

25. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 1–31.
Springer, Heidelberg (2009)

26. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

27. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented do-
main analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21 SEI
Carnegie Mellon University (1990)

28. Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D., Venieris, I.S.: Context-aware
service engineering: A survey. JSS 82(8) (2009)

29. Keck, D.O., Kühn, P.J.: The feature and service interaction problem in telecom-
munications systems. a survey. IEEE TSE 24(10), 779–796 (1998)

30. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Trans. Software Eng. 16(11), 1293–1306 (1990)

31. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE,
Washington, DC, USA, pp. 259–268 (2007)

32. Mancinelli, F., Inverardi, P.: A resource model for adaptable applications. In:
SEAMS, New York, NY, USA, pp. 9–15 (2006)

33. Mandelbrot, B.: The fractal geometry of nature. Freeman (1982)
34. Marco, A.D., Mascolo, C.: Performance analysis and prediction of physically mobile

systems. In: WOSP, pp. 129–132 (2007)
35. Marriott, K., Stuckey, P.: Programming with Constraints: An introduction. MIT

Press (1998)
36. Mori, M., Li, F., Dorn, C., Inverardi, P., Dustdar, S.: Leveraging State-Based

User Preferences in Context-Aware Reconfigurations for Self-Adaptive Systems.
In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp.
286–301. Springer, Heidelberg (2011)

37. Osterweil, L.: Software processes are software too. In: ICSE, Los Alamitos, CA,
USA, pp. 2–13 (1987)

38. Parra, C., Cleve, A., Blanc, X., Duchien, L.: Feature-Based Composition of Soft-
ware Architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 230–245. Springer, Heidelberg (2010)

39. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
40. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., Sousa, J.:

Leveraging resource prediction for anticipatory dynamic configuration. In: SASO,
Washington, DC, USA, pp. 214–223 (2007)



264 P. Inverardi and M. Mori

41. Pukall, M., Grebhahn, A., Schröter, R., Kästner, C., Cazzola, W., Götz, S.:
Javadaptor: unrestricted dynamic software updates for java. In: ICSE, pp. 989–
991 (2011)

42. Qureshi, N., Perini, A.: Requirements Engineering for Adaptive Service Based Ap-
plications. In: RE, pp. 108–111 (2010)

43. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. TAAS 4(2) (2009)

44. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: A research agenda for re for self-adaptive systems. In: RE, pp.
95–103 (2010)

45. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Computer Networks 51(2), 456–479 (2007)

46. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans.
Software Eng. 33(12), 856–868 (2007)

47. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE, New York, NY, USA, pp. 371–380 (2006)

48. Zowghi, D., Gervasi, V.: The three cs of requirements: Consistency, completeness,
and correctness. In: REFSQ (2002)



DYNAMICO: A Reference Model for Governing

Control Objectives and Context Relevance
in Self-Adaptive Software Systems

Norha M. Villegas1,4, Gabriel Tamura2,3,4, Hausi A. Müller1,
Laurence Duchien2, and Rubby Casallas3

1 University of Victoria, Victoria, Canada
{nvillega,hausi}@cs.uvic.ca

2 INRIA - LIFL - University of Lille 1, Lille, France
{gabriel.tamura,laurence.duchien}@inria.fr

3 University of Los Andes, Bogotá, Colombia
rcasalla@uniandes.edu.co

4 Icesi University, Cali, Colombia

Abstract. Despite the valuable contributions on self-adaptation, most
implemented approaches assume adaptation goals and monitoring infras-
tructures as non-mutable, thus constraining their applicability to sys-
tems whose context awareness is restricted to static monitors. Therefore,
separation of concerns, dynamic monitoring, and runtime requirements
variability are critical for satisfying system goals under highly changing
environments. In this chapter we present DYNAMICO, a reference model
for engineering adaptive software that helps guaranteeing the coherence
of (i) adaptation mechanisms with respect to changes in adaptation goals;
and (ii) monitoring mechanisms with respect to changes in both adap-
tation goals and adaptation mechanisms. DYNAMICO improves the en-
gineering of self-adaptive systems by addressing (i) the management of
adaptation properties and goals as control objectives; (ii) the separation
of concerns among feedback loops required to address control objectives
over time; and (iii) the management of dynamic context as an indepen-
dent control function to preserve context-awareness in the adaptation
mechanism.

1 Introduction

The necessity of a change of perspective in the engineering of software systems
has been widely discussed during the last decade by several researchers and prac-
titioners in different software application domains [1,2,3]. In particular, Truex et
al. posited that software engineering has been based in part on an incorrect set
of goals, from the assumption that software systems should support rigid and
stable business structures and requirements, have low maintenance, and fully
fulfill these requirements from the initial system delivery [4]. In contrast to this
static and “stable” vision, they proposed a new set of goals based on perma-
nent analysis, dynamic requirements negotiation and incomplete requirements

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 265–293, 2013.
� Springer-Verlag Berlin Heidelberg 2013



266 N.M. Villegas et al.

specification. Their proposal is aligned with the vision of self-adaptive systems,
where dynamic adaptation is necessary to ensure the continuous satisfaction of
their functional requirements while preserving the agreed conditions on Quality
of Service (QoS) levels. These QoS levels are usually represented in the form of
Service Level Agreements (SLAs), and their enforcement mechanisms are based
on contracts and policies, among others [5,6]. To achieve the continuous satisfac-
tion of changing requirements, the development of this kind of systems requires
adaptation mechanisms able to perform short-term adaptations on them, and
manage their long-term evolution [7]. As part of this adaptation and evolution,
system analysis must be performed at runtime, and its requirements satisfaction
must be monitored and regulated by continuously adjusting or enhancing its
behavior [8,3].

Although the feedback loop model of control theory has been used as a
reference in many self-adaptive systems in different application domains, the
visibility of the feedback loop as the crucial architectural element to govern soft-
ware adaptation remains often hidden. In many cases, the managed application
is intertwined with the adaptation mechanism, rendering it as hard to analyze,
reuse, and manipulate [9,8,10]. In other cases, such as those following the multi-
layer architectures (e.g., ACRA [11], FORMS [12] and Kramer and Magee’s [13]),
their designs assume a completely closed and controlled context where monitor-
ing requirements are not subject to change, even though several feedback loops
can be evidenced in them. However, for many systems it is not affordable to
discard unexpected context changes and dynamic changes in adaptation goals
and user requirements, such as SLA re-negotiation at runtime. In these cases,
statically deployed context monitoring elements are not enough to cope with
these levels of dynamics, which are implied by context unpredictability.

Hence, as context information requirements evolve over time, due not only
to changes in the execution environment, but also to the evolution of the adap-
tive system and its requirements, monitoring infrastructures are also required
to be self-adaptive. Furthermore, in these cases the adaptation of the monitor-
ing infrastructure implies to update the context analyzer of the target system’s
adaptation mechanism. Therefore, these changes must be coordinated by an
independent feedback loop, that is, the one that manages changing control ob-
jectives and adaptation goals at runtime, thus preserving context-awareness in
the system evolution.

In this chapter we present DYNAMICO (Dynamic Adaptive, Monitoring and
Control Objectives model), a reference model for engineering context-based self-
adaptive software composed of three types of feedback loops. Each of these feed-
back loops manages each of the three levels of dynamics that we characterize for
self-adaptation: (i) the control objectives feedback loop, (ii) the target system
adaptation feedback loop, and (iii) the dynamic monitoring feedback loop. As
a reference model (i.e., a standard decomposition of a known kind of problems
into distinguishable parts, with functionalities and control/data flow that are
well defined [14]), DYNAMICO calls self-adaptive system designers to be aware
whether the objectives, the system, or the monitoring infrastructure must be



DYNAMICO: A Reference Model for Self-Adaptive Systems 267

adapted. In this sense, our reference model can be used to check if these dimen-
sions are being considered in the designs. Moreover, it defines the elements and
functionalities, as well as the control and data interactions to be implemented,
not only among the feedback loop elements, but also among the three types of
feedback loops. In addition, our characterization of the latter interactions allows
our reference model to be applied partially, that is omitting any of its feedback
loops, targeting self-adaptive systems where supporting changes in any of the
three levels of dynamics is a crucial requirement.

In light of this, we argue that, in order to regulate the satisfaction of adapta-
tion goals and managed application’s requirements continuously, (i) each of the
feedback loop elements and their interactions must be independently analyzable;
and (ii) the monitoring elements must be able to process the different kinds of
information that the varying context can produce appropriately. DYNAMICO
was inspired by classical control theory and the autonomic element proposed
by IBM researchers [15]. With this reference model we aim to contribute to the
design of self-adaptive software by making its instances consider these aspects
explicitly: (i) the achievement of adaptation goals and their usage as the refer-
ence control objectives; (ii) the separation of control concerns by decoupling the
different feedback loops required to satisfy the reference objectives as context
changes; and (iii) the specification of context management as an independent
control function to preserve the contextual relevance with respect to internal
and external context changes.

The remainder of this chapter is organized as follows. Section 2 describes an
industrial-based application example that we use to explain our reference model
and its application. In Sect. 3 we re-visit fundamental ideas and concepts that
have shaped the engineering of self-adaptive software in the last years, and from
which we distill our reference model. Section 4 presents our proposed reference
model including the feedback loop interactions and their governance, as well
as some variations that DYNAMICO admits. Finally, Sect(s). 5 and 6 discuss
related work and conclude the chapter, respectively.

2 Application Example

This section presents a SOA governance application example based on an in-
dustrial case study we conducted in collaboration with the IBM Centre for Ad-
vanced Studies (CAS) Canada.1 In this case study, self-adaptation mechanisms
are exploited at runtime to manage service-level agreements (SLAs), and ensure
quality of service (QoS) requirements in service-oriented systems [16]. In SOA
and cloud-based systems QoS is highly affected by, and dependent on context
information. On the one hand, SLAs may be violated at any time during system
execution due to changes in the situation of relevant context entities such as
computational infrastructure components (i.e., internal context), and users (i.e.,
external context). On the other hand, as businesses and users’ requirements are
evolving continuously, contracted QoS conditions (i.e., adaptation goals) may be

1 http://www-927.ibm.com/ibm/cas/canada/research/index.shtml



268 N.M. Villegas et al.

frequently re-negotiated, thus affecting the effectiveness of monitoring and adap-
tation mechanisms. This application example is also based in one of our previous
papers on governance feedback loops [17], where we applied our reference model
to the implementation of a runtime governance infrastructure able to change
monitoring strategies dynamically, as required by changes in adaptation goals
and the adaptive system itself. The proposed self-adaptive governance infras-
tructure aims to ensure contracted conditions such as performance, reliability
and resource consumption in SOA and cloud-based environments, where SLAs
are constantly re-negotiated at runtime [18,17].

Software-as-a-Service (SaaS) is one of the business models in cloud com-
puting environments. SaaS provides customers with several benefits such as
maintenance and evolution supported by the cloud provider, high availability,
pay-per-use, and low operational costs. Suppose an SaaS cloud provider, special-
ized in large scale e-commerce platforms, is interested in governing the efficiency
of the service-oriented infrastructure with the goal of optimizing operational
costs. Assume that to guarantee low operation costs and thus contracted condi-
tions, performance governance has been initially defined as the adaptation goal.
For this, a performance SLA defines a service level objective (SLO) to guarantee
an efficiency measurement of at least 90% for a particular service (e.g., Pro-
cessingPurchaseOrder). The metric associated to the SLO is the time behavior
metric (TB) proposed by Lee et al. [19]. We used this metric as an efficiency
measure based on the processing time of service interfaces. Let us assume that
initially the ProcessingPurchaseOrder is composed only of one interface, thus we
express the service efficiency as:

TB =
ProcessingPurchaseOrder interface execution time

total ProcessingPurchaseOrder service invocation time
. (1)

The denominator, total ProcessingPurchaseOrder service invocation time, rep-
resents the total time it takes for the service to respond after the correspond-
ing request. The numerator, ProcessingPurchaseOrder interface execution time,
indicates the time consumed for processing a given interface functionality. Pro-
cessingPurchaseOrder is composed only of one task defined initially as one in-
terface implementation, thus the numerator is the processing time required for
executing that individual task (i.e., total ProcessingPurchaseOrder service
invocation time − waitingtime). TB is in the range 0..1, where higher values
indicate a better measure of performance in terms of time efficiency. Finally,
suppose that an action guarantee, defined as part of the SLA, will trigger a
self-optimizing feature that performs an on-line architectural reconfiguration to
improve the system’s efficiency and capacity.

2.1 The Need for Dynamic Context Monitoring

Using DYNAMICO, runtime SOA governance can be optimized by supporting
adaptive monitoring strategies to address changes in monitoring requirements.
Variations in monitoring requirements can be generated by changes in either the



DYNAMICO: A Reference Model for Self-Adaptive Systems 269

governance objectives (i.e, adaptation goals), the target system, the adaptation
mechanism, or relevant context entities. The following two use cases illustrate
the need for supporting dynamic monitoring, to preserve the context-awareness
of the adaptation mechanism upon changes in the target system (i.e., changes
in internal context entities) and adaptation goals.

Use Case 1: changes in internal context entities. Suppose that due to self-
adaptation, the ProcessingPurchaseOrder service is replaced by a set of dis-
tributed services intended to enlarge the order processing capacity of the
e-commerce platform. Consequently, the efficiency metric presented in (1) must
be applied to every new service interface. With traditional static monitoring
mechanisms, the governance of the performance SLA is compromised as the
monitoring infrastructure was originally implemented to monitor the time effi-
ciency of the ProcessingPurchaseOrder service interface only. The monitoring of
the new interfaces is not supported without manually implementing the required
sensors and monitors. This implies that every time monitoring conditions or the
set of context entities to be monitored change, the monitoring instrumenta-
tion must be adjusted manually. Moreover, the effectiveness in performing these
changes depends on the effectiveness in reporting them. Using our DYNAMICO,
our SOA governance infrastructure is able to deal with changes in monitoring
requirements at runtime. Once the new services for purchase order processing are
deployed, adaptation mechanisms will trigger the adaptation of the monitoring
strategy to monitor the new service interfaces. Our monitoring infrastructure
exposes autonomous capabilities to configure and deploy new sensors and mon-
itoring conditions at runtime. Implementation details regarding the dynamic
capabilities of the implemented monitoring infrastructure are discussed in our
MESOCA paper [17].

Use Case 2: changes in adaptation goals. Suppose now that the initial SLA is
re-negotiated. A new service level objective (SLO) on throughput is added to the
efficiency SLO defined originally as the contracted condition of the performance
SLA (cf. (1)). The new throughput SLO defines two different throughput levels,
depending on the applicable context situation, as summarized in Table 1 below.

The original monitoring infrastructure is implemented so that the initial
performance SLA supports only the monitoring of the individual ProcessingPur-
chaseOrder interface. Once the SLA is re-negotiated, the adaptation mechanism
is no longer effective as the new monitoring requirements imposed by the new
throughput SLO are not supported. Dynamic changes in the monitoring infras-
tructure may occur at different levels. They may imply either the deployment
of new sensors and new monitoring condition algorithms, or the modification of
existing monitoring thresholds and conditions. In any case, without supporting
changes in monitoring strategies at runtime, the adaptation mechanisms must
be adjusted manually to ensure their relevance with respect to new adaptation
goals. In this example, the new throughput SLO detailed in Table 1 will trigger
the adaptation of the existing monitoring strategy. Two new sensors and cor-
responding monitoring conditions must be added. The first one is to monitor



270 N.M. Villegas et al.

Table 1. The throughput SLO is defined after the performance SLA has been re-
negotiated. The contracted conditions depend on different context situations that must
be monitored.

Throughput SLO of the Performance SLA

Throughput level Monitoring Condition Relevant Context Entities

Medium load
No. of likes on an A special offer on
offer ≤ 200,000 a social network

Highest peak load
Is Black Friday or

Day of the year
Christmas season?

the acceptance of a special offer placed on a social network integrated into the
e-commerce platform. The second one is to keep track of the season. In both
cases, the monitored information is used to anticipate the expected system load
and thus modify the e-commerce platform capacity accordingly.

3 Design Drivers in the Engineering of Self-Adaptive
Software

3.1 Feedback Loops

Feedback loops are the cornerstone of control theory, and as such, they pro-
vide the basis for automation in many fields of engineering and in particular for
self-adaptation in computing and software engineering [20]. In this theory, the
feedback loop or closed loop, as depicted in Fig. 1, is the model used to auto-
mate the control of dynamic systems. These control mechanisms are realized by
comparing the measured outputs (A) of the target system behavior to the control
objectives given as reference inputs (B), yielding the control error (C), and then
adjusting the controlling inputs (D) accordingly for the target system to behave
as defined by the reference input [9]. The measured output can also be affected
by external disturbances (E), or even by the noise (F) caused by the system
adaptation itself. Transducers (G) translate the signals coming from sensors, as
required by the comparison element (H).

To keep objectives controlled in a target system, several strategies have been
proposed. The three most common strategies are (i) the regulatory control, which
ensures that the measured output is as close as possible to the reference input; (ii)
the disturbance rejection, to control the effects of disturbances on the measured
output; and (iii) the optimization control, which continuously seeks to obtain the
best value of the measured output, as effectively as possible [9]. These strategies
imply variations on the controller element but are realizable with the general
structure of the block diagram. To compute the controlling signals, there are
several possible mechanisms. In control theory, the representative mechanism
is the system transfer function, a mathematical model built upon the physical
properties and characteristics of the target system. Depending on these char-
acteristics, the transfer function can be built, for instance, with proportional,



DYNAMICO: A Reference Model for Self-Adaptive Systems 271

Controller Target System

Transducer

+
-

Reference 
input

Control
Error

Control
Input

Disturbance
Input

Noise
Input

Measured
Output

Transduced
Output

(A)(B) (C) (D) (E)(F)

(G)

(H)

Fig. 1. Classical block diagram of a feedback control system [9]

derivative and integral (PID) terms. The parameters in a PID controller have
special significance given that there exist precise and sophisticated methods for
tuning their associated parameters.

Even though the application of control theory to industrial processes is well
understood, its application to the control of software systems has at least two
significant challenges: first, control theory is based on continuous mathemat-
ics, and second, it relies on measurements taken from, and actions performed
into, physical, self-contained and self-performing artifacts (e.g., sensors, gauges
and valves/actuators for temperature, pressure and other variables). As their
associated variables are in the continuous-time domain, the use of continuous
mathematics in this theory fits perfectly. In contrast, software systems are com-
posed of intangible artifacts with discrete-time behavior and not always well
characterized properties. Thus, direct sensing must be performed by CPU time-
consuming software artifacts, and the adaptation mechanisms must reason on
the target system’s discrete-time output. Moreover, to exploit the possibilities
of software adaptation fully, the output of the adaptation mechanism must be
more structured than controlling signals to be transduced by electro-mechanical
devices. This output may take the form, for example, of a plan of ordered actions
to be instrumented by the software actuators on the target software components.
Fortunately, there exists also the theory of linear discrete-time systems, which
closely resembles the theory of linear continuous-time systems.

A reference model should not prescribe any particular software self-adaptation
type of control. Instead, we propose DYNAMICO to characterize experimentally
the effect that the controller actions produce in the observed behavior of the
target system.

3.2 Visibility of Feedback Loops

The benefits of integrating feedback loop-based models into the engineering
of self-adaptive software systems have been pointed out by several research
papers [7,20,8,3]. Oreizy et al. define runtime adaptation in the form of two pro-
cesses that exploit feedback loops to manage adaptation and system evolution,
respectively. The evolution management process feedback loop is in charge of
monitoring the consistency between architectural models and the actual system



272 N.M. Villegas et al.

implementation. Whenever this consistency is no longer satisfied, the evolution
management process feeds monitored information back to the adaptation man-
agement process feedback loop, which is in charge of reconfiguring the system’s
architecture [7]. Müller et al. outline on the benefits of specifying the feedback
loops and their major components explicitly and independently. Furthermore,
they articulate the usefulness of defining the interactions among the elements of
a feedback loop explicitly, from analysis and design to implementation [20]. Giese
et al. also argue for the decoupling of feedback loops in control-based reference
architectures to address the satisfaction of quality attributes (control objectives),
the management of the context complexity, and the interactions among multiple
feedback loops and their elements [8]. Cheng et al. also emphasize the impor-
tance of making explicit not only the feedback loops, but also their elements
and properties [3]. In fact, Müller et al. [20], as well as Kramer and Magee [13]
attest that even though feedback loops have been recognized as fundamental
design elements for self-adaptation, the related design documents and research
publications usually hide the visibility of both the adaptation controller and the
feedback loops. As a result, there currently exists no explicit methods for analy-
sis, validation and verification useful to measure the effectiveness of adaptation
mechanisms in software systems [21]. Based on these remarks, we aim in our
reference model to increase the visibility of the feedback loop components by
making them explicit entities of software architecture design and, thus, directly
analyzable, assessable and comparable.

Valuable papers have been published making significant advances in the area.
For instance, the feedback control architecture for adaptive systems proposed by
Shaw decouples the elements of a feedback loop (i.e., comparison, plan correc-
tion, and effect correction), and identifies the importance of context relevance
for the adaptation process [22,20]. In the same way, the autonomic manager
(MAPE-K loop) presented in Fig. 2, and the autonomic computing reference
architecture (ACRA) are important contributions of IBM that also make the
feedback loops in autonomic systems explicit [11]. On the one hand, as explained

Sensor Effector

Monitoring Execution

Analysis Planning

Sensor Effector

Symptoms

Change
Request

Apply
Plan

Knowledge
Base

Fig. 2. The MAPE-K loop [15]



DYNAMICO: A Reference Model for Self-Adaptive Systems 273

in [10], the autonomic manager is an implementation of the controller element in
the generic control feedback loop depicted in Fig. 1. At the same time, the au-
tonomic manager controls the managed element by implementing an intelligent
control loop composed of the monitor, the analyzer, the planner, the executor,
and the knowledge base elements. This knowledge base is an important ele-
ment to share information along the loop. Moreover, it provides persistence for
historical information and policies required to correlate complex situations. On
the other hand, ACRA provides a reference architecture as a guide to organize
and orchestrate an autonomic system. Autonomic systems based on ACRA are
defined as a set of hierarchically structured building blocks composed of auto-
nomic managers, knowledge sources and manageability endpoints (management
interfaces).

Nonetheless, despite ACRA and the MAPE-K loop that have helped consid-
erably improve the visibility of feedback loops, the internal components of each
control loop, and the control loop itself, still remain hidden inside the autonomic
manager. Certainly, the specification of the autonomic manager, provided in the
IBM architectural blueprint for autonomic computing, characterizes the man-
ager as a component that implements an intelligent control loop [11]. Moreover,
even when the ACRA architecture drivers are clearly the feedback loops in the
form of autonomic managers, their internal elements (i.e., the elements of the
MAPE-K loop) are highly coupled. Therefore, even though the multiple feed-
back loops defined in an ACRA-based model can be distributed—for instance
to improve the system scalability—this distribution is limited by the autonomic
manager boundaries. Each autonomic manager implements the entire cycle to
collect and aggregate information from the environment (monitor), to correlate
the collected information and identify symptoms for supporting the adaptation
decision making (analyzer), to plan the adaptation process (planner), and to
perform the adaptation plan (executor).

The separation of concerns between the monitoring process, the adaptation
controller, and the management of control objectives (adaptation goals) is still
an open challenge. This challenge is crucial for governing the consistency between
adaptation mechanisms and control objectives, while preserving the relevance of
context monitoring of the adaptation mechanism. In light of this, we concluded
that a loose-coupling schema is preferable to a tight-coupling one for the integra-
tion and communication among the feedback loop elements. However, we retain
the idea of composing instances of feedback loops similarly as specified by the
generic hierarchical structure described in ACRA. Finally, while the autonomic
manager, as an implementation of the feedback loop, is the architecture driver
for ACRA, our architecture drivers are the independent MAPE-K loop elements,
their explicit interactions, and the separation of these elements in three main
groups, as explained in the following section.

3.3 The Three Levels of Dynamics

We identify three levels of dynamics that must be controlled in the engineer-
ing of context-driven self-adaptive software systems: (i) the management of



274 N.M. Villegas et al.

changing control objectives, (ii) the dynamic behavior of the adaptation mecha-
nism controlling the target system, and (iii) the management of dynamic context
information. Each of these levels of dynamics plays an important role in govern-
ing the dynamic nature of the other two levels. In the case of the first level, as
business goals and corresponding control objectives that must drive the behav-
ior of the adaptive system evolve continuously, context monitoring mechanisms
(the third level of dynamics), and adaptation controllers (the second level) are
required to change accordingly. Furthermore, the management of control objec-
tives may be affected as a result of monitored observations at the third level
of dynamics. For instance, whenever the system identifies that even though the
adaptation mechanism is performing properly, control objectives may be re-
viewed to modify the adaptation and/or monitoring mechanism due to changes
in context situations.

These three levels of dynamics may be clearly illustrated using the application
example described in Sect. 2. The first level, the management of changing con-
trol objectives, corresponds to the software instrumentation required to identify
changes in adaptation goals. In our example, these changes correspond to the
re-negotiation of the performance SLA by adding a new throughput SLO to the
initial efficiency SLO. The second level, the dynamic behavior of the adaptation
mechanisms, refers to the capability of adaptation strategies to adapt according
to changes in either adaptation goals, or context situations. In the application
example used as illustration in this chapter, the adaptation mechanism does not
expose dynamic behavior. That is, the adaptation strategy is always the same.
The third level, the management of dynamic context information, refers to the
instrumentation required to support changes in monitoring strategies at run-
time. In the application example, the dynamic reconfiguration of the monitoring
strategy is triggered by two different situations. In the first case, new sensors
are deployed at runtime to monitor the new service interfaces that have been
added with the new set of distributed services for processing purchase orders
(cf. Sect. 2.1, Use Case 1). In the second case, new sensors and monitoring con-
ditions are deployed dynamically due to changes in adaptation goals (i.e., the
new throughput SLA). The negotiation of a new throughput SLO requires from
the monitoring infrastructure to keep track of two new context entities, a special
offer placed on a social network and the day of the year (cf. Table 1).

4 DYNAMICO: Our Reference Model

Bass et al. define a reference model in software engineering as a standard decom-
position of a known kind of problems into clearly distinguishable parts [14]. Each
of these parts has assigned a well defined functionality, and the data flow among
these parts is explicitly specified. Reference models serve as starting points for
software architecture and high-level design specifications.

Following this definition and based on the analysis of the seminal research
presented in Sect. 3, we distill in our reference model the characteristics that
have been commonly discussed and used in other representative research in the



DYNAMICO: A Reference Model for Self-Adaptive Systems 275

engineering of self-adaptive software. We started by considering the general feed-
back control loop block diagram presented in Fig. 1. In this diagram, the target
system to be controlled, its controller and corresponding transducers are rep-
resented as rectangles. The elements for setting the reference input (set point)
and perform the comparison against the system measurements are combined in
a crossed circle. This block diagram reflects the relative simplicity of the “au-
tonomous” but independent elements used in control engineering. This simplicity
hides the very specific and natural electro-mechanical properties (e.g., resistance,
capacitance, inductance) of these elements. In contrast, in the MAPE-K model
the elements are interdependent and their functions are specified in a general
way. Concerning the characteristics of the different control strategies, control
theory takes advantage of exactly the particular complex properties of the mat-
ter that constitutes both the controller elements, as well as the system to be
controlled. In the case of software artifacts, even though they lack the physical
properties analyzed in control engineering, these artifacts are given particular
properties of behavior by their particular design. Nonetheless, and because of
this, it is practically impossible to generalize them.

Therefore, given the characteristics of software systems (i.e., the systems to
be controlled), we find that the combination of a general specification for the
common elements of both feedback-loops and MAPE-loops together with a loose
coupling scheme, are the best options for DYNAMICO. Figure 3 captures these
decisions, which represents the general component of our reference model. This
diagram clearly results from the merging of the classical feedback-loop and the
MAPE loop model (cf. Fig. 1 and Fig. 2 respectively).

Target
System

ControlOutput
PreProcessing

Reference Control Input

Control
Error

Control
Input

Measured 
Control
Output

PreProcessed
Control Output

Planner Executor

Adaptation Controller

Adaptation
Noise

AnalyzerMonitor

Control
Symptoms

Sensed 
Context

Information

Fig. 3. General components of DYNAMICO. Feedback control block diagram with ex-
plicit functional elements and corresponding interactions to control dynamic adaptation
in a software system.

4.1 Addressing Separation of Concerns

Analyzing Fig. 3 from both the control theory and software architecture perspec-
tive, for a software system (target system) to become effectively context-driven
self-adaptive, it should incorporate at least three subsystems: (i) a control ob-
jectives manager, (ii) an adaptation controller mechanism, and (iii) a context
manager or monitoring infrastructure controller mechanism. This design sepa-
rates the concerns with respect to the three levels of dynamics we have proposed



276 N.M. Villegas et al.

as design drivers for the engineering of context-driven self-adaptive systems:
(a) the regulation of the target system’s functional and non-functional require-
ments satisfaction; (b) the continuous accomplishment of adaptation goals and
the preservation of the target system’s properties under changing conditions of
execution; and (c) the relevance of the context monitoring infrastructure accord-
ing to the varying execution environment (dynamic context monitoring). This
separation of concerns leads us to abstract the block diagram presented in Fig. 3
into the block diagram presented in Fig. 4. In this diagram, which constitutes our
reference model as such, each of the three feedback loops, the control objectives
feedback loop (CO-FL), the adaptation feedback loop (A-FL), and the monitoring
feedback loop (M-FL), is an instance of the model depicted in Fig. 3.

The identification of these subsystems as independent feedback loops allows
us to independently analyze, design, implement, and assess the instrumentation
required to address the complexity of changing requirements at each of the three
levels of dynamics. In this way, and depending on the nature of the adaptive
system, this instrumentation can be easily temporal and spatial distributed and
maintained. In addition, the entire software system would be less affected by

Reference  Control 
Objectives (e.g., SLAs)

(D)

Sensed 
Context 

Information

Objectives Feedback Loop

Adaptation Feedback Loop

 Monitoring Feedback Loop

(A)(B) (C)

Control/data flow

Legend:

Feedback loop abstractionCO-FL

A-FL

M-FL

Fig. 4. The three levels of dynamics that must be controlled in context-driven self-
adaptive software systems. The control objectives feedback loop, (CO-FL), controls
changes in adaptation goals and monitoring requirements to ensure their fulfillment.
The adaptation feedback loop, (A-FL), controls the adaptive behavior of the target
system and the adaptation mechanism, according to control objectives and taking
into account monitored context events. The dynamic monitoring feedback loop, (M-
FL), manages context information for preserving context relevance of the adaptation
mechanism. Labels (A), (B), (C) and (D) highlight the control/data flow among the
feedback loops, which would require the implementation of the appropriate method
interfaces.



DYNAMICO: A Reference Model for Self-Adaptive Systems 277

the computational effort of each of the three subsystems. The separation of con-
cerns made explicit by the DYNAMICO model is particularly crucial for cases
such as the cloud-based e-commerce platform presented in our application exam-
ple. In this example, the automatic reconfiguration of the monitoring strategy
would not be feasible without having the context manager as an independent
implementation of the adaptation mechanism. In the same way, the explicit con-
trol of changes in SLAs requires separate instrumentation. In the case where a
dynamic adaptation mechanism is necessary, having a self-contained adaptation
strategy (i.e., planner and executor) will contribute to the preservation of desired
properties. The chapter “On Patterns for Decentralized Control in Self-Adaptive
Systems”, by Weyns et al. in this book, presents useful architectural patterns,
that can be combined with our reference model, for implementing distributed
and decentralized feedback loops in self-adaptive software systems.

By applying the separation of concerns introduced in our reference model, it
is possible to support three different types of adaptation, depending on the dif-
ferent interactions implemented among the feedback loops: preventive, corrective
and predictive. In preventive adaptation, the dynamic monitoring feedback loop
notifies the adaptation feedback loop about context events (context symptoms)
that, even when they are causing no effects yet in the target system behavior,
they eventually will. This is the case of the monitoring condition that evaluates
the number of likes of an offer placed on a social network. As the offer becomes
popular, that is, the number of likes is close to 200,000, a predictive adapta-
tion process can be started to take the system to its medium-load capacity (cf.
Table 1 in Sect. 2). Consequently, even though the adaptation subsystem has
not detected any disturbances yet for triggering adaptation in the target sys-
tem, based on this context information, it can minimize the risks of the goal
satisfaction to be violated by performing a system adaptation in advance.

Corrective is the usual type of adaptation that takes place when monitoring
mechanisms supporting the adaptation feedback loop detect adaptation goals
are no longer satisfied. In our application example this can occur when the mon-
itoring feedback loop identifies an SLO violation in either the efficiency of the
ProcessingPurchaseOrder service(s), or the expected minimum number of pur-
chase orders processed per unit of time (cf. Table 1). Any of these situations
requires from the adaptation controller to perform another, perhaps more ag-
gressive, system reconfiguration, or to apply restrictive mechanisms of use to
prevent the system from collapsing before a new adaptation is performed.

Predictive adaptation takes advantage of both, historical information to an-
ticipate risks of goal violation, as well as the identification of plausible symptoms
that provide evidence to necessitate adaptation eventually. These symptoms may
be presented in the form of patterns of correlated events that potentially become
significant advice for adaptation. An example of this latter case in our application
scenario is the detection of a low but constant degradation of the ProcessingPur-
chaseOrder service efficiency around significant dates, but without reaching the
critical levels that trigger corrective adaptation. Using this historical informa-
tion, the dynamic monitoring feedback loop can trigger an alert event to indicate



278 N.M. Villegas et al.

or notify the operators that the negotiated performance SLA should be reviewed
to keep the system operation in a safe state.

Finally, it is worth noting that in Fig. 4 despite this separation of concerns, the
control objectives feedback loop (i.e., CO-FL in the figure), the adaptation feed-
back loop (i.e., A-FL, including the target system), and the dynamic monitoring
feedback loop (i.e., M-FL) together, also constitute a feedback loop. Figure 5
presents the detailed view of the reference model where each level of dynamics
is designed as an instance of the general feedback loop with explicit components
required for controlling the self-adaptation in software systems.

4.2 The Control Objectives Feedback Loop (CO-FL)

In DYNAMICO, the regulation of requirements satisfaction and the
preservation of adaptation properties are objectives controlled through the col-
laboration of the A-FL and the M-FL. We define requirements and adaptation
properties as system variables to be controlled. Throughout the chapter, we re-
fer to these variables as control objectives and adaptation goals interchangeably.
These requirements can be functional and non-functional, and the target sys-
tem must satisfy them, depending for this on the adaptive capabilities of the
overall system. Adaptation properties refer to the properties that are inherent
in self-adaptive software, and thus, all adaptation mechanisms should expose
these properties [21]. As mentioned in Sect. 3.3, these control objectives are sub-
ject to change by user-level (re)negotiations at runtime and therefore must be
addressed in a consistent and synchronized way by the adaptation mechanism
and the context manager. There may be several causes for these changes. In a
first case, service level agreements with dependencies on context situations can
imply changes in control objectives at runtime. In our application example, this
is the case of the throughput SLO (cf. Table 1). This SLO defines two different
thresholds. The medium load threshold is applicable to those cases where spe-
cial product offers are placed online (e.g., on a social network integrated to the
business e-commerce platform). After placing the offer, it must be monitored
to apply preventive adaptation with the goal of adjusting the system capacity
according to the popularity of the offer. Popular offers are expected to affect the
e-commerce platform load considerably. Similarly, time context must be mon-
itored to keep track of the shopping seasons to apply preventive adaptation
to guarantee the system operation when the system load reaches its highest
point (cf. Table 1). In another case, when the system is in execution, the ini-
tial SLA conditions can be re-negotiated. An instance of this case occurs in the
second use case of our application example. After the contracted services for
the e-commerce platform have been in production, a new throughput SLA is
added to the efficiency SLO agreed initially. Both the throughput and efficiency
SLOs are managed explicitly as the control objectives for the adaptive system.
Thus, both reference inputs, the A-FL reference control input, and the M-FL
reference context input, should be derived automatically from changes in control



DYNAMICO: A Reference Model for Self-Adaptive Systems 279

Target
System

System Control Output
PreProcessing

Reference 
Control Input

Control
Error

Control
Input

Measured Control
Output

PreProcessed
System Output

Planner Executor

System Adaptation
Controller

Context Control Output
PreProcessing

PreProcessed Internal 
and External Context

Context
Symptoms

Adaptation
Noise

Sensed Internal 
Context

Reference  
Context 

Input

Adaptation
Analyzer

Adaptation 
Monitor

Context 
Monitor

Control
Symptoms

Sensed External
Context (environment)

Context
AnalyzerControl

Symptoms

Control
Error

Context 
Manager

Adaptation
Noise

Control
Input

Measured Control
Output

Planner Executor

Context Adaptation 
Controller

(A)

(D)(C)

(B)

Reference  Control 
Objectives

Control
Objectives 
Differences Control Objectives Outputs

Planner Executor

Objectives ControllerObjectives
Analyzer

Objectives
Monitor Control

Objectives
Symptoms

Context 
Symptoms

User Level 
Negotiations

CO-FL

A-FL

M-FL

DYNAMICO Reference Model

Fig. 5. Our DYNAMICO reference model with a detailed view of the controllers for the
three levels of dynamics presented in Fig. 4 realized as the control objectives feedback
loop (CO-FL), the adaptation feedback loop (A-FL), and the monitoring feedback loop
(M-FL), respectively

objectives and fed into the corresponding feedback loops, as illustrated by inter-
action (A) in Fig. 5. All of these changes between SLOs and SLAs, which are
treated as changes in reference inputs, are governed by the CO-FL.

Nonetheless, this explicit management of control reference inputs has two im-
portant implications: (i) it is required to model and express the corresponding
properties quantitatively in terms of quality attributes, and (ii) it is necessary
to have a mechanism to measure and update these reference inputs at runtime
whenever they change. Concerning these two implications, we proposed a com-
prehensive evaluation framework composed of a set of adaptation properties and
adaptation goals, and corresponding quality attributes [21]. This catalog is use-
ful for the assessment of self-adaptive software based on the accomplishment
of control objectives and suitability of adaptation mechanisms. Concerning the
second implication, the dynamic adaptation of control reference inputs (control
objectives) is addressed by closing the CO-FL. In the context of the main loop



280 N.M. Villegas et al.

(the one composed of the three feedback loops), the A-FL receives symptoms
from the M-FL through interaction (C), which in turn adapts its behavior ac-
cording to changes in control objectives to guarantee monitoring relevance along
the adaptation process. Under more dynamic scenarios, the A-FL controller may
be required also to change its adaptation strategy according to changes in con-
trol objectives. Furthermore, as an important concern in service provision is the
fulfillment of SLAs as specified in contracts, a plausible way to express and man-
age these reference goals quantitatively is through contract management and its
explicit modeling.

4.3 The Adaptation Feedback Loop (A-FL)

The adaptation feedback loop, A-FL, serves as a guarantor for regulating the
target system’s requirements satisfaction and preserving the adaptation prop-
erties. Recalling our application example, the efficiency and throughput SLOs
represent system’s requirements. Due to the changing nature of SLAs and con-
text situations, the satisfaction of these requirements depends on the adaptive
capabilities of the e-commerce platform. Among the adaptation properties ap-
plicable to the adaptation mechanism of the application example are settling
time, small overshoot, stability, and reconfiguration termination. In particular,
settling time, the time it takes for the adaptation mechanism to complete the
e-commerce platform reconfiguration, is crucial to guarantee the contracted con-
ditions. Our SEAMS 2011 paper provides a comprehensive catalog of adaptation
properties and corresponding quality attributes and metrics [21].

A-FL follows the separation of concerns criteria of the previous section. In
turn, these criteria conform to the general protocol of control theory, which re-
lies on quantitative expressions to measure the error in the controlled system
variables, and respective reference control inputs for these variables. The A-FL
gathers these measurements continuously from the target system through con-
text monitors. These monitors notify control symptoms for adaptation to the
A-FL analyzer, which determines whether a system adaptation is required (cf.
analyzer in Fig. 3). The simplest case for this occurs when the measured variables
under control, compared to their corresponding reference control inputs, indi-
cate that some control objective is no longer satisfied. Whenever it is relevant,
the A-FL analyzer notifies this fact with the corresponding information to the
system adaptation controller. With this information, the planner element selects
a strategy to adapt the system for it to re-establish the fulfillment of the violated
control objective. A possible result of this strategy is to compute and send a list
of system architecture reconfiguration actions to the executor (e.g., a set of dis-
tributed services to replace the original ProcessingPurchaseOrder service). The
executor translates these actions to the specific runtime platform and executes
them in the target system, thus closing the main control loop. DYNAMICO
and its A-FL can take advantage of any strategy to perform the target system
adaptation.



DYNAMICO: A Reference Model for Self-Adaptive Systems 281

4.4 The Monitoring Feedback Loop (M-FL)

The role of the monitoring feedback loop, M-FL, as an independent feedback
control loop is crucial for addressing the dynamic nature of context informa-
tion. In a context-based self-adaptive system, a context manager must be able to
make decisions based on past, current and foreseeable future states of context.
It must analyze context symptoms and facts to support the system adaptation
and the management of control objectives, as explained in Sect. 4.2. Moreover,
the monitoring mechanism must adapt itself to support new context manage-
ment requirements as the common control objectives are re-negotiated, or the
adaptive system evolves. For instance, the context manager for the application
example must be able to deploy new context management instrumentation. In
the first use case, the deployment of the new set of distributed services, caused
by the adaptation of the e-commerce platform, will trigger the deployment of
a new set of time behavior sensors to keep track of the new service interfaces
(cf. Sect. 2.1, Use Case 1). In the second use case, the re-negotiation of the
performance SLA (cf. Sect. 2.1, Use Case 2) will trigger the deployment of the
monitoring infrastructure required to keep track of two new types of context
information, the shopping season (i.e., time context according to our Smarter-
Context taxonomy [23]), and the special product offer (i.e., artificial context).

The M-FL in Fig. 5 represents a context manager that supports dynamic
monitoring. The reference context inputs correspond to the reference context
management objectives derived from the CO-FL reference control objectives.
Context monitors are in charge of gathering primary context information from
the internal and external environment, and the correlation of this information
to infer either, context symptoms that can affect the target system adaptation
process (provided to the A-FL through interaction (C) in Fig. 5), or control
symptoms to decide about the context manager adaptation. This information is
pre-processed by the context control output preprocessing element to generate
numeric observables from physical and logical sensors, and producing comparable
measures by performing basic transformations on them.

The context analyzer performs the context handling process required for the
context adaptation controller to decide about adapting the monitoring strategy,
and for the CO-FL to decide about changing the system objectives (interaction
(B)), as demanded by the current state of the environment and the self-adaptive
system requirements. The change of control objectives can be performed fully-
or semi-automatically, depending on whether it is necessary to re-negotiate the
contracts, and consequently, for the user to intervene (cf. Sect. 4.2). The context
adaptation controller is responsible for defining and executing the adaptation
plan for the context manager, according to its adaptation strategy.

Finally, the measured control output and the target system’s internal con-
text are used to ensure the context manager goals, thus supporting the system
adaptation process and the management of the system control objectives.

To explicitly manage the relationship between control objectives and mon-
itoring requirements in our case study, we proposed context-driven SLAs [17].
A context-driven SLA is an extension of a traditional SLA where context



282 N.M. Villegas et al.

requirements are explicitly mapped to SLOs. In this way, changes in SLOs
generated at runtime will include changes in the context management strat-
egy specified with the original SLA. Context-driven SLAs are implemented as
contextual RDF graphs based on the SmarterContext ontology. Both contextual
RDF graphs and SmarterContext are results of our research on dynamic context
management for context-aware self-adaptive software systems [23,17].

From the reference context inputs stated with the SLA, it is possible to gener-
ate context models that represent the environmental information relevant for the
adaptation process. In our application example, context models are RDF graphs
that represent a composition of relevant context entities, context sensors, and
monitoring conditions. Whenever new SLAs are defined or existing ones are
re-negotiated, the RDF representation of the monitoring strategy for the corre-
sponding SLOs must be updated accordingly. The contextual RDF graph rep-
resenting the new monitoring requirements is processed by our M-FL analyzer.
Then, the planner element of the M-FL generates the adaptation plan that will
modify the monitoring strategy by deploying new, or modifying existing sensors
and monitoring conditions. The generation of these context adaptation plans at
runtime is based on semantic Web inference rules defined as part of our Smarter-
Context ontology. Further details on the instrumentation of dynamic monitoring
strategies for our case study are available in [17].

4.5 Feedback Loop Interactions

In DYNAMICO, not only are the three described feedback control loops well sep-
arated, but also the elements within each feedback loop. However, even though
control loops are designed independently of each other, they must operate coop-
eratively to achieve the overall system objectives.

As depicted in Figs. 4 and 5, to regulate the satisfaction of the control ob-
jectives, DYNAMICO specifies four interactions among its three feedback loops.
These interactions are labeled (A), (B), (C) and (D) in Fig. 5. We classify inter-
actions (A) and (B) as indirect interactions because they are realized through
the CO-FL, whereas interactions (C) and (D) as direct interactions due to their
direct connections between the M-FL and the A-FL.

Interaction (A) provides the reference context input (i.e., context manager
requirements) for the context manager (M-FL) to (i) maintain its relevance with
respect to the actual context situation and contracted conditions; and (ii) decide
on context management strategies. In the application example, reference context
inputs correspond to the context management requirements defined as part of
the SLA in the form of contextual RDF graphs [17].

Interaction (B) enables the control objectives manager (CO-FL) to decide
about the changes in the control objectives, whenever the M-FL detects that,
given the current context, the current set of control objectives should be ad-
justed or re-negotiated dynamically. Common control objectives are crucial for
governing the interactions between the A-FL and the M-FL. We specify common
control objectives in the form of contracts, machine readable SLAs as contex-
tual RDF-graphs to infer both, adaptation and context monitoring objectives



DYNAMICO: A Reference Model for Self-Adaptive Systems 283

[24,6,17]. Thus, a context management infrastructure (i.e., M-FL) must be able
to infer, from contracts and common control objectives, the context management
reference inputs, as well as the required monitoring strategies.

Interaction (C) is triggered by context symptoms that are identified and sent
from the M-FL context monitor to the A-FL analyzer. These context symptoms,
which can be manifested as groups of events presented with different characteris-
tics, are important for decision making in the A-FL. The communication mech-
anism and the information associated with these symptoms depend on the type
of adaptation the system is supporting (i.e., preventive, corrective or predictive).
For example, for a predictive adaptation, the M-FL could trigger symptomatic
events in advance about whether or not to perform a future adaptation. For a
preventive adaptation, the M-FL also sends symptoms, but the adaptation is
performed immediately. In contrast, for corrective adaptation, symptoms are ei-
ther, pushed by the M-FL or pulled by the A-FL depending on who recognizes
the need for adaptation —the context manager or the adaptation controller.

Interaction (D) represents the flow of internal context sensed by the M-FL
from the adaptive system. Monitoring of internal context information is neces-
sary to assess the system consistency after an adaptation. Moreover, by analyzing
internal context information that characterizes the current state of system prop-
erties, the M-FL could provide useful information to understand the relationship
between context symptoms, achievement of system goals, and the preservation
of adaptation properties [21].

4.6 Governing and Controlling Feedback Loop Interactions

According to our reference model, an adaptive system is defined as a collec-
tion of cooperating feedback loops that ensure the achievement of the system
objectives under changing context conditions. However, DYNAMICO can be
combined with other models for adaptive systems. In particular, the IBM archi-
tectural blueprint provides the ACRA model to orchestrate control loops hierar-
chically for autonomic systems [11,15]. Combined with this model, DYNAMICO
supports the distribution of functions in a more fine-grained level, that is, at
the feedback-loop elements level. More extensive use of knowledge bases, as the
ones proposed for the MAPE-K loop, should also facilitate interactions among
control loops. Such knowledge bases store historical information such as symp-
toms, as well as internal and external context facts required by the analyzers in
any of the three types of control loop. Moreover, these persistence mechanisms
help to fine-tune contracts and policies to achieve the control objectives, and to
develop machine-learning based adaptation mechanisms [25]. It is worth noting
that having common control objectives enable the three control loops to reason
consistently about the system goals, and to determine the coordinated control
actions on each of them.

Having common control objectives is important to govern the interactions
among the feedback loops. Figure 6 illustrates DYNAMICO abstracted as a
control objectives feedback loop. The A-FL (adaptation mechanism), the M-
FL (context manager), and the core controlled target system are abstracted



284 N.M. Villegas et al.

as a whole managed (super target) system. This managed system is governed
by the CO-FL according to changes in contracted conditions. Reference control
objectives (i.e., contracts) are fed into the system through direct user interven-
tion. Changes in these objectives can result from re-negotiations or from context
symptoms received through interaction (B) (cf. Fig. 4). According to Fig. 6,
whenever the objectives change as a result of symptoms received from the context
manager, the control objectives monitor perceives these symptoms as symptoms
of changes in the current set of control objectives. Then, the CO-FL analyzer
makes decisions on the necessity of producing a new set of reference control in-
puts. If applicable, the CO-FL controller produces a new set of reference control
inputs and reference context inputs to be sent to the adaptation mechanism and
the context manager respectively. The measured control objectives feed the sys-
tem back with information about the achievement of the system control goals.
Finally, if the control objectives change as a result of a re-negotiation, the user
is responsible for providing the control objectives analyzer with the new SLAs,
and their corresponding SLOs and context monitoring requirements.

Target System
Reference  Control 

Objectives

Control
Objectives 
Differences

Reference
Control
Inputs

Measured Control Objectives

Planner Executor

Control Objectives
Controller

Control
Objectives
Analyzer

Control 
Objectives

Monitor
Control

Objectives
Symptoms

Adaptation
Mechanism

Core Controlled Target 
System

Context
Manager

Context 
Symptoms

User Level 
Negotiations

Fig. 6. DYNAMICO abstracted as a feedback loop for governing the dynamic change
of the system control objectives

4.7 Possible DYNAMICO Variations

To deal with out-of-kilter environmental behaviors or perturbations, control com-
munity has developed several variations to modify the control function, such as
the Model Reference Adaptive Control (MRAC) and the Model Identification
Adaptive Control (MIAC) mechanisms [26,27]. The main difference between
MRAC and MIAC is how the reference model is defined—in MIAC directly
inferred from the running process, whereas in MRAC pre-computed using a
mathematical model.

These variations are also applicable to DYNAMICO. Both variations can be
realized, for instance, using a rule-based or policy-based reconfiguration approach
in the planner element of the system adaptation controller, as illustrated in
Fig. 7. In this figure, the CO-FL is represented by the control objectives man-
ager. The adjustment mechanism detects, through the measured control output,



DYNAMICO: A Reference Model for Self-Adaptive Systems 285

whether the target system is facing an out-of-kilter environmental perturbation
(e.g., an unusual high number of on-line shoppers during the Black Friday sea-
son), or the adaptation strategy is far from being effective. If this is the case, it
modifies either the system adaptation planner (in the adaptation mechanism),
or the context adaptation planner (in the context manager), depending on the
situation. In our application example, the adaptation planner can be adjusted
by replacing the reconfiguration rules in the rule-based subsystem using the con-
troller parameters. Similarly, the context manager’s planner could be modified
by replacing the semantic Web rules, defined as part of the SmarterContext
ontology, to be used to infer changes in monitoring strategies.

Measured 
Control
OutputReference

Behaviour
Model

Adjustment
Mechanism

Behaviour 
Model
Output

Controller Parameters

Control
Objectives
ManagerUser 

Level 
Negotiations

Reference  
Control 

Objectives
Target System

Adaptation
Mechanism

Core Controlled Target 
System

Context
Manager

Fig. 7. Reference model variation for supporting adaptive feedback control loops with
reference behavior models. The control objectives manager feedback loop is abstracted.

5 Discussion of Related Work

Different research communities, related to dynamic software systems, have pro-
posed several examples of the application of feedback loops to concrete imple-
mentations of this type of systems. However, even though in most cases the
existence of the feedback loop is evident, their designs lack separation of con-
cerns among the multiple feedback loops required to orchestrate the three levels
of dynamics introduced by our reference model (i.e., CO-FL, A-FL, and M-FL).
Moreover, the explicit treatment of the interactions among these three levels
is not generally addressed by existing implementations. Our reference model is
general enough for being applied to different context-driven adaptive systems
in many different application domains, where supporting changes in the three
levels of self-adaptation dynamics is a crucial requirement.

In this section we discuss how DYNAMICO can be used to optimize context
relevance in existing implementations of self-adaptive approaches, as well as the
way different models for self-adaptation address the key drivers addressed by
our reference model.



286 N.M. Villegas et al.

5.1 Optimizing Existing Implementations

A first example of concrete implementations is Rainbow, the adaptive framework
for implementing self-healing software systems developed by Garlan et al. [28].
Rainbow’s architecture maps directly to the feedback control architecture pro-
posed by Shaw [22,20]. Our contribution complements Garlan’s and Shaw’s ap-
proaches by making explicit not only the feedback loops, but also their internal
components, the interactions among them, as well as the separation of concerns
at the three levels of dynamics proposed by our reference model.

A second interesting instance from a different application domain is the
context-aware dynamic software product line proposed by Parra et al. [29]. They
proposed the introduction of context-aware assets that are dynamically incor-
porated into the product line, depending on context changes. Although their
architecture identifies the main feedback loop elements—a context manager
(monitor), a decision maker (analyzer and planner), a runtime platform (ex-
ecutor) and a knowledge base—DYNAMICO can be used to improve their ar-
chitecture by introducing a context monitoring infrastructure governed by an
independent feedback loop, and coordinating the respective feedback loop inter-
actions.

Yet another instance from the autonomic computing community is the real-
time adaptive control approach for autonomic computing environments proposed
by Solomon et al. [30]. Their system aims to control the computing infrastructure
through a mathematical description of the time variation on the number of users
in the system. Based on this function, the system modifies the control structure
of the autonomic computing infrastructure by replacing its controller with one
that matches the variation of the number of users on given time intervals. Fur-
thermore, their adaptive control is based on a multi-layer architecture similar to
ACRA, where the two upper layers correspond, respectively, to the autonomic
system adaptation and the autonomic system layers, and the lowest layer corre-
sponds to the managed infrastructure. The autonomic system adaptation layer
adapts the autonomic system layer whenever the management objectives are
not achieved. In this particular case, DYNAMICO is valuable for addressing the
separation of concerns within the adaptation and autonomic management lay-
ers, as well as to guarantee the contextual relevance of monitoring mechanisms
according to changes in the management objectives.

In the self-organizing systems community, Caprarescu and Petcu proposed
a decentralized autonomic manager composed of many independent lightweight
feedback loops implemented as agents, where each agent is an implementation of
a MAPE-K loop [31]. Control objectives in this approach are specified as policies.
Moreover, each feedback loop agent uses just one policy that is shared among all
the agents organized in the same group. At the architectural level, this approach
is based on the three-layer model proposed by Kramer and Magee [13], which
was in turn inspired by the three-layer architectures proposed by the artificial
intelligence and robotics community [32]. The system performs its adaptation
based on a process of three phases. The first one separates agents into groups
according to policies (i.e., self-organization phase); the second one ensures that



DYNAMICO: A Reference Model for Self-Adaptive Systems 287

only one agent can execute changes at a specific time (i.e., management phase);
and the third one keeps the policies of the feedback loop up to date (i.e., policy
update phase). Feedback loops adapt the system by modifying their parame-
ters, adding new components or reconnecting components. The application of
our reference model to this self-organizing system would help tackle the high de-
gree of coupling among the components of each feedback loop, thus making the
system components replaceable, reusable and distributable. An instance of the
application of our reference model to this particular domain is the self-healing
distributed scheduling platform presented by Fr̂ıncu et al. [33].

5.2 Comparing DYNAMICO to Other Self-Adaption Models

With DYNAMICO we intend to provide software engineers with a simple, but
useful guide to (i) identify the minimum components required for implement-
ing highly dynamic adaptive systems (i.e., facing highly changing contexts); and
(ii) realize and control effectively the interactions among these components at
runtime. Thus, our reference model aims to support software engineers in the
implementation of dynamic mechanisms, by calling their attention to the ne-
cessity of reasoning about changes at the three levels of dynamics introduced
by DYNAMICO. Moreover, our model constitutes a guide to analyze the effect
of these changes in (a) the accomplishment of control objectives, (b) adapta-
tion mechanisms, and (c) context relevance along the system evolution. From
the perspective of this research, highly dynamic adaptive systems are adaptive
systems where changes in control objectives (adaptation goals) are supported
at runtime. As a result, adaptation and monitoring mechanisms are capable of
adjusting themselves, at runtime, accordingly. To address dynamics, feedback
loops, their visibility, and separation of concerns among them and their compo-
nents constitute key runtime drivers in DYNAMICO.

Several contributions have recognized the importance of these drivers in the
engineering of self-adaptive software. Feedback loop models from control theory
address separation of concerns by decoupling controllers from target systems.
From the perspective of adaptive software, this corresponds to a separation of
concerns between adaptation mechanisms and managed systems [9]. The au-
tonomic manager, as defined by IBM in its autonomic computing vision, goes
further by increasing the visibility of the components that define a controller
in the form of the MAPE-K loop. Moreover, the autonomic manager identifies
the knowledge base as an important element for implementing intra-loop com-
munication and data persistence mechanisms. Similarly to feedback loops, the
autonomic manager addresses separation of concerns by implementing sensors
and effectors as a level of indirection between the adaptation mechanism and
the managed element [15]. A more recent reference model is FORMS, defined
by Weyns et al. [12]. FORMS provides a meta-model based on the MAPE-K
model, and combines it with a formal specification of its elements, which sup-
ports the composition of self-adaptation mechanisms. The FORMS’s static struc-
ture diagram specifies the types of elements required to implement adaptation



288 N.M. Villegas et al.

mechanisms, and the relationships among these elements. Thus, self-adaptive
implementations instantiated from FORMS are based on the MAPE-K loop,
and rely on computational reflection approaches to affect managed elements.
The MAPE components are realized as computations derived from meta-level
computations, whereas the K component is realized in the form of models instan-
tiated from meta-level models. Meta-level models are key enablers of adaptation
mechanisms, which are supported by meta-level computations [34]. MAPE-K
loop implementations, including hierarchical and decentralized compositions of
MAPE-K loop components can be instantiated directly from FORMS. There-
fore, FORMS addresses separation of concerns and visibility of the feedback
loop’s components in the same way as addressed by the autonomic manager.
The FORMSmodel seems to be a suitable approach to implement self-adaptation
mechanisms by exploiting model-driven engineering technologies. Nevertheless,
implementations where the relevance of adaptation mechanisms and monitor-
ing strategies must be controlled at runtime to address changes in adaptation
objectives are not currently supported by FORMS.

The main contribution of our reference model refers to the separation of con-
cerns required to deal with the three levels of dynamics in self-adaptation. In
DYNAMICO, separation of concerns goes beyond the decoupling of adapta-
tion mechanisms from managed systems. We introduce three different types
of MAPE-K loops that must interact among them to address changes in self-
adaptive approaches at three different levels: control objectives, adaptation, and
monitoring. Our reference model characterizes the elements required to control
adaptation mechanisms under highly changing execution conditions. These ele-
ments are the components of the three types of feedback loops, the control/data
flow among their components, and the control/data flow among the three levels.
DYNAMICO relies on the MAPE-K loop to characterize the components that
define our control objectives, adaptation and monitoring feedback loops. How-
ever, DYNAMICO is independent of the particular strategies and technologies
used for implementing self-adaptation. To characterize the elements of our refer-
ence model and the interactions among them, we analyzed 34 of the most repre-
sentative research approaches to self-adaptation [21]. The surveyed approaches
range from control theory-based approaches to pure software-based approaches.
In control-based approaches, the managed system’s structure is generally a non-
modifiable structure, and control actions are continuous signals that affect be-
havioral properties of the managed system. In software-based approaches, the
managed system’s structure is commonly a modifiable structure, and control ac-
tions are discrete operations, supported by software models and reflection, that
affect the system’s software architecture. We proposed DYNAMICO to guide
the design and implementation of dynamic control capabilities along the whole
self-adaptive systems spectrum.

A software engineer can use DYNAMICO not only to instantiate, indepen-
dently, each of the three feedback loops, but also to instantiate the interac-
tions among these three feedback loops. Consequently, a DYNAMICO-based
self-adaptive system can support changes in adaptation goals at runtime, as well



DYNAMICO: A Reference Model for Self-Adaptive Systems 289

as the use of these changes to adapt adaptation mechanisms and monitoring
strategies accordingly. Moreover, this adaptive instrumentation can keep track
of changes in monitoring strategies that could indicate the necessity of revising
adaptation goals. Revisiting the application example used throughout this chap-
ter, an adaptive solution purely based on any the feedback-loop, the MAPE-K
loop, or the FORMS model could not adapt automatically the monitoring strat-
egy after re-negotiating the performance SLA, according to the new context
monitoring requirements stated with the throughput SLO (cf. Sect. 2.1).

According to Bass et al., the process of designing a concrete software architec-
ture for a system should start either from a reference model or an architectural
style, or from both [14]. In either case, the process continues with successive
refinement steps, where each step augments the previous one with additional in-
formation from further analysis of requirements in the problem domain, as well
as global design decisions. In light of this, the application of DYNAMICO must
be complemented with specific design patterns, architectural styles, design pro-
files, frameworks, and even other more specific or domain-dependent reference
models for designing self-adaptive software systems. In particular, architectural
patterns for interacting control loops such as the ones described in Sect. 4 of
the first chapter in this book—the roadmap—constitute a suitable approach ap-
plicable to the design and implementation of feedback loop interactions defined
in our reference model. Similarly, approaches such as the MAPE-K loop exten-
sions proposed by Vromant et al. may be applied together with DYNAMICO,
and selected architectural patterns to support intra- and inter-loop coordina-
tion during the different phases of self-adaptation [35]. Furthermore, due to its
general nature, DYNAMICO supports the engineering of self-adaptive systems
independently of concrete architectural considerations, such as the level of cen-
tralization or decentralization required by the control mechanism, as exemplified
in [34]. UML profiles, such as the one proposed by Hebig et al. [36], provide valu-
able support for the design of UML-based concrete architectures based on our
reference model.

6 Conclusions and Future Work

In this chapter we have presented DYNAMICO, a reference model for engineering
highly dynamic adaptive software systems. This kind of system must deal with
highly dynamic contexts of execution, and effectively respond to, by evaluating
their own behaviour at runtime and reconfiguring itself whenever it no longer
satisfies its requirements.

A highly dynamic context is characterized by (a) expected and unexpected
changes in context conditions such as user location (in mobile software clients),
network access point, service throughput and load (in the server side), time and
calendar dates, and even user interests associated to specific locations and special
dates; (b) dynamic changes in adaptation goals and user requirements, such as re-
negotiation of QoS levels for specific services; and (c) other sensible changes that
affect the satisfaction of system requirements, such as unauthorized intrusions



290 N.M. Villegas et al.

or faults. In addition, all of these changes are assumed as natural requirements
to be satisfied by the self-adaptive system at runtime.

DYNAMICO helps cope with this kind of dynamic requirements by defining
three types of feedback loops. Each of these feedback loops manages each of the
three levels of context dynamics that we characterized for self-adaptation: (i) the
control objectives feedback loop, for managing changes in adaptation goals and
user requirements; (ii) the target system adaptation feedback loop, to deal with
changes addressable directly at the target system level; and (iii) the dynamic
monitoring feedback loop, to manage changes that require the deployment of
different or additional monitoring infrastructures to those already configured for
execution, thus maintaining its relevance with respect to the changing adap-
tation goals. As a reference model, DYNAMICO reconciles the many visions
and contributions of different approaches for the development of self-adaptive
software systems, whether they hide or exhibit the elements of feedback control
loops. Nonetheless, our reference model emphasizes the visibility of these control
elements and constitutes a guide to design self-adaptive systems in which the
system goals, the target system itself, or the monitoring infrastructure must be
adapted—assuming this is a crucial requirement for the system to be developed.
Depending on these requirements, the model can be applied as a whole, with its
three feedback loops, or partially, involving only a subset of them.

We showed the applicability of DYNAMICO using a SOA governance applica-
tion example based on an industrial case study. In this example, self-adaptation
mechanisms are used to guarantee SLAs in a cloud-based infrastructure whose
conditions of operation (i.e., efficiency and throughput) are re-negotiated at
runtime, potentially compromising the effectiveness of the already deployed mon-
itoring infrastructure. To reestablish the relevance of the monitoring infrastruc-
ture, we combined two of the three feedback loops managed in DYNAMICO:
(i) the control objectives feedback loop for managing changes in the adaptation
goals (i.e., SLAs); and (ii) the dynamic monitoring feedback loop to deploy the
required additional monitoring elements.

For future research there are several opportunities for extending and validat-
ing DYNAMICO: (i) the use of DYNAMICO in additional validation cases, as
part of the IBM CAS project “Managing Dynamic Context to Optimize Smart
Interactions and Smart Services”,2 addressing different issues such as the dy-
namic discovery and adaptation of smart services to enable user-driven web
integration, and supporting distributed feedback loops for decentralized adapta-
tion control, as those discussed in Sect. 5.2; (ii) the concrete definition of control
objectives as contracts, to support the synchronized cooperation between con-
text management systems and self-adaptation mechanisms; (iii) the development
of generalized governance infrastructures to manage feedback loop interactions;
and (iv) the definition of a formal framework to evaluate and compare adapta-
tion mechanisms based on the three levels of self-adaptation dynamics that we
characterized in Sect. 3.3. For this, our characterization model and adaptation
properties can be used as a useful starting point [33].

2 https://www-927.ibm.com/ibm/cas/cassis/viewReport?REPORT=747



DYNAMICO: A Reference Model for Self-Adaptive Systems 291

Acknowledgments. This work was funded in part by the National Sciences
and Engineering Research Council (NSERC) of Canada under the Strategic Net-
works Grants Program (NETGP 397724-10) and Collaborative Research and
Development program (CRDPJ 320529-04 and CRDPJ 356154-07), IBM Cor-
poration, CA Inc., Icesi University (Cali, Colombia), and Ministry of Higher
Education and Research of Nord-Pas de Calais Regional Council and FEDER
under Contrat de Projets Etat Region (CPER) 2007-2013.

References

1. Northrop, L., Feiler, P., Gabriel, R., Goodenough, J., Longstaff, T., Kazman, R.,
Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale Systems the
Software Challenge of the Future. Technical report, Carnegie Mellon University
Software Engineering Institute (2006)

2. United States Air Force Chief Scientist (AF/ST): Technology Horizons a Vision
for Air Force Science & Technology During 2010-2030. Technical report, U.S. Air
Force (2010)

3. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

4. Truex, D.P., Baskerville, R., Klein, H.: Growing Systems in Emergent Organiza-
tions. Communications of the ACM 42(8), 117–123 (1999)

5. Tran, V.X., Tsuji, H.: A Survey and Analysis on Semantics in QoS for Web Services.
In: International Conference on Advanced Information Networking and Applica-
tions, pp. 379–385. IEEE (2009)

6. Tamura, G., Casallas, R., Cleve, A., Duchien, L.: QoS Contract-Aware Reconfigu-
ration of Component Architectures Using E-Graphs. In: Barbosa, L.S. (ed.) FACS
2010. LNCS, vol. 6921, pp. 34–52. Springer, Heidelberg (2010)

7. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime Software Adaptation: Frame-
work, Approaches, and Styles. In: 30th International Conference on Software En-
gineering (ICSE 2008), pp. 899–910 (2008)

8. Giese, H., Brun, Y., Serugendo, J.D.M., Gacek, C., Kienle, H., Müller, H., Pezzè,
M., Shaw, M.: Engineering Self-Adaptive and Self-Managing Systems. LNCS 5527,
47–69. Springer (2009)

9. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

10. Müller, H.A., Kienle, H.M., Stege, U.: Autonomic Computing Now You See It, Now
You Don’t—Design and Evolution of Autonomic Software Systems. In: De Lucia,
A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 32–54. Springer,
Heidelberg (2009)

11. IBM Corporation: An Architectural Blueprint for Autonomic Computing. Techni-
cal report, IBM Corporation (2006)

12. Weyns, D., Malek, S., Andersson, J.: FORMS: a FOrmal Reference Model for
Self-adaptation. In: 7th International Conference on Autonomic Computing, ICAC
2010, pp. 205–214. ACM, New York (2010)



292 N.M. Villegas et al.

13. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: 2007
Workshop on the Future of Software Engineering (FOSE 2007), pp. 259–268. IEEE
Computer Society (2007)

14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

15. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

16. Papazoglou, M.P., Heuvel, W.J.: Service Oriented Architectures: Approaches,
Technologies and Research Issues. The Very Large Databases (VLDB) Journal 16,
389–415 (2007)

17. Villegas, N.M., Müller, H.A., Tamura, G.: Optimizing Run-Time SOA Governance
through Context-Driven SLAs and Dynamic Monitoring. In: 2011 IEEE Interna-
tional Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems (MESOCA 2011), pp. 1–10. IEEE (2011)

18. Villegas, N.M., Müller, H.A.: Context-driven Adaptive Monitoring for Supporting
SOA Governance. In: 4th International Workshop on a Research Agenda for Main-
tenance and Evolution of Service-Oriented Systems (MESOA 2010). CMU/SEI-
2011-SR-008, Pittsburgh: Carnegie Mellon University (2011)

19. Lee, J.Y., Lee, J.W., Cheun, D.W., Kim, S.D.: A Quality Model for Evaluating
Software-as-a-Service in Cloud Computing. In: 7th ACIS International Conference
on Software Engineering Research, Management and Applications (SERA 2009),
pp. 261–266. IEEE Computer Society, Washington, DC (2009)

20. Müller, H., Pezzè, M., Shaw, M.: Visibility of Control in Adaptive Systems. In: 2nd
International Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS
2008), pp. 23–26 (2008)

21. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A Frame-
work for Evaluating Quality-driven Self-Adaptive Software Systems. In: 6th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 80–89. ACM, New York (2011)

22. Shaw, M.: Beyond Objects: A Software Design Paradigm Based on Process Control.
ACM Software Engineering Notes 20(1), 27–38 (1995)

23. Villegas, N.M., Müller, H.A.: Managing Dynamic Context to Optimize Smart In-
teractions and Services. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The
Smart Internet. LNCS, vol. 6400, pp. 289–318. Springer, Heidelberg (2010)

24. Bianco, P., Lewis, G., Merson, P.: Service Level Agreements in Service-Oriented
Architecture Environments. Technical Report CMU/SEI-2008-TN-021, CMU/SEI
(2008)

25. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a Framework for Engineering Self-
Tuning Self-Adaptive Software Systems. In: 18th ACM International Symposium
on Foundations of Software Engineering, FSE 2010, pp.7–16. ACM (2010)

26. Dumont, G., Huzmezan, M.: Concepts, Methods and Techniques in Adaptive Con-
trol. In: 2002 American Control Conference, vol. 2, pp. 1137–1150. IEEE (2002)

27. Narendra, K.S., Balakrishnan, J.: Adaptive Control Using Multiple Models. IEEE
Transactions on Automatic Control 42, 171–187 (1997)

28. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing System Dependability through
Architecture-based Self-Repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677, pp. 61–89. Springer, Heidel-
berg (2003)

29. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented
Product Lines. In: 13th Intentaional Software Product Line Conference (SPLC
2009), pp. 131–140 (2009)



DYNAMICO: A Reference Model for Self-Adaptive Systems 293

30. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: A Real-time Adaptive Control
of Autonomic Computing Environments. In: 17th Annual International Confer-
ence hosted by the Centre for Advanced Studies Research, IBM Canada Software
Laboratory (CASCON 2007), pp. 124–136 (2007)

31. Caprarescu, B.A., Petcu, D.: A Self-Organizing Feedback Loop for Autonomic
Computing. Future Computing, Service Computation, Cognitive, Adaptive, Con-
tent, Patterns, Computation World, 126–131 (2009)

32. Gat, E.: Three-layer Architectures. MIT Press, Cambridge (1998)
33. Fr̂ıincu, M.E., Villegas, N.M., Petcu, D., Müller, H.A., Rouvoy, R.: Self-Healing

Distributed Scheduling Platform. In: 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGRID 2011, pp. 225–234. IEEE Com-
puter Society, Washington, DC (2011)

34. Weyns, D., Malek, S., Andersson, J.: On Decentralized Self-Adaptation: Lessons
from the Trenches and Challenges for the Future. In: 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010),
pp. 84–93. ACM, New York (2010)

35. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On Interacting Control Loops
in Self-Adaptive Systems. In: 6th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS 2011), pp. 202–207. ACM,
New York (2011)

36. Hebig, R., Giese, H., Becker, B.: Making control loops explicit when architect-
ing self-adaptive systems. In: 2nd International Workshop on Self-Organizing
Architectures, SOAR 2010, pp. 21–28. ACM, New York (2010)



Fault-Adaptivity in Hard Real-Time

Component-Based Software Systems�

Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan

Institute for Software-Integrated Systems,
Vanderbilt University,

Nashville, TN 37203, USA

Abstract. Complexity in embedded software systems has reached the
point where we need run-time mechanisms that provide fault
management services. Testing and verification may not cover all possible
scenarios that a system encounters, hence a simpler, yet formally speci-
fied run-time monitoring, diagnosis, and fault mitigation architecture is
needed to increase the software system’s dependability. The approach
described in this paper borrows concepts and principles from the field of
‘Systems Health Management’ for complex aerospace systems and im-
plements a novel two level health management architecture that can be
applied in the context of a model-based software development process.

At the first level, the Component-level Health Manager (CLHM) pro-
vides localized and limited service for managing the health of individ-
ual software components. A higher-level System-level Health Manager
(SLHM) manages the health of the overall system. SLHM includes a
diagnosis engine that uses a Timed Failure Propagation (TFPG) model
automatically synthesized from the system specification built in the
model-based design environment that accompanies the runtime system.
SLHM also includes a reactive timed state machine used for mitigation,
whose code is also generated from the model-based specification. This
paper uses simple examples to illustrate the use of the approach.

1 Introduction and Motivation

Software has become the key enabler for a number of core capabilities and services
inmodern systems [28]. For example, amodern car contains around20million lines
of code, while just the flight control software of modern aircraft like F-22 and F-35
contains 1.7− 5.7 million lines of code [9]. Given the scale of the software systems,
it is not hard to appreciate the challenge of ensuring correct behavior, especially
in avionics where software malfunctions have caused a number of incidents in the

� This paper is based upon work supported by NASA under award NNX08AY49A. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Aeronautics and Space Administration. The authors would like to thank Dr Paul
Miner, Eric Cooper, and Suzette Person of NASA LaRC for their help and guidance
on the project.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 294–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 295

past, including but not limited to those referred to in these reports: [5,6,18,29]. [36]
provides an excellent discussion on the complexity in avionics software.

The state of the art for critical software development includes process stan-
dards such as DO-178B [12] and the emerging standards such as DO-178C [21].
However, it is known that software can contain latent defects or bugs that can
escape the existing rigorous testing and verification techniques and manifest only
under exceptional circumstances. These circumstances may include faults in the
hardware system, including both the computing and non-computing hardware.
Often, systems are not prepared for such faults.

State of the art for safety critical systems is to employ software fault tolerance
techniques that rely on redundancy and voting [8,25,40]. However, it is clear that
existing techniquesdonotprovide adequate coverage forproblems suchas common-
mode faults and latent design bugs triggeredby other faults. Additional techniques
are required to make the systems self-managing, i.e. they have to provide resilience
to faults by adaptively mitigating the functional effects of those faults.

Self-adaptive systems must be able to adapt to faults in software as well as
the hardware (physical equipment) elements of a system, even if they appear si-
multaneously. Conventional Systems Health Management is associated with the
physical elements of the system, and includes anomaly detection, fault source
identification (diagnosis), fault effect mitigation (at runtime/ online during op-
eration), maintenance (offline), and fault prognostics (online or offline) [22,30].
Software Health Management (SHM), borrows concepts and techniques from
Systems Health Management and is a systematic extension of classical software
fault tolerance techniques. Srivastava and Schumann provide a good motivation
for Software Health Management in [38]. SHM is performed at run-time, and just
like Systems Health Management it includes detection, isolation, and mitigation
to remove fault effects. SHM can be considered as a dynamic fault removal tech-
nique [4]. While Systems Health Management also includes prognostics, Software
Health Management could possibly be extended in that direction as well, but we
have not investigated it yet.

We have developed an approach and model-based support tools for imple-
menting software health management functions for component-based systems.
The foundation of the architecture is a real-time component framework that de-
fines a component model for ARINC-653 systems1 [14]. This framework brings
the concept of temporal isolation, spatial isolation, strict deadlines from ARINC-
653 and merges it with the well-defined interaction patterns described in CORBA
Component Model [42]. The health management in the framework is performed
at two levels. The Component-level Health Manager (CLHM) provides localized
and limited service for managing the health of individual software components.
A higher-level System Health Manager (SLHM) manages the health of the overall
system.

1 ARINC-653 (Avionics Application Standard Software Interface) is a specification for
space and time partitioning in Safety-critical avionics Real-time operating systems. It
allows to host multiple applications of different software levels on the same hardware
in the context of an Integrated Modular Avionics architecture.[1,32].



296 A. Dubey, G. Karsai, and N. Mahadevan

SLHM includes a diagnosis engine that uses a Timed Failure Propagation
(TFPG) model automatically synthesized from the component assembly; the
engine reasons about fault effect cascades in the system, and isolates the fault
source components. This is possible because the data / behavioral dependencies
and hence the fault propagation across the assembly of software components can
be deduced from the well-defined and restricted set of interaction patterns sup-
ported by the framework. Once the fault source is isolated, the necessary system
level mitigation action is taken. Similar approaches can be found in [23,41]. The
key difference between those and our work is that we apply an online diagnosis
engine coupled with a two-level mitigation scheme. Furthermore, this approach
is applied to hard real-time systems where all processes run within finite time
bounds and are continuously monitored for deadline violations. This includes,
the health management processes.

Our approach is supported by a model-based design environment where de-
velopers can create models of the system and its components, as well as specify
how fault mitigation will take place. A suite of software generators produce glue
code that allows developer-supplied functional code or ’business logic’ to form a
collection of applications that run on an ARINC-653 platform. The novel con-
tributions of our approach are:

– Model-based development of component-based systems for ARINC-653 plat-
form.

– Automatic synthesis of monitoring code that is executed with the component
operations.

– Automatic synthesis of diagnosis information from the system design models.
– Automatic synthesis of the mitigation code based on system specification.
– Generation and configuration of the distributed architecture required to op-

erate the components in parallel with the component and system level health
managers.

This paper is an extended version of the work presented in [15,27]. It uses simple
examples to describe the approach. A larger case study of applying the SHM prin-
ciples to an InertialMeasurementUnit is available as a technical report [16]. In this
paper, the focus is on the mitigation aspects: the support provided in the frame-
work andmodeling language. The outline of this paper is as follows: Sections 2 dis-
cusses the related research. Overview of the component model and design tools is
given in Section 3. Section 4 presents component health manager and system-level
health manager. Finally we conclude with discussions and future work.

2 Related Research and Background

The work described here fits in the general area of self-adaptive software systems,
for which a research roadmap has been presented in [10]. Our approach focuses on
latent faults in software systems, follows a component-based architecture, with
a model-based development process, and implements all steps in the Collect/
Analyze/Decide/Act loop. In this context of health management, this would



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 297

imply Collect details about anomalies observed), identify/ diagnose the fault
candidate, and Decide on the possible mitigation command and finally Act to
implement the mitigation commands.

Rohr et al. advocate the use of architectural models for self-management [35].
They suggest the use of a runtime model to reflect the system state and provide
reconfiguration functionality. From a development model they generate a causal
graph over various possible states of its architectural entities. At the core of their
approach, they use specifications based on UML to define constraints, monitoring
and reconfiguration operations at development time.

Garlan et al. [17] and Dashofy et al. [11] have proposed an approach which
bases system adaptation on architectural models representing the system as a
composition of several components, their interconnections, and properties of in-
terest. Their work follows the theme of Rohr et al., where architectural models
are used at runtime to track system state and make reconfiguration decisions
using rule-based strategies.

While these works have tended to the structural part of the self-managing
computing components, some have emphasized the need for behavioral mod-
eling of the components. For example, Zhang et al. described an approach to
specify the behavior of adaptable programs in [46]. Their approach is based on
separating the adaptation behavior specification from the non-adaptive behav-
ior specification in autonomic computing software. They model the source and
target models for the program using state charts and then specify an adaptation
model, i.e., the model for the adaptation set connecting the source model to the
target model using a variant of Linear Temporal Logic [45].

Williams’ research [34] concentrates on model-based autonomy. The paper sug-
gests that emphasis should be on developing techniques to enable the software to
recognize that it has failed and to recover from the failure. Their technique lies in
the use of a Reactive Model-based Programming Language (RMPL)[43] for speci-
fying both correct and faulty behavior of the software components. They also use
high-level control programs [44] for guiding the system to the desirable behaviors.

Lately, the focus has started to shift to formalize the software engineering
concepts for self-management. In [24], Lightstone suggested that systems should
be made “just sufficiently” self-managing and should not have any unnecessary
complicated function. Shaw proposes a practical process control approach for au-
tonomic systems in [37]. The author maintains that several dependability models
commonly used in autonomic computing are impractical as they require precise
specifications that are hard to obtain. It is suggested that practical systems
should use development models that include the variability and unpredictability
of the environment. Additionally, the development methods should not pursue
absolute correctness (regarding adaption) but should rather focus on the fitness
for the intended task, or sufficient correctness. Several authors have also consid-
ered the application of traditional requirements engineering to the development
of autonomic computing systems [7,39].

The work described here is closely related to the larger field of software
fault tolerance: principles, methods, techniques, and tools that ensure that a



298 A. Dubey, G. Karsai, and N. Mahadevan

system can survive software defects that manifest themselves at run-time [26,33].
Arguably, our approach comes closest to dynamic software fault removal, per-
formed at run-time. The overall architecture presented below shows a specific
implementation of the functions needed to perform this task.

3 Overview of ARINC-653 Component Model

Systems health management and fault tolerance approaches are based on the no-
tion of interacting components. Hence, it is natural to apply this concept to SHM,
where the software is built from components that can be individually developed,
monitored andmanaged at run-time. In our work, the first step was to develop and
implement such a componentmodel. TheARINC-653 componentmodel (ACM) is
built upon the services of ARINC-653; an avionics standard for safety critical op-
erating systems [1]. ARINC-653 systems group processes2 into spatially and tem-
porally separated partitions, with one or more partitions assigned to eachmodule
(i.e. a processor), and one or more modules forming a system.

Spatial partitioning ensures exclusive use of amemory region by anARINC-653
partition. It also guarantees that a faulty process in a partition cannot ruin the data
structures of other processes in other partitions, isolating low-criticality vehicle
management components from safety-critical flight control software components.
Temporal partitioning ensures exclusive use of the processing resources by a parti-
tion. A fixed periodic schedule is used by the RTOS to share the resources between
partitions. This deterministic scheduling ensures that each partition is allowed ex-
clusive access to theprocessor or other hardware resourceswithin its predetermined
execution interval. It also guarantees thatwhen the predetermined execution inter-
val of a partition is over, the partition’s executionwill be interrupted, the partition
will be placed into a dormant state and the next partition in the schedule order will
be granted exclusive access to the computing resource, i.e. the processor.

The ARINC-653 Component Model (ACM) allows the developers to group
a number of ARINC-653 processes into a reusable component. A component is
a group of processes that share state but they do not interact directly. How-
ever, components do interact with each other via well-defined interaction pat-
terns (chosen from a fixed set), facilitated by ports. In ACM, a component can
have four kinds of external ports for interactions: publishers, consumers,
facets (provided interfaces3) and receptacles (required interfaces), see Figure
1. Each port has an interface type (a named collection of methods) or an event
type (a data structure). The component can interact with other components
through synchronous call/return interfaces (associated with facets or recepta-
cles), and/or via asynchronous publish/subscribe event connections (assigned
to publisher and consumer ports). Additionally, a component can host inter-
nal methods that are periodically triggered. Most of these interactions borrow
concepts from other software component frameworks, notably from the CORBA

2 An ARINC-653 process is a unit of concurrency that is analogous to thread in a desk-
top operating system such as Linux.

3 An interface is a collection of related methods.



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 299

Fig. 1. The Component Model

Component Model (CCM) [42]. The component model also provides guidance
on the allocation of activities to a component.

Real-Time Properties. ACM components differ from classical CCM compo-
nent in a number of ways. The underlying operating system layer on which
ACM is built is geared towards hard real-time systems. Therefore, in ACM all
processes have fixed properties that are specified and fixed at the system config-
uration time - these properties include, period, deadline, stack size and priority.
Furthermore, a process can have two kinds of deadlines, HARD deadline and
SOFT deadline. A HARD deadline violation is an error that is handled at the
system level by the health management framework, discussed later in the paper.
A soft deadline violation results in warnings. Due to these restrictions, it is not
possible to dynamically assign component operations or ports to an ARINC-653
system at runtime. Therefore, all ports are statically bound to an ARINC-653
process and no dynamic memory allocation is allowed. Furthermore, the access
to component state is synchronized by a component-wide lock. Priority inversion
issues do not arise because all processes of a component are executed at the same
priority. Please see [14] for detailed description.

The framework implementing ARINC-653 component model consists of two
parts (a) a Linux-based runtime environment, and (b) a modeling environment
and associated design tools. Together these tools allow systems to be developed
in two distinct phases. The first phase is completed by the component developer.
A component is a reusable artifact that provides one or more functionalities. It
can be developed and hosted in a repository for reuse. Often, the component
developer can organize various components into subsystems. The second phase
is completed by the system integrator. The system integration includes the mod-
eling and configuring of the system architecture, deploying the components on
computing hosts, etc. This phase is assisted by a suite of model-driven tools.

3.1 Component Development

The model-based design tools4 allow the developer to design the components.
The first step in designing a component involves defining its interfaces, i.e. the

4 These tools are available for download from
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page

https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page


300 A. Dubey, G. Karsai, and N. Mahadevan

ports associated with the component. Each port, as described earlier, should
belong to one of the four categories: publisher, consumer, provided, required.
The publisher and consumer ports need to be associated with an event (data)
type, while provided and required ports need to be associated with an interface
type. Furthermore, each port needs to be configured with properties related to
its real-time execution: periodicity, deadline, worst case execution time, etc.

The development environment provides tool-support to bring the bare-bones
component model to life. As a first step, a C++ class is generated corresponding
for each component, with methods corresponding to each port. The developer is
provided with specific regions in the generated code to insert the necessary code
and logic to customize the behavior of each port (as per the associated task).
The generated code acts as the ’glue’ between the underlying ACM framework
and the user-specified code to support the operation/execution of each of the
component ports as dedicated ARINC-653 processes.

The component model can be further enriched by specifying the conditions
that must be satisfied for each execution of the port (and its associated ARINC-
653 process). These conditions are divided into three categories: pre-conditions,
invariants, and post-conditions. The design tools generate monitoring code that
is used to ensure and validate the correctness of these conditions during runtime.
Any violation of these conditions is considered an anomaly. More discussion on
this topic will be provided later in Section 3.2. Each component developer can
also specify a local mitigation activity: a component level health manager that
takes local corrective actions when an anomaly is detected. Once fully specified,
the component model captures the component’s interaction ports, conditions
associated with the ports, the real-time properties and resource requirements of
the ports and the component, the data and control flow within the component,
and (optionally) the local component level health management strategy.

Example. Figure 2 shows three components developed in ACM modeling en-
vironment. It also shows portion of the Interface Definition Language (IDL) file
generated by the associated tools. The first component is the sensor component
that publishes a data type “SensorOutput” periodically every 4 sec. The second
component is the GPS component that receives the input from a Sensor, then
filters it, and updates its internal data structure. It publishes the updated in-
formation through a port aperiodically. The GPS has the ability to be queried
remotely via a method call for the current GPS value. The last component is
a Navigation Display component, which receives an updated SensorOutput and
also queries a remote GPS interface. It should be noted that the components
described were developed in isolation, i.e. they are developed as part of a dis-
tributed system.

3.2 Component Execution and Failure Scenarios

Any component, once deployed in the system can be in one of the following three
states: active, inactive and semi-active. When a component is in inactive
state, none of the ports in the Component perform their task. The active state



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 301

Auto-generated 
Interface Definition Language (IDL) 

struct Timespec{
LONGLONG tv_sec, tv_nsec;};

struct SensorOutput{
Timespec time;
SensorData data; };

struct SensorData{
FLOATINGPOINT alpha, beta, gamma;};

struct GPSData{
FLOAOO TINGPOINT x,y,z;};
struct GPSData{
FLOATINGPOINT x,y,z;};

interface GPSDataSource{
void getGPSData (out GPSData d);};

Component Models and Port Properties

Component Port Period Time Capacity Deadline
Sensor data_out 4 sec 4 sec Hard
GPS data_out aperiodic 4 sec Hard
GPS data_in 4 sec 4 sec Hard
GPS gps_data_src aperiodic 4 sec Hard
Navdisplay data_in aperiodic 4 sec Hard
Navdisplay gps_data_src aperiodic 4 sec Hard

data_out

Sensor

data_out

get

gps_data_src

GPSValue

data_in

reads

invokes

readsupdates GPS

get

gps_data_source
data_in

invokes

Nav 
Display

component Sensor  {
publishes SensorOutput data_out ; };

component GPS  {
publishes SensorOutput data_out;//APERIODIC
consumes  SensorOutput data_in;//PERIODIC
provides GPSDataSource gps_data_src;};

component NavDisplay  {
consumes SensorOutput data_in;//APERIODIC
uses GPSDataSource gps_data_source;} ;

Fig. 2. Components developed using ACM Design Tools. This figure contains the in-
ternal ports of the components, including the internal data flow and control flow. Also
shown are the snapshots of generated Interface Definition Language (IDL) files and the
associated real-time properties for each port.

of a component is the exact opposite of the inactive, and all the component ports
perform their task. In a semi-active state, only the Consumer and Receptacle
ports of a component are operational, the Publisher and Provided ports are
disabled. During nominal operation, a component is either in the active state, or
semi-active state. The semi-active state is typically assigned to passive replicas,
if any, in the system by the system integrator. Typically, a component is made
inactive only if it is diagnosed as faulty at runtime.

While the component is executing i.e. it is in active or semi-active state,
component ports can introduce faults in the system. We consider two root failure
sources for each component port (a) a concurrency fault: caused by the timeout
in the act of obtaining the lock associated with the component, (b) a latent
defect in the code written by the developer for handling the activity of the port.

Both of the above fault scenarios can lead to several secondary anomalies in
either the same component or in a connected component. In our framework, the
design tools allow the system designer to specify monitors which can be con-
figured to detect deviations from expected behavior, violations of specifications
and conditions of an interaction port or component. Based on these monitors,
following discrepancies can be currently identified:

– Lock timeout : The framework implicitly generates monitors to check for re-
source starvation. Each component has a lock (to avoid interference among
callers), and if a caller does not get through the lock within a specified time,



302 A. Dubey, G. Karsai, and N. Mahadevan

an anomaly is declared. The value for timeout is either set to a default value
equal to the deadline of the process associated with component port or can
be specified by the system designer.

– Data validity violation (only applicable to consumers): Any event data token
consumed by a consumer port has an associated expiration age. This is
also known as the validity period in ARINC-653 sampling ports. We have
extended this to be applicable to all types of component consumer ports,
both periodic and aperiodic.

– Pre-condition violation: Developers can specify conditions that should be
checked before executing. These conditions can be expressed over the current
value or the historical change in the value, or rate of change of values of vari-
ables (with respect to previously known value for same parameter) such as
1. the event data of asynchronous calls,
2. function parameters of synchronous calls, and
3. (monitored) state variables of the component.

– User-code failure: Any error or exception raised in the user code can be
abstracted by the software developer as an error condition which can then be
reported to the framework. Any unreported error is recognized as a potential
unobservable discrepancy.

– Post-condition violation: Similar to pre-condition violations, but these con-
ditions are checked after the execution of the function associated with the
component port.

– Deadline violation: Any process execution must finish within the specified
deadline.

These monitors can be specified via (1) attributes of model elements (e.g. Dead-
line, Data Validity, Lock time out), and (2) via a simple expression language.
The expressions can be formed over the (current) values of variables (parameters
of the call, or state variables of the component), their change (delta) since the
last invocation, their rate of change (change divided by a time interval). Table 1
provides the summary of anomalies that can be observed on a component port
and the component as a whole. Code generators included in the design tools
generate the appropriate code for the monitors. While most of the monitors de-
scribed above are evaluated in the same thread executing the component port,
the monitors associated with resource usage (i.e. CPU time) are run in parallel
by framework. Figure 3 shows the flowchart of the code generated to handle in-
coming messages on a consumer port. The failed monitored discrepancy is always
reported to the local component health manager. Deadline violation is always
monitored in parallel by the runtime framework.

Note 1. It is necessary to point out that the pre-conditions and post-conditions,
if specified, should be verified against the formal system specification. We argue
that it is easier to verify these conditions at run-time compared to formally veri-
fying the full system. However, the full system should undergo rigorous testing5.

5 While formal verification covers all the possible behavior and environment interleav-
ing traces, testing only covers the subset of all possible traces.



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 303

Validity? Precon
ditions?

Get 
component

Lock?

 Read data 
from port

Execute
User CodeSt

ar
t

En
dPostcon

ditions?   OK

Framework Monitors Deadline Violation

Fig. 3. Flow chart describing the interleaving of monitor and business logic provided
by the user for a consumer port. The generated sequence is similar for other ports.

Table 1. Monitoring Specification. Comments are shown in italics.

<Pre-condition>::=<Condition>

<Post-condition>::=<Condition>

<Deadline>::=<double value> /* from the start of the process associated with the
port to the end of that method */

<Data Validity>::=<double value> /* Max age from time of publication of data to
the time when data is consumed*/

<Lock timeout>::=<double value> /* from start of obtaining lock*/

<Condition>::=<Primitive Clause><op><Primitive Clause>|<Condition><logical
op><Condition>| !<Condition> | True| False
<Primitive Clause>::=<double value>| Delta(Var)| Rate(Var)|Var
/* A Var can be either the component State Variable, or the data received by the
publisher, or the argument of the method defined in the facet or the receptacle*/

<op>::= < | > | <= | >= | == | !=
<logical op>::=&& | ||

During runtime, the formally verified conditions provide a blueprint for ensuring
that the system/components are working without any discrepancy.

Example. In the GPS assembly shown in Figure 4, the ACM ports are config-
ured with monitors of different kinds. Publisher and Consumer ports in Sensor,
GPS, and NavDisplay are configured with monitors to track any violation of CPU
resource usage (detected as Deadline Violation), the Publisher port in the Sensor
component is configured to detect any violations/ problems with the user code
(detected as User Code Violation), the Consumer ports in GPS and NavDisplay
are configured to monitor problems with the age of the received data (detected
as Data-Validity Violation), and Consumer and Receptacle port in NavDisplay
are configured to detect Post-condition Violations.

3.3 System Integration

The modeling tools allow the system integrator to construct a system model
by using the library of component models created by component developers.
The modeling tool allows the system integrator to define the functionalities ex-
pected in the system and identify the appropriate components to provide these
functionalities. The integrator creates the assembly model by instantiating and
connecting the components, thereby capturing the interactions across the com-
ponent assembly. At this time, the design constraints in the tools ensure that all



304 A. Dubey, G. Karsai, and N. Mahadevan

Partition 1

Partition 2

Partition 3

Partition 4

HYPERPERIOD = 2.0 Sec
PARTITION_NAME = Partition2
PARTITION_NAME = Partition1
PARTITION_NAME = Partition3
PARTITION_NAME = Partition4
///SCHEDULING INFORMATION /
Partition2_SCHEDULE = 0.5, 0.5
Partition1_SCHEDULE = 0, 0.5
Partition3_SCHEDULE = 1.0, 0.5
Partition4_SCHEDULE = 1.5, 0.5

Fig. 4. Example: GPS Software Assembly. Unit of time is seconds.

ports are properly connected, e.g. the type of publisher matches the subscriber.
The modeling tool also allows the system integrator to organize connected com-
ponents into subsystems, which could then be reused to build more complex
assemblies.

Once the assembly is specified logically the integrator can model the details
of the platform and capture the deployment information. The modeling tool al-
lows the specification of the platform in terms of the modules (i.e. processors)
and the ARINC-653 partitions within each module. The integrator can specify
the deployment of each component into an appropriate partition such that the
temporal partitioning concerns are satisfied. At this time the integrators can use
the integrated system model (assembly, platform, deployment models) to per-
form an end-to-end timing study on the system to check the logical correctness
of design. Design tools are also used to fully generate the integration code and
configuration files. These tools also generate the required build system along
with necessary files to use the Eclipse IDE for final compilation and editing.

Example. Figure 4 shows the integration model for the three GPS components
showed in Figure 2. This model shows the connection between the components
and their deployment on four different partitions. Partition 1 contains the Sensor
Component. Partition 2 contains the GPS and Partition 4 contains the Naviga-
tion Display component. The sensor component publishes an event every 4 sec.
The GPS component consumes the event published by sensor at a periodic rate
of 4 sec. Afterwards it publishes an event, which is sporadically consumed by the
Navigation Display (abbreviated as display). Thereafter, the display component
updates its location by using getGPSData facet of the GPS Component. The
publisher-consumer interaction between sensor and GPS components is imple-
mented via a sampling port (Sampling ports are basic inter-partition commu-
nication mechanism in ARINC-653 platforms). A Channel connects the source
sampling port from partition 1 to destination sampling port in partition 2. In
this example, a redundant GPS is also connected in the assembly. The redundant
component in this case shares the port structure with the other GPS. However,
their internal behaviors are different. In this particular example, GPS 2 is set to
the semi-active State i.e. it can consume but not publish.



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 305

Fig. 5. Timing diagram for execution in the example

        

Sensor data out GPS data in GPS data out NV Display data in NV Display request NV Display data in endGPS data src facet start GPS data src facet return

Fig. 6. The Chain of Events associated with data production and consumption across
components in a hyper period

Figure 4 also describes the periodic schedule followed by the partitions, over-
seen by a controller process called Module Manager [14]. This schedule is re-
peated every 2 s (hyper period). In each cycle, Partition 1 runs with a phase of 0
sec for 500 ms. (duration). Partition 2’s phase is 500 ms. It runs for 500 ms. Then
Partition 3 and Partition 4 run for next 1 second. This schedule ensures that
the two partitions are temporally isolated. Figure 6 shows the timing diagram.
Notice that the partitions are temporally isolated from each other. Ports are
suspended when their partition is context switched. The GPS data in and Sen-
sor Data out’s execution time is very low. That is why they appear as impulses
on the graph. The NavDisplay data in consumer takes longer to run because
it invokes the Receptacle port to send a synchronous request to the GPS facet
port, which cannot be fulfilled until GPS’s partition becomes active.

Note 2. The temporal isolation and partition time allocation in this architecture
is strict, i.e. activities in one partition do not affect activities in another partition
unless there is an explicit data dependency. Even with data dependencies the
time allocated to partitions remains as specified during design. Another point
to note is that due to the use of model-driven tools and auto generation of
the integration code, the system integrator can quickly change the deployment
scenario by allocation each component to a different partition and regenerating
the code. However, such a change requires the recompilation of affected partitions
and can have an effect on the timing of the system.



306 A. Dubey, G. Karsai, and N. Mahadevan

4 Health Managers

In component-based systems, anomalies in a component can be either local or
secondary effect of an anomaly in an upstream component. Identifying this pat-
tern is important in order to isolate the root failure source. While the com-
ponent level mitigation code (provided by a component developer) can quickly
react to the local anomaly and possibly arrest any problems that could arise
because of the anomaly, this mitigation action may not remove the primary
source of failure. A system wide response/ mitigation engine would be ill-suited
to react to every local anomaly but would be better positioned to identify and
mitigate the real-fault source, especially when the failure effects cascade across
component boundaries. Realizing the benefits and limitations of each strategy,
we implemented a two level health management strategy in our framework with
a component level that is local to a component, and the system level that covers
the entire assembly of components. While the component level health manager
is specified by the component developers, the system level health manager is
provided by the system integrator. Both health managers are specified as hier-
archical timed state machines using the modeling tools. Please refer to [15] for
a formal description of these state machines.

Code generators are responsible for mapping the specified management logic
to the runtime system, which ensures that the specified state machine logic is
executed using a variation of the Harel state chart semantics [19]. Discussion of
these semantics is not included in this paper. It should be noted that these man-
agers are reactive because they are triggered by either an event, e.g. occurrence
of an anomaly, or passage of time (i.e. a timeout). When triggered, the machine
reevaluates its current state and in the process executes actions specified on the
transition or for the state (entry, exit, or during). The next two sections describe
both the component and system level health managers.

4.1 Component Level Health Manager

Component-Level Health Manager(CLHM) provides localized and limited func-
tionality for managing the health of the internals of a component. The health
manager reacts with appropriate mitigation action to the anomalies detected
within the component. As described in the previous section, CLHM is imple-
mented as a timed state machine. It is triggered by anomalies detected by the
monitors deployed inside the component, as shown in Table 1.

In addition to these monitors that detect and report anomalies, monitors to
report ENTRY into and EXIT out of a port’s process can also be specified using
the modeling tool. These monitors aid in building observer models to track the
execution sequence of component processes (ports) and report any deviations
from the expected sequence. Observers are modeled as parallel state machines
within the CLHM with one machine acting as an observer and another as the
health manager. Each of the parallel state machines could be triggered by their
relevant monitor events. While the observer tracks the state evolution, the health
manager issues appropriate mitigation action for the anomalies detected. When



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 307

Table 2. CLHM Mitigation Actions

CLHM Action Semantics

IGNORE() Continue as if nothing has happened

ABORT() Discontinue current operation, but operation can run again

USE PAST DATA() Use most recent data (only for operations that expect fresh data)

STOP(p) p is the process id. Default value is current process.
This commands discontinues operation in process ‘p’.
Aperiodic processes (ports): operation can run again
Periodic processes (ports): operation must be enabled by a future
START HM action

START(p) ‘p’ is the same as defined in context of STOP (above).
Re-enable a STOP-ped periodic operation

RESTART(p) ‘p’ is the same as defined in context of STOP (above).
A Macro for STOP followed by a START for the current opera-
tion

an anomaly is detected in the observer, it triggers the health manager portion
of the CLHM state machine to take the appropriate mitigation action.

The mitigation commands that can be expressed in the timed state machine
model for CLHM are described in the Table 2. These commands can be issued
as a transition action (executed when a state transition succeeds) or as entry,
exit or during action of a state.

The CLHM associated with each component is hosted on a separate high
priority ARINC-653 process. When a monitor reports a violation, the report is
communicated to the relevant manager using the methods supported by the
framework, e.g. an ARINC-653 buffer, see Figure 7. The buffer provides an
intra-partition FIFO message queue for communication. This rerport triggers
the execution of the CLHM state machine code which responds with an ap-
propriate mitigation action. Depending on the nature of the mitigation action,
the appropriate command is communicated either to the framework or to a rel-
evant process which then executes it. Commands such as IGNORE, ABORT,

HM Response

Component

NOMINAL ERROR CHECK
RESULT FAILURE

Error
Message /Action

Action Successful

Timeout or
Action Failed

Component Health Manager (High priority ARINC-653 process)

B
U
F
F
E
R

Incoming
Events

Process 1Process 3
Component 

Port (653 
PRocess)

HM Response
BlackBoard
BlackBoardBlackBoard

Blocking
 Read

Fig. 7. Component Health Manager



308 A. Dubey, G. Karsai, and N. Mahadevan

Fig. 8. Component Level Health Management Strategy for Sensor Component. Event
e1 implies a user code exception in data out port.

Fig. 9. Component Level Health Management Strategy for GPS Component. Event e1
implies deadline violation of data in port. Event e2 implies validity violation of data
in port. Any other anomaly is sent the default IGNORE action.

USE PAST DATA are communicated to the managed process executing the
monitor using a shared memory resource called (a “blackboard” in [1]). START,
STOP and RESTART commands are directly executed using the APIs of the
framework.

Example. Figure 8 shows the component health manager associated with the
sensor component in the assembly shown in Figure 4. The timed-state machine
specifying the CLHM for Sensor Component is triggered when a violation in
the Publisher’s (data out) User-Code is detected. The monitor associated with
detecting this violation is run on the same ARINC-653 process as the Pub-
lisher port. When the violation is detected, it is reported to the CLHM and the
Publisher code blocks for a response/ command from the CLHM. The reported
user code violation triggers the event e1 in CLHM state machine. In this case,
the state-machine issues an IGNORE event which is translated as an IGNORE
command and sent back to the Publisher port. Upon receipt of the command,
the publisher port executes the command. In this case the IGNORE command
results in the publisher continuing with its task (as per the semantics of the
IGNORE command explained in the Table 2).

The timed-statemachine associatedwithGPSCLHM is shown in Figure 9. This
state machine is triggered whenever the input events e1 or e2 is triggered. The
event e1 is triggered when a violation is detected in the resource usage (Deadline
Violation) of the Consumer port (data in). Event e2 is triggered when the age of



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 309

the data-token received by the consumer port (data in) is beyond its usable-time
(Data-Validity Violation). The event e1 is triggered when the underlying frame-
work detects a deadline violation and reports it to the CLHM. In this case, since
the consumer port is configuredwith aHARDDeadline Type, the framework stops
the process and then reports the violation to CLHM. This triggers the input event
e1 in the state-machine. The state-machine executes the transition corresponding
to the event e1 and issues a START event. This event results in a command to the
framework to START the failed process associated with the consumer port. The
event e2 in the CLHM state-machine is triggeredwhen the Data-Validity violation
is detected in a token received by the Consumer port. The Consumer port reports
the same to the CLHMand blocks for a response from the CLHM. The CLHM exe-
cutes the transition corresponding to the event e2 and triggers aUSE PAST DATA
output event which is sent as a USE PAST DATA command to the consumer port.
The consumer port executes this command by replacing the current tokenwith the
past token and continues its operation. The Nav display machine is modeled in a
similar fashion and is not shown here.

Scope of Component Level Health Manager. Inputs (anomaly detected)
and outputs (commands issued) of CLHM are local to a component. While this
provides a quick fix to the detected problem which could prevent the effect of the
problem from being propagated, it might not solve the root-cause of the problem.
In the examples discussed above, it is quite possible that an anomaly detected
in one component (e.g. validity violation in GPS) could have resulted from a
problem in an upstream component (e.g. Sensor’s Publisher user code that is
responsible for data published). Also, an anomaly observed in one component
could be the effect of a CLHM mitigation action executed in another component.
A higher level health management unit is required to tackle the problem of fault
cascades across component boundaries. The next section deals with this second
(or higher) level health management unit.

4.2 System-Level Health Manager

System Level Health Manager (SLHM), as the name suggests, is the health
management strategy at the system-level. This section discusses in detail the
enhancements that need to be made to the existing system made up of ACM
components to enable System Level Health Management.

Architecting the Assembly Model with the SLHM Layer. Architecting
support for SLHM into the existingmodel involves adding special components that
provide the core SLHM functionality and instrumenting the existing components
in the assemblywith the capability to exchange informationwith these special com-
ponents. As shown in the Figure 10, the three special SLHM components include:

– Alarm Aggregator : It is responsible for collecting and aggregating inputs from
the component level health managers (local alarms and the corresponding
mitigation actions). It hosts an aperiodic consumer that is triggered by the



310 A. Dubey, G. Karsai, and N. Mahadevan

CLHM

Partition

CLHM

Module

CLHM

Partition

CLHM

Module

Alarm
Aggregator

Diagnosis
Engine

System HM 
Response

Engine

SLHM

M

g
Engine Response

Engine

SSLHM

Fig. 10. SLHM Architecture. SLHM Components are automatically configured by the
ACM design tools.

data (alarm, and local mitigation command) provided by the Component
Level Health Managers. The Alarm Aggregator assimilates the information
received from the CLHM-s in a moving window, whose default value is same
as the hyperperiod, and sorts them based on their time of occurrence. A
periodic publisher in the Alarm Aggregator feeds this sorted data to the
Diagnosis Engine.

– Diagnosis Engine: It hosts an instance of a Timed Failure Propagation Graph
reasoning engine. This engine is initialized by an auto-generated Timed
Failure Propagation Graph (TFPG) model that captures the failure-modes,
discrepancies and the failure propagation across the entire system. The rea-
soner uses this model to isolates the most plausible fault-source (component)
that could explain the observations i.e. monitors triggered and the CLHM
commands issued. The diagnosis result i.e. faulty component(s) is reported
through an aperiodic publisher to the next component: the SystemHMRe-
sponse Engine that hosts the system level mitigation strategy.

– SystemHM Response Engine: It receives the diagnosis results: the set of
faulty components and responds with an appropriate system-level command
to mitigate the fault and its effects. This engine hosts a timed state-machine
that executes the SLHM mitigation strategy specified by the user (described
later in this section). The updated fault-status of the components in the as-
sembly is used to trigger the SLHM state-machine. The output generated by
the state machine is translated and sent (published) as mitigation commands
to the appropriate components.



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 311

In order to enable communication between the existing component assembly
and the SLHM layer, each components in the existing assembly is instrumented
with an additional publisher (HMPublisher) and consumer (HMConsumer).
More specifically, the special publisher (HMPublisher) in these components
feeds CLHM output (alarm detected and local mitigation action) to the Alarm
Aggregator component. The special consumer (HMConsumer) in these com-
ponents receives the mitigation command issued by the SystemHM Response
Engine and executes it.

The modeling and generator support tools automatically update the design
of the entire system with the special SLHM components, additional publisher
and consumer in each of the existing components, and inter-connections between
the components to capture the SLHM related information flow. Two additional
pieces of information are required to complete the SLHM generation - the cus-
tomized mitigation strategy to be executed by the SystemHM Response Engine
and the deployment information for the three SLHM components. While the
deployment information can be captured in a manner similar to the other (regu-
lar/functional) components in the assembly, the design tools allow the mitigation
strategy to be specified as a state machine model. The code generators use the
updated model to complete the generation and customization of the SLHM layer.

Example. Figure 11 shows the GPS assembly described earlier in Figure 4
augmented with the three system health management components. Notice that
each functional component i.e. Sensor, GPS, GPS2 and NavDisplay gets an ad-
ditional publisher and Consumer. Anomaly/ alarms and mitigation commands
are communicated through these ports. This process is completely automated.
The integrator only specified the internal of the response/ mitigation engine
using as a timed state machine model and specifies the SLHM deployment. In

HMC
HMP

dat

Sensor

HMP
dat

dat
gps

HMC

GPS

dat
gps

HMP
HMC

NavDisplay

Alarm Hypothesi

Diagnosis

Sensor
GPS
GPS2
NavD

Alarm

AlarmAgg

HMP
dat

dat
gps

HMC

GPS2

Hypothesi

Sensor
GPS

GPS2
NVD

MitigationEngine

Sensor Module1 Partition1
GPS Module1 Partition2
GPS2 Module1 Partition3
Nav DisplayModule1 Partition4

AlarmAgg Module2 Partition1
Diagnoser Module2 Partition2
MitigationEModule2 Partition3

///Module 2
SYSTEM_MODULE=TRUE
HYPERPERIOD = 2.0 Sec
PARTITION_NAME = Partition1
PARTITION_NAME = Partition2
PARTITION_NAME = Partition3
///SCHEDULING INFORMATION /
Partition1_SCHEDULE = 0,0.66
Partition2_SCHEDULE = 0.66, 1.4
Partition3_SCHEDULE = 1.4,2.0

Fig. 11. GPS Assembly (ref, Figure 4) augmented with the SLHM components. This
process is completely automated. The integrator only specified the internal of the re-
sponse/ mitigation engine using as a timed state machine model and specifies the
SLHM deployment.



312 A. Dubey, G. Karsai, and N. Mahadevan

this particular example, SLHM components are deployed on a different processor
(module) and divided into three partitions. This ensures that each stage of the
SLHM gets a fixed time slice. The hyper period of this module is synchronized
with the hyper period of the module containing the functional components of the
GPS-Assembly. This ensures that system diagnosis, mitigation and transmission
of message across the two modules run synchronously.

The following sections provide more detailed information with examples on
the Diagnosis and Mitigation aspects of the SLHM layer.

4.3 Diagnosis : Isolation and Identification of the Fault Source

This section focuses in more detail on the diagnosis and mitigation aspects of
system health manager. Our implementation of SLHM uses a reasoning scheme
based on the Timed Failure Propagation Graph (TFPG) model[3,20].Timed fail-
ure propagation graphs (TFPG) are causal models that capture the temporal
characteristics of failure propagation in dynamic systems. A TFPG is a labeled
directed graph. Nodes in graph represent either failure modes (fault causes), or
discrepancies (off-nominal conditions that are the effects of failure modes). Edges
between nodes capture the propagation of the failure effect.

The TFPG model serves as the basis for a robust online diagnosis scheme that
reasons about the system failures based on the events (alarms and modes) ob-
served in real-time[2,3,20]. The TFPG approach has been applied and evaluated
for various aerospace and industrial systems[31].

Example. Figure 12 shows a simple non-hierarchical TFPG model. It shows the
root causes of the failure (Failure-Modes FM FM1, FM FM2) and the anoma-
lies (Discrepancies DISC RD1, DISC D1, DISC SD12, DISC D12, DISC RD2,
DISC D2) that would be triggered when one or more of these failures occur.
While failure modes are depicted as a box, unobserved OR-Discrepancies

Fig. 12. An Illustrative TFPG Example. Doubled lined octagons are observed dis-
crepancy. Single Line octagon are unobserved OR discrepancies. Unobserved AND
discrepancy are denoted by circle. Rectangles are root failure nodes. Graph edge shows
propagation link. Edge can be annotated with min and max propagation time. Absence
of this annotation implies propagation delay lies within the interval (0,∞).



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 313

(e.g. DISC RD1, DISC RD2 etc.) are depicted as octagons, unobserved AND
Discrepancies (DISC SD12) are drawn as circles. Observable discrepancies (e.g.
DISC D1, DISC D2, and DISC D12) are drawn with a double-boundary. Edges
in the graph capture the failure propagation starting from the Failure Modes to
Discrepancies and then to subsequent Discrepancies downstream. Some of these
links depict additional constraints related to activation-condition and timing for
failure propagation. The activation condition (a Boolean expression over the
modes) captures when failure can propagate over a link. The timing constraint
expresses the time bounds within which the failure effect is expected to propa-
gate over that link. When these constraints are absent, the failure can propagate
over the link at any time or in any mode.

4.4 Automated Synthesis of TFPG from ACM Assembly Model

The information present in the ACM assembly model allows us to automatically
synthesize the TFPG model of the system. This TFPG model is built on a
hierarchical basis. Initially the TFPGmodels of the component ports are created.
These component port TFPG models are then used to build the TFPG models
of the Components which are then used to build the TFPG model of the entire
Assembly.

The TFPG-model for each component-port type is constructed using the
knowledge of the sequence of operation (for each port-type) and the fault-sources
and anomalies associated with each operation in the sequence. The TFPG model
links the fault-sources/ failure-modes and the anomalies/ discrepancies (moni-
tored/ unmonitored) across the sequence of operations. It also contains input
and output discrepancies that represent anomalies that propagate in or propa-
gate out of the port.

The TFPG model of the component is then constructed by instantiating the
appropriate component-port TFPG model for each component port present in
the component. TFPG model of the component includes additional failure modes
and anomalies specific to the component. The Component TFPG model is com-
pleted by adding the failure propagation links between the fault-sources and
anomalies present in the component and its ports. This is done by using the
data and control flow information captured in the models of the software com-
ponents.

The TFPG model of an assembly is constructed using the TFPG models
of the components present in the assembly. The failure propagation links be-
tween the component TFPG models are added on the basis of the integration
information i.e. inter-component interaction information (publisher-consumer,
facet-receptacle) present in the assembly.

The activation conditions for the failure propagation links in a component-
port are expressed in terms of the mitigation commands issued by the CLHM
e.g. An IGNORE command from the CLHM could imply that the failure could
propagate and trigger anomalies downstream e.g. an invalid data being published
or an invalid state update. An ABORT command from the CLHM could stop
the failure propagation, but it also stops the normal sequence of operation of



314 A. Dubey, G. Karsai, and N. Mahadevan

the port, thereby leading to no data being published or no update to the state.
The failure propagation links across the component boundaries have activation
conditions that are based on the states of the two associated components: active,
inactive, semi-active. A detailed discussion of the TFPG templates associated
with the port is not included in this chapter. Interested readers are referred to
Appendix D in [13] and the example in [27].

4.5 Example

Figure 13 shows a portion of the TFPG model of the entire GPS Assembly. It
shows the TFPG model of the sensor component, the TFPG for GPS data in
port, and the failure propagation between them.

The TFPG models of ports of components have a failure mode: FM USE-
R CODE. This failure mode arises from the latent bug in implementation code.
Both TFPG models also contain anomalies associated with violations observed

Fig. 13. TFPG model for Sensor-Publisher and GPS-Consumer



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 315

in the normal sequence of operation: data validity, pre-condition, user code ex-
ceptions, post-conditions and deadline violations. Causal relation across these
anomalies is dictated by the operation sequence in the port. For example, an
anomaly in the pre-condition could lead to an anomaly in the user code, which
again could lead to a post-condition or deadline-violation. Latent bugs (i.e.
FM USER CODE) can lead to an exception in the user code or can lead to
deadline-violation or post-condition violation.

As stated earlier, port TFPG models here also contain input and output dis-
crepancies that represent anomalies that propagate in or propagate out of the
port. In Figure 13, DISC BAD DATA IN is associated with bad-data
getting into a port from a state variable (in case of a sensor-publisher) or a
publisher (in case of a GPS-consumer). DISC LOCK TIMEOUT FAILURE rep-
resents another input-discrepancy that is associated with inability to secure the
component-lock. Anomalies propagating out of the publisher port are captured
by discrepancies associated with the published data, e.g. DISC NO DATA PUB-
LISHED, DISC LATE DATA PUBLISHED, and DISC INVALID DATA PUBL-
ISHED. Similarly, anomalies out of consumer port are captured by discrepancies
that are associated with problem in the state-update , e.g. DISC PROBLEM -
WITH STATE UPDATE.

Activation conditions on failure propagation links are not shown in Figure
13. These conditions are based on local mitigation commands. For example, an
IGNORE or USE PAST DATA command from CLHM in response to a violation
detected in a pre-condition can cause problems in the user code or post-condition,
or deadline violation. Finally, this could lead to a bad output data. On the
other hand, an ABORT command can arrest the failure propagation in nominal
operation sequence but could introduce other effects such as no output data (e.g
DISC NO DATA PUBLISHED).

Figure 13, also shows the component wide failure modes such as FM LOCK-
PROBLEM. This failure mode represents the problem associated with syn-
chronization among component ports. The effect of this failure manifests in a
component port through the discrepancy: DISC LOCK TIMEOUT FAILURE.
Component TFPG models also contain anomalies associated with bad values
in the state variables: DISC Sensor Bad Value and GPSValue Bad State. These
anomalies help in capturing the failure propagation based on the dataflow model
of the component. The bad data produced in a port could lead to a bad state
variable update in a component. If the state variable is being used by a pub-
lisher port for publishing data, the bad state variable update can lead to an
invalid data being published from the publisher port. This failure propagation
associated with dataflow is not restricted to the component boundary.

Dataflowdue to the componentport interactions captured in the assemblymodel
could lead to failurepropagations across componentboundaries.Figure 13captures
these failure propagations across component boundaries between the sensor’ pub-
lisher port to the GPS’s consumer port (dark edges in the Figure 13). These failure
propagations capture the effect of problems in the sensor’s publisher trickling down



316 A. Dubey, G. Karsai, and N. Mahadevan

Fig. 14. Intra-component and Inter-component Failure Propagation associated with
the control-flow in the GPS Assembly

intoGPS’s consumer leading to a bad input data (DISC BAD DATA IN) or a data
validity violation (DISC DATA VALIDITY).

Failure effects are also propagated along the control flow, e.g. when a port
is not invoked: DISC NOT INVOKED. This happens as the control flow is dis-
rupted when the normal sequence of operation is affected in a port. This can
happen across component boundary if a facet-receptacle interaction exists or
within the component when a port is responsible for invoking another port, e.g.
a periodic consumer can invoke an aperiodic publisher. In Figure 14, this rela-
tionship exists between GPS data in and GPS data out. A lack of invocation of
a port can affect the state update inside the component.

Figure 14 captures the explicit failure propagations across component port
boundaries. These failure propagations include those introduced by dataflow
as well as control flow. To avoid clutter, the Figure 14 restricts the depiction
to anomalies within component ports that are associated with direct failure
propagations across component-port or component boundaries. Other failure
modes, anomalies, and failure propagations within component port boundaries
are not shown.

4.6 System Level Diagnosis Process

The TFPG diagnosis engine hosted inside the SHM component is instantiated
with the generated TFPG model of the system/assembly. When it receives the
first alarm from a fault scenario, it reasons about it by generating all hypotheses



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 317

for failure modes that could have possibly triggered the alarm. Each hypothesis
lists its possible failure modes and their possible timing interval, the triggered
alarms that are supportive of the hypothesis, the triggered alarms that are in-
consistent with the hypothesis, the missing alarms that should have triggered,
and the alarms that are expected to trigger in future. Additionally, the reasoner
computes hypothesis metrics such as plausibility and robustness that provide a
means of comparison. These metrics are used to prune the hypotheses set such
that only those hypotheses with a higher metric and hence better explanation
are retained [2]. At this time only hypothesis with 100 percent plausibility are
used for failure mitigation. Output of diagnosis engine i.e. the hypothesis of
failed component is sent to the timed state machine implementing the System
Level Mitigation Strategy.

Example. Consider a failure scenario such that there is a user code bug in
the sensor data out process such that the code does not publish the data in its
time duration. Since sensor data out process does not have a monitored post-
condition discrepancy (see Figure 13) there will be no alarms generated in the
sensor process. However, due to the user code problem, the silent (unobserved)
discrepancy user code failure will be triggered, which will then lead to either
silent post-condition failure, or late data published, or no data published.

Now, consider the GPS data in process in the same figure. In this process, a va-
lidity violation will be raised as no data is being received from the publisher. This
will cause the local health manager to issue a USE PAST DATA command (Fig-
ure 9). The raised alarm of validity violation along with the USE PAST DATA
command will be reported to the diagnosis engine. Inside the diagnosis engine,
the event of ‘validity violation’ will be used to produce the most plausible hy-
pothesis (root failure sources) that can explain the observed anomaly. In this
particular case the TFPG engine will correctly attribute the problem to either
Sensor Lock failure mode or Sensor user code failure mode, i.e. a faulty sensor
component.

4.7 System Level Mitigation Strategy

The system level mitigation strategy is also modeled as a hierarchical timed
state machine. Table 3 lists the statements (functions) that can be used in the
state machine to express the guard conditions (to check if a component is faulty)
and actions (i.e. mitigation commands). These strategies are reactive in nature
and aim to restore the functionality by cold/warm reset or switching to redun-
dant component. As mentioned earlier in this chapter, each component in the
assembly is assumed to be in one of the three possible states: inactive, active,
and semi-active. When the component is in inactive state, none of the ports in
the component perform their task. The active state of a component is the exact
opposite to inactive state, and all the component ports performing their task. In
a semi-active state, only the consumer and receptacle ports of a component are
operational. The publisher and provided ports are disabled. This state-machine



318 A. Dubey, G. Karsai, and N. Mahadevan

Table 3. SLHM Functions. Here c denotes the component name and s denotes a
subsystem name. Unless otherwise specified usage of the subsystem name in a command
implies apply to all contained components.

Action Semantics

IS FAULTY (c|s) Returns true if the component is faulty.. A subsystem is
marked as faulty if the minimum number of components
required for work is not available.

IS NOT FAULTY (c) Returns false if the component is faulty.1

RESET (c|s) Instructs the component to execute its Reset method.

STOP (c|s) Instructs the component to switch to inactive mode.
Component stops executing the functionality of all its
ports. If subsystem is argument, command is applied to
all its components

START (c|s) Instructs the component to switch to active mode. Com-
ponent starts executing the functionality of all its ports.

DISABLE OUTPUT (c|s) Instructs the component to switch to semi-active mode.
Only Consumer and Receptacle ports are operational.

REWIRE (c,i,pc) i: Interface Name, pc: Provider Component Name. This
command Instructs Component (c) to switch its recep-
tacle Interface (i) to connect to the appropriate facet
interface in another component (pc).

CHECKPOINT (c|s) Instructs the component to Checkpoint its current state-
variables.

RESTORE (c|s) Instructs the component to Restore its state-variables
from the Checkpoint.

[1] A corresponding method can be implemented for the subsystem and used in a
specific example. Currently, implementation of this method is system specific and is
not part of provided API.

is translated into operational code and is hosted inside the runtime of the System
Level Health Management module.

An alternative strategy of health management is to search over available so-
lutions to find the best option that can ensure that the system functionalities
are still met. This strategy is still under active investigation.

Example. Figure 15 shows the state-machine model of the System Level Miti-
gation Strategy associated with the GPS Assembly. In this case the mitigation
strategy involves parallel state machines that deal with problems associated with
Sensor component (parallel-state 1) and GPS component (parallel-state 2). The
top level state machine is triggered when there is updated diagnosis information
(hypothesis) from the diagnosis engine. This information is used by the System
response/ mitigation engine to update the list of faulty components and trigger
the SLHM state machine. When the SLHM state machine (Figure 15) associ-
ated with the GPS Assembly is invoked it triggers Parallel State-1 followed by
Parallel State-2.

In Parallel-State 1, the System Health Manager checks if the GPS compo-
nent is marked as faulty. This is captured in the transition guard condition:



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 319

PARALLEL STATE 2

PARALLEL STATE 1

Fig. 15. System Level Health Manager Mitigation Strategy for GPS Assembly

IS FAULTY(GPS). If this guard condition evaluates to true, then the transition
action statements are executed and the state changed. The transition action
statements direct the reconfiguration to the alternate GPS (GPS2) through a
series of statements. STOP(GPS) results in a STOP command being sent to
the GPS component. START(GPS2) results in a START command being sent
to the GPS2 component. The command REWIRE(NavDisplay,GPSDataSource,
GPS2) directs a rewire command to the NavDisplay component. It instructs the
component to rewire the receptacle interface (GPSDataSource) to the appropri-
ate facet in the component GPS2.

In Parallel-State 2 it checks if the Sensor component has been marked as
faulty. This is captured in the transition guard condition: IS FAULTY(Sensor).
If this guard condition evaluates to true, then an output event is triggered to
reset the sensor component (transition action: RESET(Sensor)). This translates
into a RESET command that is sent to the Sensor component. The Sensor
component then executes the Reset method associated with the component and
reports back to the system health manager.

An additional case study of an Inertial Measurement Unit (IMU)System built
using the ACM design tools is available as a tech report for interested readers [16].

5 Known Limitations and Future Work

While the results of the experiments indicate that the approach is feasible and
very general, and shows the promise of being able to scale to and handle real-
life problems, we do understand that architecting a software health manage-
ment system is contingent upon the availability of extra resources that can be
spared for this purpose. This implies the necessity of scheduling analysis that
considers the future state change of components as part of system mitigation.
On the modeling front, the current state-machine based mitigation strategy re-
quires explicit specification of the mitigation action for each fault in the system.



320 A. Dubey, G. Karsai, and N. Mahadevan

This might become unwieldy beyond a point. We are focusing on alternate
strategies to specify the mitigation action. We are exploring the use of function-
allocation models in conjunction with automated reasoning strategies to tackle
the mitigation problem by identify and switching to available redundancies to
restore the affected functionality. Further, we need to explore effective means
to use the diagnosis result when it is less than perfect i.e. when the hypotheses
are not good enough to accurately determine the faulty component. On the di-
agnosis front, it would be ideal if all the possible monitors (i.e. pre-conditions,
post-conditions, invariants) are configured and available for use with the TFPG
diagnosis model. In an ideal monitoring situation where all monitors are config-
ured correctly and fire in the correct sequence, this will help prune the hypotheses
set faster and come up with a quick and correct diagnosis result. However, we do
understand that it might not be possible to configure all the available monitors
and more importantly and in some cases these monitors could not be reliable.
We plan to work on strategies where less than perfect diagnosis results (lots of
ambiguities and/or lack of hypotheses that have hundred percent plausibility)
can be effectively handled to restore the system functionality.

6 Conclusion

In summary, the paper describes a technology for implementing fault adaptiv-
ity in real-time systems using as software health management approach. The
starting point of the technology is a real-time component model that intro-
duces component-based software engineering techniques into real-time systems.
Components, their interfaces, and interactions are explicitly modeled, and these
models are annotated with observable pre- and post-conditions, as well as tim-
ing requirements. An anomaly detection system is constructed from these spec-
ifications. It performs the monitoring on the software system, and, if needed,
triggers a health management (mitigation) action. Health management can hap-
pen on the component or on the system-level: in the first case the mitigation
is facilitated by a designer-specified reactive state machine, in the second case
a diagnosis process is triggered first, whose results are then used in a reactive
or deliberative response/ mitigation engine. The diagnosis is necessary to iso-
late source of cascading faults that propagate through multiple components. We
have built a model-driven tool chain for developing these systems, and we have
evaluated the approach on several laboratory examples and demonstrated the
effectiveness of the concept on some large ones that replicate real-life incidents.

References

1. ARINC specification 653-2: Avionics application software standard interface part
1 - Required Services. Aeronautical Radio, lnc.

2. Abdelwahed, S., Karsai, G., Mahadevan, N., Ofsthun, S.C.: Practical considera-
tions in systems diagnosis using timed failure propagation graph models. IEEE
Transactions on Instrumentation and Measurement 58(2), 240–247 (2009)



Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 321

3. Abdelwahed, S., Karsai, G., Biswas, G.: A consistency-based robust diagnosis ap-
proach for temporal causal systems. In: 16th International Workshop on Principles
of Diagnosis, pp. 73–79 (2005)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

5. Bureau, A.T.S.: In-flight upset; 240km NW Perth, WA; Boeing Co 777-200, 9M-
MRG. Tech. rep. (August 2005), http://www.atsb.gov.au/publications/
investigation reports/2005/AAIR/aair200503722.aspx

6. Bureau, A.T.S.: AO-2008-070: In-flight upset, 154 km west of Learmonth, WA, 7,
VH-QPA, Airbus A330-303. Tech. rep (October 2008), http://www.atsb.gov.au/
publications/investigation reports/2008/AAIR/aair200806143.aspx

7. Bustard, D.W., Sterritt, R.: A requirements engineering perspective on autonomic
systems development. In: Autonomic Computing: Concepts, Infrastructure, and
Applications, pp. 19–33 (2006)

8. Butler, R.: A primer on architectural level fault tolerance. Tech. rep., NASA Sci-
entific and Technical Information (STI) Program Office, Report No. NASA/TM-
2008-215108 (2008), http://shemesh.larc.nasa.gov/
fm/papers/Butler-TM-2008-215108-Primer-FT.pdf

9. Charette, R.: This car runs on code. IEEE Spectrum (February 2009)
10. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,

Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

11. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-
healing systems. In: WOSS 2002: Proceedings of the First Workshop on Self-healing
Systems, pp. 21–26. ACM Press, New York (2002)

12. DO-178B, Software considerations in airborne systems and equipment certification.
RTCA, Incorporated (1992)

13. Dubey, A., Karsai, G., Mahadevan, N.: Towards model-based software
health management for real-time systems. Tech. Rep. ISIS-10-106, Insti-
tute for Software Integrated Systems, Vanderbilt University (August 2010),
http://isis.vanderbilt.edu/node/4196

14. Dubey, A., Karsai, G., Mahadevan, N.: A component model for hard real-time
systems: CCM with ARINC-653. Software: Practice and Experience 41(12), 1517–
1550 (2011), http://dx.doi.org/10.1002/spe.1083

15. Dubey, A., Karsai, G., Mahadevan, N.: Model-based Software Health Management
for Real-Time Systems. In: IEEE Aerospace Conference, pp. 1–18. IEEE (2011)

16. Dubey, A., Mahadevan, N., Karsai, G.: The inertial measurement unit exam-
ple: A software health management case study. Tech. Rep. ISIS-12-101, Insti-
tute for Software Integrated Systems, Vanderbilt University (February 2012),
http://isis.vanderbilt.edu/node/4496

17. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing System Dependability Through
Architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A.
(eds.) Architecting Dependable Systems. LNCS, vol. 2677, pp. 61–89. Springer,
Heidelberg (2003), http://dl.acm.org/citation.cfm?id=1768179.1768183

http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/aair200806143.aspx
http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/aair200806143.aspx
http://shemesh.larc.nasa.gov/fm/papers/Butler-TM-2008-215108-Primer-FT.pdf
http://shemesh.larc.nasa.gov/fm/papers/Butler-TM-2008-215108-Primer-FT.pdf
http://isis.vanderbilt.edu/node/4196
http://dx.doi.org/10.1002/spe.1083
http://isis.vanderbilt.edu/node/4496
http://dl.acm.org/citation.cfm?id=1768179.1768183


322 A. Dubey, G. Karsai, and N. Mahadevan

18. Greenwell, W.S., Knight, J., Knight, J.C.: What should aviation safety incidents
teach us? In: SAFECOMP 2003, The 22nd International Conference on Computer
Safety, Reliability and Security (2003)

19. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987),
http://www.sciencedirect.com/science/article/pii/0167642387900359

20. Hayden, S., Oza, N., Mah, R., Mackey, R., Narasimhan, S., Karsai, G., Poll, S.,
Deb, S., Shirley, M.: Diagnostic technology evaluation report for on-board crew
launch vehicle. Tech. rep., NASA (2006)

21. Jaffe, M., Busser, R., Daniels, D., Delseny, H., Romanski, G.: Progress report on
some proposed upgrades to the conceptual underpinnings of do-178b/ed-12b. In:
2008 3rd IET International Conference on System Safety, pp. 1–6. IET (2008)

22. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A., Reichard, K.,
Scandura Jr., P.: System Health Management: With Aerospace Applications. John
Wiley & Sons, Inc. (2011)

23. de Lemos, R.: Analysing failure behaviours in component interaction. Journal of
Systems and Software 71(1-2), 97–115 (2004)

24. Lightstone, S.: Seven software engineering principles for autonomic computing de-
velopment. ISSE 3(1), 71–74 (2007)

25. Lyu, M.R.: Software Fault Tolerance. John Wiley & Sons, Inc., New York (1995),
http://www.cse.cuhk.edu.hk/~lyu/book/sft/

26. Lyu, M.R.: Software reliability engineering: A roadmap. In: 2007 Future of Software
Engineering, FOSE 2007, pp. 153–170. IEEE Computer Society, Washington, DC
(2007), http://dx.doi.org/10.1109/FOSE.2007.24

27. Mahadevan, N., Dubey, A., Karsai, G.: Application of software health management
techniques. In: Proceedings of the 2011 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2011. ACM, New York (2011)

28. Potocti de Montalk, J.: Computer software in civil aircraft. In: IEEE/AIAA 10th
Digital Avionics Systems Conference, pp. 324–330 (October 1991)

29. NASA: Report on the loss of the mars polar lander and deep space 2 missions.
Tech. rep., NASA (2000),
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf

30. Ofsthun, S.: Integrated vehicle health management for aerospace platforms. IEEE
Instrumentation Measurement Magazine 5(3), 21–24 (2002)

31. Ofsthun, S.C., Abdelwahed, S.: Practical applications of timed failure propagation
graphs for vehicle diagnosis. In: Proc. IEEE Autotestcon, September 17-20, pp.
250–259 (2007)

32. Prisaznuk, P.: Arinc 653 role in integrated modular avionics (IMA). In:
IEEE/AIAA 27th Digital Avionics Systems Conference, DASC 2008, pp. 1.E.5–
1 – 1.E.5–10. IEEE (2008)

33. Pullum, L.L.: Software fault tolerance techniques and implementation. Artech
House, Inc., Norwood (2001)

34. Robertson, P., Williams, B.: Automatic recovery from software failure. Commun.
ACM 49(3), 41–47 (2006)

35. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven develop-
ment of self-managing software systems. In: Proceedings of the Workshop “Mod-
els@run.time” at the 9th International Conference on model Driven Engineering
Languages and Systems, MoDELS/UML 2006 (2006)

36. Sha, L.: The complexity challenge in modern avionics software. In: National Work-
shop on Aviation Software Systems: Design for Certifiably Dependable Systems
(2006)

http://www.sciencedirect.com/science/article/pii/0167642387900359
http://www.cse.cuhk.edu.hk/~lyu/book/sft/
http://dx.doi.org/10.1109/FOSE.2007.24
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf


Fault-Adaptivity in Hard Real-Time Component-Based Software Systems 323

37. Shaw, M.: “self-healing”: softening precision to avoid brittleness: position paper
for woss 2002: workshop on self-healing systems. In: WOSS 2002: Proceedings of
the First Workshop on Self-healing Systems, pp. 111–114. ACM Press, New York
(2002)

38. Srivastava, A., Schumann, J.: The Case for Software Health Management. In:
Fourth IEEE International Conference on Space Mission Challenges for Informa-
tion Technology, SMC-IT 2011, pp. 3–9 (August 2011)

39. Taleb-Bendiab, A., Bustard, D.W., Sterritt, R., Laws, A.G., Keenan, F.: Model-
based self-managing systems engineering. In: DEXA Workshops, pp. 155–159
(2005)

40. Torres-Pomales, W.: Software fault tolerance: A tutorial. Tech. rep., NASA (2000),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307

41. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electron. Notes Theor. Comput. Sci. 141(3), 53–71 (2005)

42. Wang, N., Schmidt, D.C., O’Ryan, C.: Overview of the CORBA component model.
In: Component-based Software Engineering: Putting the Pieces Together, pp. 557–
571 (2001)

43. Williams, B., Ingham, M., Chung, S., Elliott, P.: Model-based programming of
intelligent embedded systems and robotic space explorers. Proceedings of the
IEEE 91(1), 212–237 (2003)

44. Williams, B.C., Ingham, M., Chung, S., Elliott, P., Hofbaur, M., Sullivan, G.T.:
Model-based programming of fault-aware systems. AI Magazine 24(4), 61–75
(2004)

45. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: WADS 2005: Pro-
ceedings of the 2005 Workshop on Architecting Dependable Systems, pp. 1–7.
ACM, New York (2005)

46. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE 2006: Proceeding of the 28th International Conference on Software
Engineering, pp. 371–380. ACM, New York (2006)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307


R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 324–353, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Towards User Tailoring of Self-Adaptation  
in Ubiquitous Computing 

João Pedro Sousa 

Department of Computer Science, George Mason University, 
Fairfax, VA 22030, USA 
jpsousa@cs.gmu.edu 

Abstract.  Ubiquitous computing both emphasizes the role of self-adaptation 
and poses new challenges to self-adaptation.  These challenges include the need 
for new kinds of adaptation and the recast of classic ones, namely self-healing, 
to fit ubiquitous computing environments.  Furthermore, because users will play 
an increasing role in assembling ubicomp systems, a key question is how to 
enable users to tailor self-adaptation to their needs. 

To position the new kinds of self-adaptation, the paper proposes a 
classification of self-adaptation according to what gets changed in response to 
what, complementarily to a classification of control loops.  Specifically, the 
paper introduces design meshing, concerning dynamic adaptation to 
requirements independently put forth by multiple users; pliable apps, 
concerning structural modes of operation in response to context or other events; 
and a decentralized, lightweight protocol for self-healing.  In addition to 
semantic aspects, we propose language constructs for users to tailor these kinds 
of self-adaptation.  The paper discusses a decentralized approach to implement 
these building on common principles such as service orientation and the ability 
to automatically deploy system models. 

Keywords: self-adaptive software, domain-specific languages, end-user design, 
ubiquitous computing. 

1 Introduction 

The boundaries of design and run time in the software lifecycle are in a state of flux.  
The push for self-healing and self-adaptive systems propelled service discovery 
towards run time: the decision of which component to invoke used to be made 
manually during design in component-based software and early service-oriented 
systems [1], but can now be made automatically at run time [2], [3]. 

Paradoxically, that shift of responsibility from design to run time created the need 
to expand design, enriching it with specifications of service types and constraints on 
quality of service (QoS).  If design captures these decisions in a machine-interpretable 
form, the subsequent human labor to translate the decisions into code and ultimately 
into the running system may be substantially reduced or even eliminated by 
automation (e.g., [4–6]).  In either case, the creation of machine-interpretable models 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 325 

at run time, such as service ontologies and registries, models to estimate delivered 
QoS, etc., enable the automation of service discovery mechanisms.  These 
mechanisms eliminate human labor at run time for discovering and binding services 
each time the system needs to adapt to failures or to lack of performance. 

This paper focuses on an additional shift of responsibilities that results from the 
push towards ubiquitous computing (aka ubicomp, or pervasive computing).  In 
addition to the use of mobile devices, ubicomp encompasses devices embedded or 
scattered in spaces ranging from homes to subway stations to streets and farms.  Its 
application domains include health care and assisted living, search and rescue, 
disaster response, energy management in buildings, safety, transportation, social 
computing, home automation and surveillance, etc. 

The paper argues that ubicomp both emphasizes the role of self-adaptation and 
poses some new challenges to self-adaptation.  As before, new responsibilities at run 
time mean that more needs to be designed.  The paper also argues that domain experts 
and end users will play an increasing role in designing ubicomp systems; and 
therefore, a key question is how to enable users to tailor self-adaptation to their needs. 

In the remainder of this paper, section 2 elaborates on the role of self-adaptation in 
ubicomp, and section 3 introduces a classification of different kinds of self-adaptation 
to help position the kinds proposed here.  Section 4 summarizes a state-of-art design 
notation for ubicomp that serves as a basis for the examples throughout the paper. 

Sections 5, 6, and 7 respectively describe the new kinds of adaptation: design 
meshing, pliable apps, and Bself-healing.  Section 8 discusses their implementation 
and commonalities, and section 9 compares with related work.  Section 10 
summarizes the main points of the paper and future work. 

2 Motivation 

Ubicomp offers fertile ground for self-adaptation, since repairs and tune-ups are 
called for by several kinds of stimuli.  First, ubicomp systems are often deployed in 
open and highly dynamic environments. Unlike conventional software systems, where 
stakeholders are expected to agree on a set of requirements before a system is built, 
ubicomp users bring their own independent requirements to the spaces they visit. 

From the point of view of a space and of the systems therein, requirements change 
as users come and go.  For example, a system in a smart home may open at least some 
of its features to impromptu users and their devices in cases such as friends coming 
over for a party, a nurse visiting an elderly person, or firemen arriving at a scene.  
With purely software systems, such scenarios result in the dynamic deployment of 
separate systems for each set of requirements.  In ubicomp, the unavoidable sharing 
of cyber-physical services, such as thermostats, leads instead to one evolving system. 

Second, application requirements may call for dynamic change of features in 
response to context, aka context awareness, corresponding to modes of operation in 
different situations.  Some of these changes may be parametric, e.g. decide on the ring 
volume of a cell phone depending on the location, but other changes may involve 
significant reconfiguration, e.g., of a building automation system during a fire. 



326 J.P. Sousa 

And third, ubicomp environments are often harsh on software systems: users may 
arbitrarily turn off devices, forget to change batteries, or disconnect cables while 
moving around in their activities.  The challenge becomes to recover from the failure 
of any component, including those with responsibility for self-healing. 

Satisfactory solutions for self-adaptation in ubicomp may have to address some 
combination of the kinds of stimuli above, as required by each application domain. 

As happened with service discovery, additional responsibilities for the system at 
run time imply an expansion of design, this time to capture decisions concerning 
adaption to these kinds of stimuli. 

Design notations that target end users and domain experts will play an important 
role in capturing these decisions.  End users are frequently the main operators of 
ubicomp systems, taking up significant responsibilities in their configuration, 
deployment, and maintenance [7–9].  This is because, in many domains, system 
requirements are too personalized, too specific to circumstances, and may change too 
often to make the approach of hiring engineers to make every change economically 
feasible or even fast enough to be useful.  

End-user notations must find a balance between being powerful enough to be 
useful, and being simple enough to be usable.  Such notations will not replace generic 
design notations and software development frameworks for professional engineers 
[10], but may have an important role in democratizing access to ubicomp, similarly to 
the role spreadsheets had in democratizing access to personal computing in the 80’s. 

The contributions of this paper include language constructs for end users to design 
ubicomp self-adaptation to the three kinds of stimuli identified above.  Specifically, 
design meshing responds to requirements independently put forth by multiple users,   
pliable apps respond to context raised to application-level events, and Bself-healing 
responds to failures in a resilient, decentralized fashion.  The proposed constructs 
target end users and carry enough semantics to make them machine-interpretable. 

The paper also describes the automated translation of such design decisions into 
models at run time, and the mechanisms that interpret those models to control 
ubicomp self-adaptation.  Thanks to this automation, the role of humans shifts from 
operational to strategic: human stakeholders design adaptation policies and systems 
translate the policies and perform all necessary adaptations autonomously at run time. 

3 Classifying Self-Adaptation 

Self-adaptation refers to a system’s ability to change some aspect of itself, at runtime.  
To help position the contributions herein, we start by characterizing self-adaptation in 
terms of what kinds of changes are made in response to what kinds of stimuli. 

Table 1 distinguishes three kinds of changes: to the code base, to the run-time 
structure, and to the behavior of the system.  For example, cell B2 corresponds to the 
ability to change a system’s run-time structure, e.g. by adding/removing architectural 
components and connectors, in response to failures.  Cell B3 refers to a similar ability, 
but in response to run-time measurements of system resources and performance.  
Classic work in self-adaptation, such as Rainbow [11], covers cells B2-3. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 327 

Table 1. Adaptation of different subjects in response to different stimuli 

 

Self-adaptation is not something that occurs once, e.g. during system deployment: 
it occurs in response to, and every time an entity of interest changes.  For example, if 
Quality of Service (QoS) goals are factored in during system development and then 
used to guide QoS optimization at run time, then the system may be adaptive to 
performance metrics, B3, but not to QoS goals, B6.  For that, it would need to monitor 
changes to QoS goals and autonomously change its management of QoS optimization 
in response to changes in QoS goals. 

The table offers a broad view of self-adaptation.  For example, a cell phone 
performs A1 self-adaptation if it senses context, such as user location and social 
activity, e.g. in a meeting, and adjusts the ringing volume accordingly.  On the 
opposite end of the table, an automated Model-Driven Development (MDD) tool 
performs C8 self-adaptation if it monitors functional requirements and changes the 
code base accordingly.  Again, it is not enough to run the cycle between requirements 
and code once to qualify as self-adaptation: changes in requirements would need to be 
autonomously monitored and reacted to at run-time. 

Of the kinds of self-adaptation covered in this paper, design meshing sits in A-B7.  
Structural adaptation, B7, results from users putting forth at run time design artifacts 
specifying desired features.  Behavior adaptation, A7, results from the resolution of 
conflicts that may arise when multiple users compete for the same feature.  Pliable 
apps sits in B4, since it makes changes to the run-time structure in reaction to 
application-level events, and Bself-healing recasts the classic B2 for ubicomp. 

This classification is orthogonal to the choice of mechanisms to realize self-
adaptation.  For example, self-adaptation may be performed by the application logic 
or it may be factored out to a separate controller; it may include sophisticated 
planning of changes [12] or it may run prepared scripts [11]; it may be distributed 
[13], or it may reside in dedicated central components [11], [14]. 

The classification in Table 1 is also distinct from a control theory classification: 
Figure 1.  Self-adaptation has a feed forward loop if it reacts to independent variables, 
 

computation
/ behavior

run-time
structure

code
base

environment metrics context-aware phone ring

system failures Bself-healing
self-healing

system metrics self-optimizing

application events pliable apps self-modifying code

ex
pl

ic
it

us
er

 c
on

tro
l

parameters

QoS goals

design artifacts meshing (resolution) meshing

functional requirements automated MDD

change:
A B C

1

2

3

4

5

6

7

8

in response to:



328 J.P. Sousa 

 

Fig. 1. Control-theory classification of control loops 

and has a feedback loop if it reacts to dependent variables.  For example, a mechanism 
that adapts the number of replicas of a web server is B3 feed forward if it gauges and 
reacts to the volume of requests, an independent variable, but it is B3 feedback if it 
gauges and reacts to average response time, which depends on the run-time structure. 

Control loops may be implicitly closed by users: they observe the output of the 
system and if not happy with some aspect of quality they may change their own 
behaviors.  In the example above of the feed forward adaptive web server, users might 
react to a significant increase in response time by backing off, maybe intending to try 
again later, thereby reducing the volume of requests.  Mechanism design is a field of 
economics that studies control loops implicitly closed by humans and proposes 
reward/punishment mechanisms to influence the behavior of users [15]. 

Lines 5 to 8 in Table 1 pertain to loops explicitly closed by users: Figure 1(c).  
These loops monitor explicit user controls, such as control parameters and QoS goals, 
and affect changes to the behavior, structure, or code base of the system.  For 
example, line 7 pertains to systems that monitor design artifacts that are amenable to 
automated (re)deployment should any changes be made by users at run time. 

While the loops in Figure 1(a-b) adequately address anticipated variations with 
pre-packaged strategies, the loop in Figure 1(c) addresses unanticipated situations by 
allowing users to carry out new adaptations at run time.  

Similarly to architectural styles, where real systems rarely conform to a single style 
[16], self-adaptive systems will frequently combine several kinds of adaptation loops.  
For example, while Bself-healing supports a feedback loop, both design meshing and 
pliable apps combine automated (feed forward/feedback) loops with the users’ ability 
to explicitly close an additional control loop: more below. 

4 End-User Design of Ubicomp Systems 

For concreteness, the examples throughout this paper build on a language developed 
in prior work, TeC, which is summarized here while the following sections focus on 
its extensions towards user-tailored self-adaptation. 

TeC is meant for a range of end users, from home owners to domain experts such 
as facility administrators and health-care professionals. 

ke
y

(b) feedback(a) feed forward (c) feedback by user

Sinput output

context

C

Sinput output

C

Sinput
output

C

interaction

control
S Cself-adaptive 

system
managed 

functionality controller

control

gauge



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 329 

 

Fig. 2. Example team design, where signals from the smart electric meter at Bob’s home  are 
used to pause the clothes dryer and to adjust the AC thermostat 

To become accessible to end users, TeC departs from an algorithmic model of 
computing in favour of a declarative model similar to spreadsheets.  In the latter, there 
is no algorithm or “main” program: all formulas are asynchronously recalculated 
whenever the values they refer to are updated and the overall calculation emerges 
from the joint effects of all formulas in the spreadsheet.  Similarly, computation and 
communications in TeC are triggered asynchronously and the overall system 
behaviour is emergent. 

A TeC system, called a team, consists of a collection of players with no central 
component responsible for coordinating each step of the action.  Players are 
computing-enabled devices ranging from computers and smart phones, to smoke and 
motion detectors, to microwave ovens, clothes driers and smart electric meters 
(www.smartmeters.com).  A team’s overall function results from the joint effect of the 
activities carried out by the individual players.  

Activities generalize the concepts of process, computational service, and function 
of a device.  Specifically, activities may be of short duration with a discrete output, 
like service invocation; they may be long-lasting with a succession of inputs and 
outputs, like processes; or they may last for months without producing an output, like 
the function of a smoke detector. 

End users may design different teams to serve purposes such as “surveillance,” or 
“energy management.”  A team design includes activity sheets, describing the role of 
each player in the team, i.e. its activity, and communication paths for channeling 
asynchronous messages and data streaming between players. 

ke
y

energy management @ Bob’s home

output/input event asynchronous message

smart 
meter

thermostat
set

peak

low

dry

manage 
power

done

started

resume

pause

setT

done

drying

costly

cheap

activity sheet



330 J.P. Sousa 

Figure 2 illustrates a team design for managing energy consumption at the home of 
a hypothetical user, Bob.  The team overview at the top includes four activities shown 
as labeled rectangles and their communication paths, which link output events to input 
events, respectively shown as  and . At the bottom, the figure details the activity 
sheets for smart meter and for manage power. 

Users customize an activity sheet starting from an activity type, i.e. a generic 
description of features.  Activity types define input events and internal outcomes, 
which may change value as a result of the device’s operation.  Specialized devices, 
such as a smart electric meter or a smoke detector would typically be shipped with 
activity types which might be defined by a vendor or result from a community 
standardization effort.  For example, smart meter includes price per kilowatt in cents, 
while smoke detection might include Boolean outcomes such as smoke, carbon-
monoxide, etc. 

In the example, Bob defined two output events on smart meter: peak and low, 
which are respectively announced when the price exceeds 10 cent per kilowatt and 
when it comes back under that amount.  Specifically, price>10 is the triggering 
condition for the peak output event.  The syntax and operational semantics of TeC are 
formally specified in [17]. 

The activity sheet for manage power is derived from the generic type activity, 
which unlike specialized activity types, includes no definitions of input events or 
outcomes, and may be played by any computing-enabled device such as Bob’s smart 
phone.  In the example, Bob wants to set the thermostat to 78 F after a costly event is 
observed, and back to a cooler 74 F when energy is cheap.  The desired temperature is 
attached as payload temp to the set event sent towards the thermostat. 

Similarly to spreadsheets, the flow of values is best effort.  Specifically, events 
may be freely interconnected and the matching of attributes in the payload is based on 
attribute name.  While this saves users from the tedious matching associated with 
method invocation in mainstream programming languages, it may lead to unintended 
errors.  To help users manage this tradeoff, players should have reasonable defaults to 
all attributes of input events.  Furthermore, upon user request, the TeC editor (below) 
highlights which attributes are being matched in a connection. 

To make it easy to design and deploy distributed teams, TeC combines automated 
discovery of players with explicit spatial constraints indicated in the form name @ 
space, to be read name at space.  Spaces are identified in human-readable form as 
city/street-address/room. For example, fairfax.va-22030.us/456.windy-rd/kitchen.2 
indicates the kitchen in apartment 2 at 456 Windy Road in Fairfax, Virginia.  
Furthermore, users may define aliases for a space, such as Bob’s home (specific 
address not shown here), or a list, such as trusted spaces, enumerating the addresses 
where a user is comfortable deploying his or her teams. 

In Figure 2, all the players within the shaded rectangle are to be found @ Bob’s 
home, while manage power is unconstrained.  That is, if Bob decides to deploy 
manage power on his smart phone, he can follow the events while away from home. 

One implementation of a manage power player that includes a user interface (UI) 
is shown in [6].  Through that interface, users are informed of arriving input events 
 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 331 

 

Fig. 3. Example messages for the team in Figure 2: (a) briefing issued by the TeC editor 
towards the player for the smart meter activity, (b) message costly issued by the latter after a 
peak event, and (c) message set issued by manage power after a setT event. 

(e.g., costly or cheap energy) and may complement the automated behaviors 
expressed in the activity sheet with manual triggering of events to control the 
thermostat and dryer. 

Furthermore, teams may include multiple players that carry out an identical 
activity: indicated in by a stacked box for the activity sheet.  In Figure 2, multiple 
manage power activities may be deployed, for example enabling Bob’s family 
members to help with energy management via their own smart phones.  Semantically, 
events leading to a stacked activity sheet are multicast to all participating players, and 
events originating from a stacked sheet may be issued by any of those players. 

Multi-user capabilities such as these benefit from additional mechanisms to help 
regulate conflicting users actions (section 5.3). 

4.1 Tool Support 

Teams are designed by users interacting with an editor.  Two versions of TeC’s editor 
are currently available: one for personal computers, built over the modeling 
framework of Eclipse (www.eclipse.org/modeling/gmp), and another for Android 
phones and tablets (www.android.com). 

When a user decides to deploy or update a deployed team, TeC’s editor triggers 
two operations: discovery and briefing.  During discovery, concrete players for the 
activities in a team design are identified and confirmed to be up and running.  TeC’s 
middleware then briefs each of the players with the corresponding activity sheets: see 
example in Figure 3(a). 

Once briefed, players interact with their physical environment and with each other 
and with no further intermediation or central coordination: see Figure 3(b,c).  In the 
current implementation, communication takes place over TCP/IP, and is secured by 
symmetric encryption.  A key is assigned to each player p, and shared with others that 
send messages towards p (specific values elided, shown in italics, in Figure 3). 

More details concerning TeC middleware and systems can be found in [6], [18]. 

<activity-sheet type="smart meter">
<out-evt name="peak" trigger="price > 10">

            <target in-evt="costly" ip="mp-ip" port="mp-p" key="mp-k"/>
</out-evt>
<out-evt name="low" trigger="price <= 10">

            <target in-evt="cheap" ip="mp-ip" port="mp-p" key="mp-k"/>
</out-evt>

</activity-sheet>

<evt name="costly"/>

<evt name="set"/>
<att name="temp" value="78"/>

</evt>

(a)

(b)

(c)



332 J.P. Sousa 

4.2 Adaptation Loop Closed by User 

Users may edit team designs after deployment: Figure 1(c).  If at any point Bob is not 
happy with the way the team in Figure 2 is working, he might rewire the events, 
change the activity sheets, add or remove activities.  He may then ask the editor to 
redeploy the team.  The editor compares the new design with the original and re-briefs 
players as needed. 

This adaptation loop is made possible by TeC’s automated deployment of design 
artifacts, and it is made easier by its declarative semantics which carries no 
computational state (see also the discussion on statefulness in section 7.2). 

Although self-adaptive ubicomp systems will be illustrated throughout this paper 
using TeC, the self-adaptation principles are generalizable to other design languages 
that carry enough semantics to be automatically deployable. 

5 Design Meshing 

Design meshing is motivated by the combination of two growing trends: the ubiquity 
of computing, and the use of cyber-physical services. 

First, people access most physical spaces in far more spontaneous ways than 
traditional computer systems. While the latter require users to be administratively 
registered in advance, in ubicomp the preregistration of users with a space should be 
lightweight or even non-existent in cases such as customers entering a store. 

From the users’ point of view, increasingly the expectation is for spaces to make 
their services available to impromptu occupants, while respecting security and 
different levels of access.  For example, a smart home may allow visiting friends to 
discover and use entertainment services, while it may allow a nurse to discover and 
interact with assisted-living sensors. 

From a technical point of view, ubiquitous computing requires smart spaces to be 
able to dynamically change the features of the systems deployed therein to match user 
expectations, adding and dropping components and connections as needed, and 
interacting with the software deployed on mobile devices carried by users. 

Second, cyber-physical services such as provided by thermostats, smart appliances, 
and other sensors and actuators are increasingly integrated in applications deployed in 
smart spaces.  However, such cp-services are unlike purely software services with 
respect to sharing by multiple users.  Software services may avoid side effects across 
users by creating a sandboxed replica of the service for each user.  In contrast, setting 
a house thermostat to a given temperature has a lasting effect on the environment 
perceived by everyone in the house: the thermostat is effectively shared by all. 

Design meshing combines the ability to automatically deploy and adapt systems in 
response to the comings and goings of users, with the ability to orderly share cp-
services among users.   In other words, the design of a space’s ubicomp system at a 
given moment results from meshing design artifacts contributed by different users, 
and which incidentally share cp-services.  To facilitate meshing, stakeholders define 
service-specific policies for resolving the sharing conflicts that may arise. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 333 

 

Fig. 4. Systems designed by three hypothetical users, Mary, Tom, and Bob, which will be 
automatically meshed when deployed due to sharing the services of the house thermostat 

5.1 A Variety of Design Artifacts 

Figure 4 shows an example with three separate design artifacts, all of which impact 
the air conditioning control at the house of a hypothetical user, Mary.  These artifacts 
are deliberately kept simple to help focus on the meshing aspects. 

The design in Figure 4(a) captures Mary’s intention to automatically raise the 
thermostat setting to 82 F when peak electric rates are in effect.  For that, Mary 
leverages pricing signals issued by her smart electric meter.  Figure 4(b) shows a 
different artifact designed by Mary’s son, Tom, who is finishing a computer games 
degree and is running his startup business from home.  Tom installed a server that 
hosts a multiplayer game in his room and wishes to keep room temperature at 76 F, 
lowering it to 74 F when the server experiences loads above 200 interactions per 
minute.  Figure 4(c) shows a third artifact designed by Mary’s friend, Bob, who has 
developed a respiratory condition and does better in cooler, drier air.  Bob would like 
the temperature in any space he enters to be set at 74 F. 

The significance of this example is that each of the artifacts was independently 
developed by users, without knowledge of each other’s designs or intentions.  
Similarly, Mary’s smart home has no prior knowledge of which designs users will 
want deployed at a given time, or which designs will come into its space carried in 

track(Bob)

smart 
meter

server 
gauge

thermostatset
peak

defaultlow

thermostatset
high load

normal

enter

leave

thermostat
set

comfort @ anywhere

cooling @ Mary’s home cool server @ Tom’s room

(b)(a)

(c)

ke
y output/input event

asynchronous message
p team player user-controlled,

automated deployment



334 J.P. Sousa 

mobile devices.  For example, Mary may deploy her cooling design each spring when 
the weather warms up and then stop it in the fall; Tom may deploy the cool server 
artifact intermittently, taking it down during server maintenance; and Bob’s design 
artifact only becomes known to the house once Bob comes to visit. 

Design meshing automatically adapts the energy management system at Mary’s 
home depending on which artifacts users want deployed at a given time, and 
reconciling the conflicts in thermostat setting requested by each artifact. 

5.2 Understanding the Details 

This section examines Figure 4 in the light of the notation and semantics in section 4, 
and in preparation for discussing the extensions towards meshing in section 5.3. 

In Figure 4(a), Mary defined output events peak and low for the smart meter, with 
triggering conditions similar to the ones in Figure 2, but additionally defined a 
payload for peak and connected both to input events on the thermostat.  Specifically, 
the payload of peak is used to set the temperature to 82 F, more relaxed and thus less 
energy demanding than the default of 78 F set by Mary directly on the thermostat.  

The thermostat activity type defines an input event set which recognizes a payload 
labeled temp.   

Figure 4(b) shows team cool server designed by Mary’s son, Tom.  Tom wrote a 
load gauge piece of software for the server and wrapped it as a TeC player, so that it 
could be discovered by the TeC middleware.  Once the player and its activity type 
were recognized by the middleware, server gauge became available in the editor and 
Tom was able to include it in the design.  Tom directed both output events high load 
and normal to the input event set in the thermostat, which interprets the payload temp 
of any incoming event. 

Bob’s comfort team in Figure 4(c) is meant to be deployed in any space Bob enters.  
To make that possible, TeC supports activities of type track, which take as a 
parameter the id of the entity to track, i.e. user or device, and may use a variety of 
concrete means to do so [19], [20].  Outcomes enter and leave are defined in the track 
activity type, and correspond to the tracked entity entering and leaving the space 
where the track activity is deployed.  Bob used these outcomes as triggers for two 
corresponding events, and he added a payload temp = 74 to event enter.  This activity 
sheet is not shown for brevity, but the result of this team design is that an enter event 
with temp = 74 is sent towards the space thermostat whenever Bob enters a space. 

Teams may be associated with a space, or they may be mobile.  The teams in 
Figure 4(a) and (b) are associated with fixed locations: Mary’s home and Tom’s room, 
which are indicated after the @ sign at the top of each team design.  

TeC’s middleware is capable of reasoning about spatial containment: for example, 
Tom’s room is contained in Mary’s home, and therefore, lacking its own thermostat, 
TeC will map the one in Tom’s design to a suitable device in Mary’s home. 

To make his team mobile, Bob keeps the design in Figure 4(c) on his smart phone.  
He used the keyword anywhere as the team’s location constraint, but he could have 
used a user-defined alias such as trusted spaces (section 4).  Once Bob tells the TeC 
editor on his phone to deploy team comfort, each time the phone recognizes a new  
 



 Towards Use

Fig. 5. System configurations 
and (b); and (a,b) and (c) 

space, the editor checks th
appropriate players and dep

To automatically stop, i
connected the leave event i
(more about this in section
comfort, it will keep deploy

5.3 Meshing 

Figure 5 illustrates three c
combinations of the team 
collection of isolated syste
incidental sharing of the 
deployment/withdrawal of d

The incidental sharing 
conflicts in the desired serv
can understand and perceiv

In general, conflicts arise
lasting effect on the provid
for the duration of the cp
operation.  For example, wh
the thermostat to be set to 
However, as per Figure 4(a
and as high as 82 F during p

Design meshing includ
desired value, such as the c
the level of lighting in a 
example above. 

Specifically, the stakeho
service providers therein, w
updated as needed.  These p

− Access : may be op
restricted to a set of pre-
team will facilitate provi

ke
y

thermostat

(x)

smart meter

cp-service provide

connection

r Tailoring of Self-Adaptation in Ubiquitous Computing 

after meshing the designs in Figure 4, respectively, (a) only

he location constraint and upon a match it tries to f
ploy the team (more about space-awareness in [18]). 
i.e. “undeploy,” the team at a space when he leaves, B
issued by track(Bob) with the stop operator  for the te
n 6).  Until Bob tells the TeC editor to no longer dep
ying a new instance of the team at each space Bob enters

configurations at Mary’s home that result from differ
designs in Figure 4.  The result in this example is no
ems, one for each user, but one system coupled by 

thermostat.  This system adapts in response to 
design artifacts. 
of providers for cp-services, players in TeC, may ra
vices settings, which must be resolved in ways that us
e as fair. 
e because operations on cp-services are expected to hav

der and its surrounding physical environment: specifica
p-service, or until the same team invokes an overrid
hile the team in Figure 4(b) is deployed, Tom would exp
76 F during normal loads and to 74 F during high loa

a), Mary expects the thermostat to normally be set to 7
peak energy prices. 

des mechanisms to resolve conflicts characterized by
channel on a radio or TV, the sound volume on the sa
room, or the temperature set on a thermostat, as in 

olders of a space may establish policies for each of 
which may be customized during provider deployment 
policies cover three aspects: 

pen to any visiting user on a pseudonym basis, or may
-registered authorized users. In the latter case, the request
iding the necessary credentials to the cp-service provider

(y)

(z

r

thermos

smart meter

server gauge

track(Bob)

thermostat

smart meter

server gauge

335 

 

; (a) 

find 

Bob 
eam 
ploy 
s. 

rent 
ot a 
the 
the 

aise 
sers 

ve a 
ally, 
ding 
pect 
ads.  

78 F 

y a 
me, 
the 

the 
and 

y be 
ting 
r. 

z)

stat



336 J.P. Sousa 

Fig. 6. Reso

− Multiplexing : sha
simultaneously, while ex

− Resolution : differe
providers, which keep a
from lower priority use
majority takes the statist
frequent and infrequent 
requests from frequent u
giving precedence to inf
robin mechanisms.  Leas
result in the least discom

Figure 6 shows the default p
is open and shared, allow
preferences with respect to
policy, so that conflicting re

Although not required t
needs; for example changin
or changing the resolution 
may be made at any time by
button to retrieve the type’s

Figure 7 shows an exam
scenario.  Time runs horizo
 

Fig. 7. Timeline of adap

resolved

se
t.t

em
p Mary

Tom

Bob

config

Mary 
deploy

(a)

 

olution sheet for the thermostat at Mary’s home 

ared providers may participate in several syste
xclusive providers participate in only one team at a time. 

ent rules are available to resolve requests on sha
a list of outstanding requests.  Priority will preempt requ
ers in favor of the one with the highest priority, wh
tical mode of the outstanding request’s parameters.  B
keep tallies of user requests, freq giving precedence

users, similarly to a frequent customer program, and inf
frequent users, similarly to the notion of fairness in rou
st Misery is applicable to requests pertaining quantities 

mfort for all requesters when averaged. 
policy associated with the thermostat activity type.  Acc

wing every user with access to a space to express th
o cooling.  Resolution of the set payload is set to the 
equests are resolved by averaging. 
to, stakeholders might customize this policy to suit th
ng the access to authorized and listing the authorized us
rule to priority and listing the priorities of users.  Chan
y an authorized stakeholder, who might also press the re
s default policy. 

mple of the adaptations and conflict resolution for a sim
ontally from left to right: initially Mary deploys the team

 

ptation with resolution, for configurations (x,y,z) in Figure 5 

78 77 76 78 76.7 78

78 78 78 82 82 82

76 74 74 74 74

74

(x) (y) (y) (y) (z) (y)

time
s 

Tom 
deploys 

(b)

high 
load

peak Bob 
visits

Bob 
leaves

ems 

ared 
ests 
hile 

Both 
e to 
freq 

und-
that 

cess 
heir 
LM 

heir 
sers, 
nges 
eset 

mple 
m in 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 337 

Figure 4(a), at some point Tom deploys the team in Figure 4(b), later a high load 
event is issued, etc.  The configuration row indicates the system configuration, as 
shown in Figure 5, that results from each event.  The rows labeled set.temp show the 
payload of events set issued by each team, with new incoming requests highlighted.  
The row at the top shows the value for set.temp, after applying the resolution policy 
in Figure 6.  Users will notice cooler air when Bob is present and when Tom’s server 
has high loads, although their original requests are automatically weighted against 
Mary’s concern with peak energy prices. 

5.4 Under the Hood 

A provider’s resolution mechanism keeps a list of outstanding requests per each input 
event in the activity.  In general, requests issued by a team override previous requests 
by the same team.  Also, requests issued by a team are automatically dropped when 
the team is withdrawn: the middleware sends a signal to the providers to discontinue 
all of the team’s activities. 

Resolution sheets define a mapping from incoming events to actual events 
processed by the provider.  Frequently, these rules are straightforward, i.e. the 
mapping does not change the event.  However, the interplay between set and default 
in the thermostat makes the mapping less trivial.  Specifically, if a team sends a 
default event, that is mapped to the removal of its previous set request, which has a 
similar effect whether or not the team is the sole client of the shared provider.  Figure 
6 shows the mapping of set onto itself, and the mapping of default to either (a) 
removing the previous set issued by the team, or (b) the suppression of the event, if 
no previous request was made by the team. 

5.5 Scalability 

Frequently, adaptation mechanisms rely on global optimization algorithms which 
have a complexity that grows, often non-linearly, with the size of the system. 

In contrast, meshing decisions are made locally by each service provider, i.e. a 
player in TeC, and the overall system structure emerges from such decisions. 

Specifically, when a user decides to deploy a design artifact at a space, the editor 
discovers and briefs each player.  Users and their supporting middleware need not 
become aware of which other users and design artifacts are competing for services at 
the space, for privacy reasons, but may become aware of the resolution policies of the 
discovered players.  It is upon each player to respond to the discovery enquires of 
different editors, and if its multiplexing policy allows, to mesh the briefings. 

Furthermore, meshing may result from a single design artifact such as the one in 
Figure 2.  In that example, several manage power activities may be deployed, e.g. on 
the smart phones of Bob’s family.  Because of their links to a stacked box, the 
briefings sent to the players of thermostat and dry inform them that conflicting 
requests may be received from different manage power players.  To resolve those, the 
stakeholders at Bob’s home might have agreed on LM and priority policies respectively 
for the thermostat and clothes drier (see Figure 6). 



338 J.P. Sousa 

That is, meshing policy is defined for each player deployed at a space.  Players 
come with default policies for their activity type, which can be configured by the 
stakeholders at the space, as desired. 

In a nutshell, meshing scalability is contingent neither on the complexity of the 
design artifacts to be deployed, nor on the size of the system that results of the 
meshing of such artifacts. 

6 Pliable Apps 

Propelled by mobile computing, adaptation to context, aka context-awareness, has been 
the prevalent form of self-adaptation in ubicomp [21].  Context-aware applications 
reconfigure their behaviors depending on sensed context such as user presence at a 
location, physical activity (walking, driving...), social activity (in a meeting...) etc. 

However, adaptation policies were often decided before deployment and fixed in 
the code, becoming hard to change after the system is deployed.  The usability 
community has observed that this causes users to perceive adaptive systems as rigid 
and to feel at the mercy rather than in control of technology [22]. 

Design constructs such as illustrated in section 4 are an important step towards 
enabling users to tailor adaptation: users may design parametric changes to the 
behavior of systems, e.g. the clothes drier adapting to energy prices.  However some 
adaptation requirements may require deeper, structural changes to an application. 

Pliable apps allow users to, first, design structural adaptation, and second, to 
change the way it works after deployment − Figure 1(a-c).  For that, we extend 
machine-interpretable design notations with (a) constructs to describe adaptation 
triggering events, such as context events, and (b) constructs to explicitly manipulate 
the run-time structure of an application. 

6.1 Designing Structural Adaptation 

Suppose that Susan, Mary’s elderly mother, developed a heart condition.  Her doctor 
allowed Susan to return home as long as her heart is under constant monitoring by an 
assisted living system that automatically calls Mary, and failing that, 911, should a 
situation of concern arise.  Furthermore, because Susan may become disabled in such 
circumstances, video should be streamed along with the phone call to help responders 
evaluate and respond more effectively to the situation. 

Susan discussed the tradeoff between safety and privacy with Mary and they 
agreed that the team should only place a phone call, and especially stream the video, 
if Susan is alone.  From a technical point of view, this system is structurally self-
adaptive: it only exhibits the feature that makes calls in response to a situation of 
concern when Susan is alone. 

Figure 8 shows a TeC system, a team (see section 4), that embodies these assisted 
living features.  The monitor heart activity will issue concern events, which always 
sound an audible alarm, and are additionally directed to activity make calls. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 339 

 

Fig. 8. Monitoring Susan’s heart condition 

Mary defined as a subteam, alert, the part of the design concerning the calls and 
video: the shaded rectangle in Figure 8.  Make calls issues two events directed at 
phone, which carry as payload the phone number to dial and a short informative 
message for a human on the other end of the line.  Of these events, call Mary is 
triggered as soon as heart is observed, while call 911, reacts to heart by waiting a 
short while for reassurance, and in the lack of it contacts the city’s emergency 
services.  To understand the details, the triggering condition for call 911 uses operator 
P, which postpones the observation in the first parameter by the period specified in 
the second parameter, and operator T, for toggle, which becomes alternately true or 
false once the first or second conditions are observed, respectively [17].  In the 
example, P(heart,0:01) sets a one minute time out after heart is observed, and 
T(heart,ok) disables it once ok is observed. 

Mary may reassure make calls, and avoid a call to 911 during a false alarm, by 
pressing key ‘5’ when she receives the phone call.  Recognizing key tone ‘5’ on the 
phone line is used as a triggering condition for event ack (the activity sheet for phone 
is not shown, for brevity).  Either of the call events will also start video streaming 
(event on in film), which is stopped once an ack event is issued. 

Structural adaptation works as follows: subteam alert is deployed when everyone 
but Susan leaves the space where Susan is, and it is retired when anyone but Susan 
enters that same space.  To understand the details, generic keywords everyone and 
anyone are defined in the track activity type, and Mary decided to use them.  Instead 
she could have listed trusted people, whose presence should withdraw subteam alert. 

TeC defines constructs start , to deploy a (sub)team, and stop , to retire a 
(sub)team.  In the example, whenever subteam alert is not deployed, the players for 
phone, make calls, and film keep working and possibly participating in other teams: 
they are just not part of Susan’s assisted living team. 

Figure 9 illustrates an adaptation scenario, where time moves from left to right.  
Mary is in the room with Susan when the assisted living team is first deployed, 
 

ke
y

monitor 
heart

phone

call Mary

concern

make 
calls

ack

ok

call

off

video
film

vid in

heart

track(
anyone\Susan)

track(
everyone\Susan) leave

enter

beep
alert @ leave.location

on

output/input event

asynchronous message

output/input stream

data stream

call 911



340 J.P. Sousa 

 

Fig. 9. Timeline of structural adaptations for Susan’s team in Figure 8 

therefore only the sensing part of the team in deployed.  Subteam alert is 
automatically deployed when Susan’s last visitor leaves, and it automatically 
withdraws when Susan’s friend, Frank, comes by.  Should a concern event be 
triggered, it will cause Susan’s heart monitor to beep, but Frank will help decide 
whether Susan’s heart rate is due to healthy excitement, or if there is cause for alarm. 

6.2 User Control of Adaptation 

The constructs above are at a much higher level of granularity than programming 
constructs for controlling the run-time creation/destruction of data structures (malloc, 
new...) and of processes (spawn, fork-exec...).  They are also at a coarser level than 
the operators to add/remove individual components and connectors, commonly used 
to manipulate run-time architectural descriptions of adaptive systems, e.g. [11].  The 
underlying reason is to make it easier for users to express feature-wide adaptations as 
a unit, and to bring out a view of the different configurations under different 
circumstances while highlighting the events that trigger those adaptations. 

For example, Mary and Susan might decide after some time that only video 
streaming should be excluded from the system when Susan has company, but calls 
should be made every time there is cause for concern.  For that, Mary could redefine 
the scope of adaptation in Figure 8 by reshaping the boundaries of subteam alert to 
include only activity film.  No other changes would be necessary. 

Although Figure 8 uses TeC syntax, it illustrates more general concepts for user-
controlled structural self-adaptation.  Namely, machine-interpretable design notations 
may describe adaptation at the grain of subsystems which is triggered by application-
level events.  Such events may originate in context sensing, e.g. associated to tracking 
the presence of users, or in gauging system metrics such as performance or load, e.g. 
the server gauge in Figure 4(b). 

What makes these kinds of adaptations user-controlled, is the fact that adaptation 
is described at the design level using machine-interpretable constructs.  Changes 
made by users to the design of adaptation can be automatically translated and 
(re)deployed at run time.  

ke
y

timeMary
visits

make calls

track(any...)

track(every...)

monitor heart

cp-service provider connection

Tom
visits

Mary
leaves

Tom
leaves

track(any...)

track(every...)

monitor heart

Frank
visits

track(any...)

track(every...)

monitor heartit hfilm

phone



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 341 

7 Bself-Healing 

The kinds of systems that we have discussed so far, and that characterize ubicomp, 
are deployed over a set of collaborating devices, such as cell phones, small 
computers, smart appliances, cameras, smoke detectors, etc.  

This kind of system organization is in contrast with both the client-server and with 
the cloud computing models.   Those assume the availability of powerful and reliable 
server infrastructures, even if the identity of such servers is dynamically bound and 
therefore “transparent” to clients, as in cloud computing.  In contrast, ubicomp 
systems may include an occasional powerful device, but no assumptions are made 
about the constant availability of server infrastructures. 

As discussed in section 2, ubicomp systems are often open and deployed in harsh 
environments:  in open systems, new components/devices may join the system, and in 
harsh environments any system component may fail or become disconnected. 

These characteristics cause mainstream solutions for self-healing to become brittle 
and/or hard to scale in ubicomp.  Classical approaches such as Rainbow [11] factor 
out self-healing and self-optimization capabilities to a small set of dedicated 
components.  These components are normally deployed with the servers they monitor, 
or they are deployed in one node and given oversight over the distributed system to be 
monitored.  Unfortunately, such centralized solutions present a single point of failure. 

To avoid that, some solutions replicate the knowledge about the whole system and 
healing capabilities on some or all nodes [13].  Unfortunately, replication creates 
complexity: coordination protocols must guarantee that all nodes have a consistent 
view of the system, reach consistent decisions, and don’t interfere with each other 
when performing recovery actions.   This approach does not fit ubicomp well, given 
the limited resources on most nodes. 

Created with ubicomp in mind, PCOM proposes a client-centered approach: the 
middleware interprets the requires spec of a node and automatically finds a 
replacement when a faulty service is invoked [23].  Unfortunately, a synchronous 
call-return style of interaction is only part of the story: some ubicomp nodes are 
meant to work autonomously and send messages asynchronously, e.g. a smoke 
detector, other nodes are meant to stream data, e.g. a camera, etc.  

Bself-healing recasts failure recovery for devices with limited processing, energy, 
and communications, and which may interact in a variety of styles.  Also, since users 
may arbitrarily turn off devices, forget to change batteries, or disconnect cables while 
cleaning the house, Bself-healing is resilient to failures and disconnections of any 
components, including those with self-healing responsibilities. 

To illustrate Bself-healing, Figure 10(a) shows a TeC system (section 4) for 
reporting smoke at the house of a hypothetical user, Fred.  A smoke detector may 
issue alert events which are picked up by input smoke in make calls.  The latter and 
activity phone work identically to the ones in Figure 8. 

7.1 Healing Protocol 

In bond self-healing, Bself-healing for short, each node p is assigned a healer: another 
node who (a) receives enough information to recover p’s activity should p fail; and 
(b) is responsible for monitoring p.  The two nodes thus have a healing bond.  
 



342 J.P. Sousa 

 

Fig. 10. Example smoke detection system (a) with two possible healing bond configurations, 
(b) and (c) 

Figure 10(b) shows a possible set of healing bonds for the team in Figure 10(a).  
Bonds are depicted informally as bone-resembling blobs with a darker circle, the 
“marrow,” on the healer side.  This set of bonds assign make calls as the healer for 
detect smoke and for phone, and phone as the healer for make calls. 

Figure 11 shows the player briefings for the activities in Figure 10.  In addition to 
encoding the activity sheets in Figure 10(a), the highlighted parts capture the healing 
bonds in Figure 10(b).  For example, briefing (p) informs the player for phone of two 
healing bonds: first, it should monitor a player at an IP address represented in the 
figure as mc-ip, and second, its own healer can be found at address mc-ip, incidentally 
the same address, given the configuration of bonds.  

A healing bond establishes a heartbeat protocol between a player and its healer: in 
the example, phone expects to see a heartbeat message originating from mc-ip every 
20s, and conversely, it should send a heartbeat message towards its healer every 10s.  
In case of failure, a healer is also responsible to send a rebind message to the 
neighbors that send messages towards the monitored player: in the example, the 
neighbor element in (p) informs phone of that responsibility. 

Figure 12 illustrates the Bself-healing protocol with a scenario.  Fred used his 
smart phone to edit and deploy the team in Figure 10(a).  The editor discovered a 
smoke detector in Fred’s kitchen and a landline phone nearby.  Activity make calls 
was assigned to a generic activity player also running on the smart phone. 

Therefore, TeC’s editor sent briefing (d) to the smoke detector: Figure 12 left-hand 
side.  It also sent the landline phone both (p) for its own activity, and (m) for its role 

detect 
smoke

phone

call Fredalert
make 
calls

smoke

ack

call 911
ok

call

(a)

ke
y healing bond

monitoring and re-discovery of peer
rebinding message

detect
smoke

phone

call Fredalert
make
calls

smoke

ack

call 911
ok

call
e

okk

e
smoke

(b)

ackl

detect
smoke

phone

call Fredalert
make
calls

smoke

ack

call 911
ok

call

oke

p

(c)

e a
smoke

e

ackl



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 343 

 

Fig. 11. Briefings for the activities in Figure 10(a), including the healing bonds in Figure 10(b) 
− highlighted 

as the healer of make calls.  Likewise, the editor sent the generic player on the cell 
phone both (m) for its activity, and (d) for healing detect smoke. 

At some point, Fred notes that his cell phone is running low on battery and turns it 
off, planning to look for the charger later: Figure 12, center.  The landline phone 
notes the absence of make calls’ heartbeats, searches for a player for a generic activity 
and finds a smart microwave.  It then sends briefing (m) to the microwave and a 
rebind message to all of make call’s neighbors, namely the smoke detector at ds-ip. 

Upon receiving the rebind message with the IP address of the new player for make 
calls, the smoke detector realizes it has a new healer.  Accordingly, it sends its own 
briefing (d) to the microwave, so that the latter could recover detect smoke, should 
the need arise, for example by discovering a smoke detector in another part of the 
house.  Likewise, the landline phone attaches a phone recovery briefing (p) to the 
message sent to its new healer. 

Later, the landline phone cable gets accidentally disconnected while cleaning the 
house: Figure 12 right-hand side.  The microwave, phone’s healer, notices the failure 
and looks for a new player for the phone activity type.  It finds a voice-over-IP 
application running on Fred’s home office computer, and proceeds to send it a phone 
briefing (p) plus a recovery briefing (m), as part of its role of healer for make calls. 

 

<activity-sheet type="detect smoke">
<out-evt name="alert" trigger="smoke">

            <target in-evt="smoke" ip="mc-ip" port="***" key="mc-k"/>
</out-evt>
<healer ip="mc-ip" port="***" hb=”0:03”/>

</activity-sheet>

<activity-sheet type="activity" name=”make calls”>
<in-evt name="smoke"/>
<in-evt name="ok"/>
<out-evt name="call Fred" trigger="smoke">

            <att name="dial" value="703 123 4567"/> <att .../>
          <target in-evt="call" ip="ph-ip" port="***" key="ph-k"/>

</out-evt>
<out-evt name="call 911" trigger="P(smoke,0:01)&T(smoke,ok)">

            <att name="dial" value="911"/> <att .../>
            <target in-evt="call" ip="ph-ip" port="***" key="ph-k"/>

</out-evt>
<monitor ip="ds-ip" hb=”0:03”/>
<monitor ip="ph-ip" hb=”0:00:10”/>
<healer ip="ph-ip" port="***" hb=”0:00:20”/>

</activity-sheet>

<activity-sheet type="phone">
<out-evt name="ack" trigger="keyTone5">

            <target in-evt="ok" ip="mc-ip" port="***" key="mc-k"/>
</out-evt>
<monitor ip="mc-ip" hb=”0:00:20”>

            <neighbor ip="ds-ip" key="ds-k"/>
</monitor>
<healer ip="mc-ip" port="***" hb=”0:00:10”/>

</activity-sheet>

(d)

(m)

(p)



344 J.P. Sousa 

 

Fig. 12. Timeline of Bself-healing for the team in Figure 10(b), facilitated by briefings (d,m,p) 
as defined in Figure 11 

7.2 Architectural Properties 

Resilience.  We argued above that decentralized solutions for self-adaptation avoid a 
single point of failure, and therefore are a better fit for the harsh environments in 
ubicomp.  Because self-adaptation requires run-time service discovery in open 
domains, we must examine the architectural properties of discovery mechanisms. 

There exist two mainstream styles of discovery: directory-based and broadcast-
based [3].  In the first, components register their services with a directory, which then 
brokers incoming requests by type while possibly factoring in optimality criteria 
expressed by the requester, e.g. with respect to quality of service or physical 
proximity between requester and provider [24].  Unfortunately, this creates a critical 
dependency on the directory hosting device and its network connectivity. 

In broadcast-based discovery, service requesters broadcast their needs and then 
select a provider among those who answer.  However, to avoid flooding the internet, a 
historic design decision at the level of the internet protocols limit broadcast to the 
boundaries of the local network where it is issued; that is, network routers and bridges 
drop broadcast messages. 

Bself-healing employs broadcast-based discovery, thus avoiding the creation of a 
single point of failure on the service directory.  To scale discovery past network 
domain boundaries we are working on design notations to scope discovery to concrete 
locations [18], which will enable resolvers on the network infrastructure to tunnel the 
broadcast to the appropriate local networks.  This is the topic of ongoing work. 

Recoverability. There is a tradeoff between recoverability in distributed protocols and 
protocol footprint.  On the high end of recoverability, each component holds a replica 
of knowledge about the whole system and can recover any other component.  
However, the protocols must guarantee that all healers have a consistent view of the 
system, reach consistent decisions, and perform consistent recovery actions. 

(p,m)

(d)

(m,d)

ke
y

rebinding

p

m

(p,m) (m,p)

timeFred turns off 
cell phone

landline accidentally 
unhooked

(d)

briefingfailure



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 345 

Since each healing bond pertains to the recovery of only one component, the Bself-
healing protocol is much simpler than the solutions above.  It is therefore a better fit 
for small devices. 

The downside occurs when a component and its healer both fail.  In the example in 
Figure 12, if detect smoke fails while make calls is being recovered, then the 
knowledge of (d) is lost and detect smoke will not be recovered.  Nevertheless, this 
protocol can recover from any isolated failure and many cases of compound failures. 

Of course, this is a statement about the protocol, not about the environment in 
which the system is running: if the environment lacks alternative providers for the 
failed features, then no protocol, no matter how sophisticated, will be able to heal the 
system. 

Models footprint. The knowledge held by a component follows the tradeoff above, it 
decreases with simplicity but it is never zero.  Even without self-healing, a component 
knows who are its neighbors and the rules governing communication, e.g. contracts, 
or in the case of TeC, activity sheets. 

In Bself-Healing, a component is additionally aware of, first, its healing bonds: the 
monitor and healer elements on the sheets in Figure 11.  Here, the placement of the 
healing bonds along the application’s connectors enables piggybacking of monitoring 
information and reduces the distribution of encryption keys.  Second, a healer is also 
given the necessary knowledge to perform healing: in TeC, the monitored 
component’s briefing, e.g. (d) being passed to the microwave in Figure 12. 

As Figure 10(b) and (c) suggest, there is more than one way to assign healing 
bonds.  The assignment algorithm that produced the bonds in Figure 10 (b) follows 
the communication paths already in the design, which enables piggybacking 
heartbeats on application messages, an advantage in case of frequent messages, and 
reduces the distribution of encryption keys.  

The algorithm that produced (c) avoids mutual bonds, as between phone and make 
calls in (b), thus improving recovery from double failures.  For example, if phone and 
make calls both fail, in (b) neither will be recovered, while in (c) detect smoke will 
still be able to recover phone.  The loss of a single component is still crippling in this 
example, but a larger system might be able to work in a degraded mode without one 
of its components. 

Irrespectively of the placement of bonds, when a component p is being recovered, 
the knowledge to necessary for p to perform healing is being passed by the 
components to be monitored by p, rather than by p’s healer.  This avoids a recursion 
problem:  in the example, if phone were to have the complete knowledge to heal 
make calls, that would include the knowledge for make calls to heal detect smoke.  In 
a larger system, this recursion might produce long chains which would jeopardize 
both protocol footprint and being resilient to partial losses. 

Statefulness. Providers are stateless in many service-oriented systems, including 
TeC’s, thus simplifying the protocols and knowledge necessary for healing.  

The proposed solution may be extended by having checkpoints of a component’s 
state sent periodically to its healer, e.g. piggybacked on the heartbeat messages.  A 
similar idea supports the follow-me mechanism in Project Aura, which suspends a 



346 J.P. Sousa 

service in one provider and resumes it in another by transferring a markup 
representation of the service’s state [14]. 

Responsiveness. There is also a tradeoff between the responsiveness of healing and 
the ability to use mobile devices: the higher the heartbeat rate, the quicker the 
detection and healing, but the higher the communication overhead and the draw on 
batteries.  In hostile environments, a high heartbeat rate also increases the chances of 
adversarial localization of a mobile device, as well as the chances of cracking 
encryption by brute-force attacks. 

Bself-healing has each component propose a maximum supported rate during 
discovery, which may be confirmed or relaxed during briefing (monitor elements on 
the sheets in Figure 12).  At any rate, recurring communication losses may lead a 
healer to believe that a monitored component has failed, and to inadvertently create a 
zombie by rebinding its neighbors to a replacement.  The neighbors may detect that an 
incoming message comes from a zombie, by virtue of keeping track of previous 
network identifiers, and reply to it saying that it is no longer part of the system.  
However, in domains such as search and rescue, messages from zombies may carry 
important information thus calling for further work on the treatment of zombies. 

8 A Style for Adaptation in Ubicomp 

The kinds of self-adaptation discussed in this paper and the strategies for their 
implementation build on a few principles shared by many approaches for self-
adaptation, including TeC.  Except for these principles, the particulars of TeC syntax 
and semantics are incidental to the discussion, and TeC terminology is used merely 
for convenience.  Specifically, the principles are: 

− Service-orientation: systems are built out of generic parts which are pre-deployed 
and running somewhere on the network.   

− Service discovery carried out by automated mechanisms at run time, whenever 
there is call to find a new provider for a desired service/feature. 

− Automated deployment of systems based on  models that are precise enough to be 
interpreted by automated tools.  This builds on automated service discovery and 
includes capabilities to fit a generic part to a system-specific role.  Examples of 
such fitting include briefing in TeC, activation in Aura [14], and service 
invocation/interconnection, e.g. [5], [11]. 

The remainder of this section discusses strategies for implementing the kinds of self-
adaptation in the previous three sections on top of these principles.   

8.1 Impact of Decentralization 

We have argued that the pursuit of resilience leads away from centralized components 
and pushes responsibilities towards system components.  Part of this argument  was 
that resilient solutions based on replication/redundancy of system-wide features, 
while appropriate for servers and cloud computing, are awkward for ubicomp. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 347 

Decentralization does not mean that self-adaptation is being pushed out of 
middleware: it may reside with the pieces of middleware distributed with system 
parts, and which facilitate their integration into the system.  Decentralization does 
mean that each part gets local/neighborhood responsibilities, as opposed to the 
system-wide responsibilities in replication-based solutions. 

This has a significant impact on all mechanisms related to self-adaptation.  A large 
body of work, including all of the author’s prior work [14], [17], [18], [25], relies on 
centralized components.  The impact on discovery and on self-healing was already 
discussed in section 7, but it also impacts structural adaptations for pliable apps. 

With a centralized approach, structural adaptations could be facilitated by a central 
deployer.  The deployer would hold the parts of a design to be dynamically deployed 
and it would register to receive their start  and stop  events.  For example, in 
Figure 8, the deployer would hold the briefings for all the alert subteam, and the 
briefings for both track activities would ask to direct the enter and leave events 
towards the deployer.  Upon reception of an leave event, the deployer would discover 
players for, and deploy all the activities in subteam alert.  Similarly, upon enter the 
deployer would instruct all those players to stop their activity for alert. 

In a decentralized approach, that role may be picked up by (the middleware on) the 
players themselves.  Back to Figure 8, the track player that issues an event towards 
start  holds all the briefings for all the alert subteam.  When leave is triggered, track 
discovers players for each of the activities and sends them the corresponding 
briefings.  It will also inform the player which issues an event towards stop  of the 
identities of those players so that the latter can stop them when the time comes. 

This does not represent a significant increase of the capabilities required from 
individual players, since Bself-healing already requires them to discover other 
players; specifically, replacements for the monitored components.  Also, it does not 
create a critical point of failure on the player that starts a subteam, since its briefing 
now includes the briefings of the started subteam, and is exchanged with and 
recovered by its healer, as illustrated in Figure 12. 

8.2 Diversity in Triggers and Changes 

A key aspect of self-adaptation is capturing the changes to be made to the system and 
what triggers those changes.  In Rainbow, for example, changes are described as 
adaptation scripts written by domain experts, and triggers are either user-defined QoS 
goals, for B3 self-adaptation, or failures for B2 [11]. 

The different kinds of self-adaptation in this paper capture triggers and changes 
distinctly.  This strategy seeks the most effective solution for each case, and is in 
contrast with seeking a one-size-fits-all solution for all kinds of adaptation.  

In design meshing, changes are described as design artifacts, such as in Figures 2, 
4, 8, and 10, and triggers are user instructions to deploy or withdraw system support 
for those artifacts.  In conflict resolution, changes are derived from the resolution 
policy associated with each shared component, Figure 6, and therefore are described 
independently of specific design artifacts, i.e. features, that users want to deploy.  
Triggers are application-level requests made by each user’s (part of the) system. 



348 J.P. Sousa 

In Bself-healing there is no explicit description of changes, since they always 
concern the replacement of a failed component by another for the same service type.  
The only description is one that affects the responsiveness of adaptation and concerns 
the rate of hart-beat supported by each component. 

In dynApps, changes are explicitly described in the application logic, i.e. in the 
design artifacts, since the point is to turn on or off features of the application in 
response to application-level events.  In other words, the application logic cannot be 
understood without grasping the changes that take place and what causes them. 

9 Related Work 

Context-awareness is the prevalent form of self-adaptation in ubicomp [21].  
Examples include smart phone-based reminders and navigation [26]; medicine 
cabinets [27]; and plant care solutions that examine sensor data, consult species-
specific care instructions in a plant encyclopedia service, and post watering tasks to 
robotic gardeners [28].  Larger applications have been built to support the work of 
medical and nursing staff in hospitals [29], [30].  

Here, researchers have focused on building prototypes pushing the limits of 
technology and evaluating user acceptance and engagement.  From a software 
engineering point of view, these are custom-made applications where the components, 
interconnections, and permissible adaptations are carefully crafted and controlled at 
code level. 

The agents community has worked on adaptation to diverse execution 
environments by providing agents that have different algorithms but similar 
responsibilities [31].  In other words, this body of work focuses on making sure that 
adaptation is possible by enriching the execution environment with redundant 
components for the same feature. 

The self-adaptation community focuses on the principled design of mechanisms to 
detect need for, and to carry out adaptation, under the assumption that the execution 
environment has redundant capabilities readily available [32].   

The very few examples of applying such mechanisms to ubicomp include PCOM 
[23], already mentioned in section 7, and the application of ArchJava to the robotic 
plant care mentioned above [33].  These examples propose client-centric approaches 
to self-healing, i.e. a ‘main’ component replaces invoked services when they fail.  
Although a step in the right direction, these solution make no provision to protect the 
‘main’ component.  Also, the nature of components and interactions in ubicomp is 
more diverse than service invocation, to include asynchronous messages and media 
streaming, which are not covered in these examples. 

Bself-healing makes sure that every component is monitored by a peer, regardless 
of the style of interaction or even regardless of the existence of a functional 
interaction between the two.  Bself-healing shares with these examples the strategy 
that each component has local/neighborhood responsibilities, as opposed to the 
system-wide responsibilities in replication-based solutions [13] and in centralized 
solutions [11]. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 349 

Table 1 made the case that self-healing (B2) is only a part of a wider landscape of 
self-adaptation.  Pliable apps (B4) are distinct from self-modifying code (C4).  A self-
modifying program may alter some of its own code, either as a result of initialization 
parameters or upon reaching a certain state, usually to improve performance [34].  In 
contrast, the design of pliable apps is not self-modifiable, but it contain rules for 
modifying the run-time organization of the system. 

Pliable apps share column B with classical work in self-healing and self-
optimization [2], [11], [12], [35], that is, they effect changes to the run-time structure.  
However, pliable apps differ from the classics both in the stimuli for adaptation and 
on the way that changes are described.  In the classics, adaptation is triggered by 
system-level reasons such a failures and degraded performance.  The changes are 
described as scripts, plans, or algorithms designed by engineers and tucked away in 
components dedicated to self-adaptation. 

In pliable apps, adaptation is triggered by domain events and the changes 
correspond to modes of operation in the application logic.  Therefore the description 
of stimuli and the changes they trigger come front and center to system design.  
Designing variations of behavior with system state is fundamental to programming 
and to state machines, but in pliable apps the changes are structural changes to the 
run-time organization of a distributed system.  Furthermore, pliability also applies to 
adaptation itself by allowing users to tailor it to their needs, and to change adaptation 
at run time: a control loop explicitly closed by users, as in Figure 1(c). 

Design meshing performs B7 self-adaptation since the stimuli are design artifacts, 
both the arrival of new artifacts and the evolution of deployed designs.  This kind of 
adaptation complements classical B2-3 self-adaptation: while B2-3 is meant to 
maintain system features and QoS in the face of adversities such as failures, resource 
shortages, and increased workloads [2], [11], B7 is meant to change system features in 
response to the desires of (multiple) users. 

Design meshing is different from Aspect-Oriented Programming (AOP) and from 
Software Product Lines (SPLs).  AOP starts with a set of modules that encode 
different concerns and weaves them at join points to create one program with a 
coordinated set of features [36].  In design meshing, the set of features pertaining to 
each design artifact is separate and may be deployed and withdrawn independently 
from others.  SPLs start from a parametric model with variation points and instantiate 
it multiple times to generate a family of separate systems [37].  Design meshing starts 
with a number of unrelated design artifacts produced by independent users and 
combines them taking into account the incidental sharing of cp-services, for which 
separate replicas cannot be created for each user. 

This sharing leads to conflicts, which are handled by A7 self-adaptation: resolution 
changes parametric behaviors of the system based on the various and varying 
intentions expressed in design artifacts.  Other communities have addressed conflict 
resolution:  in economics, auctions support a form of negotiation among multiple 
parties competing for a limited resource [38];  the agents community developed 
protocols for multi-attribute negotiation [39]; and mechanism design is a subfield of 
game theory that investigates incentive-punishment mechanisms for promoting 
desired behaviors among independent actors [15].  The resolution mechanisms 
described in section 5.3 draw on that work for policies that can be applied 
automatically at run time: a feed forward control loop.  By promoting the choice of 



350 J.P. Sousa 

policies to the design level, and which can be changed at run time, this mechanism 
supports an additional control loop, now explicitly closed by users. 

10 Conclusion and Future Work 

Ubiquitous computing is an exciting area to work on self-adaptation.  In addition to 
bringing up new challenges for classic kinds of adaptation, such as self-healing, 
ubicomp stimulates thinking about new kinds of adaptation such as design meshing. 

Design meshing is motivated by the increasing expectation that smart spaces make 
their services available to all occupants, even if at different levels of access.  Meshing 
supports the dynamic deployment and withdrawal of system features as users come 
and go.  Cross effects, and possible conflicts, arise from the sharing of cyber-physical 
services, such as thermostats, on which operations are expected to have a lasting 
effect.  Conflicts are resolved by associating stakeholder-defined policies with each 
service provider covering authorization, usage multiplexing (shared vs. exclusive) and 
resolution, (e.g. priority vs. least misery). 

Pliable apps are motivated by context awareness, or more broadly by the need to 
describe changes in features that are triggered by domain/application events, and that 
are translated into modes of operation where the application exhibits distinct features.  
Because the application logic cannot be fully understood without grasping the 
changes that take place and what causes them, adaptation is defined jointly with other 
structural and behavioral aspects of the application.  A key aspect of pliability is that 
users may tailor such adaptation and they may change it at run time, depending on the 
evolution of their needs. 

The recast of self-healing into bond self-healing, or Bself-healing, is motivated by 
harsh environments where any component may become disconnected and by the 
limitations of the devices that typically support ubicomp systems.  This pursuit of 
resilience leads away from centralized components dedicated to self-adaptation and 
pushes responsibilities towards system components.  This does not mean that self-
adaptation is being pushed out of middleware, but it does mean that each component 
is given neighborhood responsibilities, as opposed to having one (or more) 
component(s) with system-wide responsibilities. 

The adoption of a decentralized style to implement self-adaptation has a significant 
impact on all related mechanisms, from service discovery to the way structural 
changes are coordinated.  This paper discusses implementation strategies that are 
applicable to approaches for ubicomp self-adaptation other than TeC that share with it 
the basic tenets of service orientation and of automated deployment of models. 

A key point of this paper is that users, both domain experts and end users, will play 
an increasing role in designing and evolving ubicomp systems.  Because some kinds 
of self-adaptation, e.g. context awareness and multi-user aspects, are a central element 
of the behavior of such systems, self-adaptation cannot be hidden from users.  The 
language constructs propose here  enable users to tailor self-adaptation to their needs, 
and to evolve it after deployment in response to unanticipated changes. 

The evaluation of TeC has so far covered (a) its power to express and deploy 
systems [6], [18], (b) its amenability to automated checking of behaviors [17], and (c) 
the usability of the language and editors by users other than the researchers [6]. 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 351 

Ongoing work  includes taking the implementation of the adaptation mechanisms 
discussed in this paper beyond proofs of concept, and incorporating robust versions 
thereof  into the TeC middleware. 

This will enable the evaluation of such adaptation mechanisms concerning (i) the 
effectiveness of adaptation in realistic situations, and (ii) the usability of tailoring 
adaptation for a diverse user population.  Evaluation will proceed in stages: first, in-
the-lab empirical studies with college students, starting with science majors and then 
widening up to the student population at large.  Second, empirical studies conducted 
at the homes of select members of my research group.  This will enable creating 
conditions close to in-the-wild, but where a researcher is close at hand to address 
possible problems.  And third, in-the-wild empirical studies at homes in Masonvale, 
GMU’s housing neighborhood for employees, graduate and professional students. 
 
Acknowledgments. This work was supported in part by grant CCF-0820060 from the 
National Science Foundation.  The views, findings, and conclusions expressed in this 
material are those of the author and do not necessarily reflect the views of the 
National Science Foundation. 

References 

[1] W3C, Web Services Description Language (WSDL 2.0), http://www.w3.org/TR/wsdl20-
primer/ (accessed: February 15, 2012) 

[2] Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems 
Journal 42(1), 5–18 (2003) 

[3] Zhu, F., Mutka, M., Ni, L.: Service Discovery in Pervasive Computing Environments. 
IEEE Pervasive Computing 4(4), 81–90 (2005) 

[4] Sousa, J.P., Schmerl, B., Steenkiste, P., Garlan, D.: Activity-oriented Computing. In: 
Advances in Ubiquitous Computing: Future Paradigms and Directions, pp. 280–315. IGI 
Publishing (2008) 

[5] Menascé, D., Gomaa, H., Malek, S., Sousa, J.P.: SASSY: A Framework for Self-
Architecting Service-Oriented Systems. IEEE Software 28(6), 78–85 (2011) 

[6] Sousa, J.P., Keathley, D., Le, M., Pham, L., Ryan, D., Rohira, S., Tryon, S., Williamson, 
S.: TeC: End-User Development of Software Systems for Smart Spaces. Intl Journal of 
Space-Based and Situated Computing 1(4), 257–269 (2011) 

[7] Humble, J., Crabtree, A., Hemmings, T., Akesson, K.P., Koleva, B., Rodden, T., 
Hansson, P.: Playing with the Bits: User-Configuration of Ubiquitous Domestic 
Environments. In: 5th Intl Conf. Ubiquitous Computing, Seattle, WA, pp. 256–263 
(2003) 

[8] Truong, K.N., Huang, E.M., Abowd, G.D.: CAMP: A Magnetic Poetry Interface for End-
User Programming of Capture Applications for the Home. In: Davies, N., Mynatt, E.D., 
Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 143–160. Springer, Heidelberg 
(2004) 

[9] Kawsar, F., Nakajima, T., Fujinami, K.: Deploy Spontaneously: Supporting End-Users in 
Building and Enhancing a Smart Home. In: 10th Intl. Conf. Ubiquitous Computing, 
Seoul, Korea, vol. 344, pp. 282–291(2008) 

[10] Singh, R., Bhargava, P., Kain, S.: State of the art smart spaces: application models and 
software infrastructure. ACM Ubiquity 7(37) (September 2006) 



352 J.P. Sousa 

[11] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: 
architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37(10), 
46–54 (2004) 

[12] Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: Future of 
Software Engineering, Minneapolis, MN, pp. 259–268 (2007) 

[13] Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for 
Distributed Systems. In: Workshop on Self-healing Systems, Charleston, SC, pp. 33–38 
(2002) 

[14] Sousa, J.P., Poladian, V., Garlan, D., Schmerl, B., Shaw, M.: Task-based Adaptation for 
Ubiquitous Computing. IEEE Trans on Systems, Man, and Cybernetics, Part C, Sp Issue 
on Eng. Autonomic Systems 36(3), 328–340 (2006) 

[15] Varian, H.R.: Economic Mechanism Design for Computerized Agents. In: USENIX 
Workshop Electronic Commerce, pp. 13–21 (1995) 

[16] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, 
J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley 
Professional (2003) 

[17] Sousa, J.P.: Foundations of Team Computing: Enabling End Users to Assemble Software 
for Ubiquitous Computing. In: Intl. Conf. on Complex, Intelligent and Software Intensive 
Systems, Krakow, Poland, pp. 9–16 (2010) 

[18] Sousa, J.P., Tzeremes, V., El-Masri, A.: Space-Aware TeC: End-User Development of 
Safety and Control Systems for Smart Spaces. In: IEEE Intl. Conf. on Systems, Man, and 
Cybernetics, Istanbul, Turkey, pp. 2914–2921 (2010) 

[19] Sabzevar, A., Sousa, J.P.: Authentication, Authorization, and Auditing for Ubiquitous 
Computing: a Survey and Vision. Intl Journal of Space-Based and Situated 
Computing 1(1), 59–67 (2011) 

[20] Asmidar, R., Jais, J.: A review on extended role based access control (E-RBAC) model in 
pervasive computing environment. In: 1st Intl Conf Networked Digital Technologies, 
Ostrava, Czech Republic, pp. 533–535 (2009) 

[21] Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Intl Journal 
of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007) 

[22] Barkhuus, L., Dey, A.K.: Is Context-Aware Computing Taking Control away from the 
User? Three Levels of Interactivity Examined. In: Dey, A.K., Schmidt, A., McCarthy, 
J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 149–156. Springer, Heidelberg (2003) 

[23] Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - a component system for 
pervasive computing. In: Conf. on Pervasive Computing and Comms, Orlando, FL, pp. 
67–76 (2004) 

[24] Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic Configuration of Resource-
Aware Services. In: 26th International Conference on Software Engineering, Edinburgh, 
UK, pp. 604–613 (2004) 

[25] Sousa, J.P., Zengin, Z., Malek, S.: Towards Multi-Design of Situated Service-Oriented 
Systems. In: Intl Workshop on Principles of Engineering Service Oriented Systems, Cape 
Town, South Africa, pp. 57–63 (2010) 

[26] Ludford, P.J., Frankowski, D., Reily, K., Wilms, K., Terveen, L.: Because I Carry My 
Cell Phone Anyway: Functional Location-Based Reminder Applications. In: SIGCHI 
Conference on Human Factors in Computing Systems, Montréal, Canada, pp. 889–898 
(2006) 

[27] Gershman, A., McCarthy, J., Fano, A.: Situated Computing: Bridging the Gap between 
Intention and Action. In: 3rd Intl Symp. on Wearable Computing, San Francisco, CA 
(1999) 



 Towards User Tailoring of Self-Adaptation in Ubiquitous Computing 353 

[28] LaMarca, A., Brunette, W., Koizumi, D., Lease, M., Sigurdsson, S.B., Sikorski, K., Fox, 
D., Borriello, G.: PlantCare: An Investigation in Practical Ubiquitous Systems. In: 
Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, p. 316. Springer, 
Heidelberg (2002) 

[29] Bardram, J.E.: Applications of context-aware computing in hospital work: examples and 
design principles, pp. 1574–1579 (2004) 

[30] Mitchell, J.: El Camino Hospital first ‘smart hospital’ in US. Action for Better Healthcare 
(2010), http://actionforbetterhealthcare.com/?p=1172 (accessed: 
February 15, 2012) 

[31] Huhns, M., Holderfield, V., Gutierrez, R.: Robust Software Via Agent-Based 
Redundancy. In: Intl Joint Conf. Autonomous Agents & Multiagent Systems, Melbourne, 
Australia (2003) 

[32] Ghosh, D., Sharman, R., Rao, H., Upadhyaya, S.: Self-healing systems — survey and 
synthesis. Decision Support Systems 42(4), 2164–2185 (2007) 

[33] Aldrich, J., Sazawal, V., Chambers, C., Notkin, D.: Architecture-Centric Programming 
for Adaptive Systems. In: Workshop on Self-Healing Systems, Charleston, SC, pp. 96–
98 (2002) 

[34] Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: Conf. on 
Programming Language Design and Implementation, pp. 66–77 (2007) 

[35] Oreizy, P., Gorlick, M., Taylor, R., Heimigner, D., Gregory, J., Medvidovic, N., Quilici, 
A., Rosenblum, D., Wolf, A.: An Architecture-Based Approach to Self-Adaptive 
Software. IEEE Intelligent Systems (1999) 

[36] Rashid, A., Aksit, M. (eds.): Transactions on Aspect-Oriented Software Development I. 
LNCS, vol. 3880. Springer, Heidelberg (2006) 

[37] Cetina, C., Fons, J., Pelechano, V.: Applying Software Product Lines to Build 
Autonomic Pervasive Systems. In: 12th Intl Software Product Line Conf., pp. 117–126 
(2008) 

[38] Milgrom, P.: Auctions and Bidding: a primer. Journal of Economic Perspectives 3(3), 3–
22 (1989) 

[39] Fatima, S., Wooldridge, M., Jennings, N.R.: An agenda-based framework for multi-issue 
negotiation. Artificial Intelligence 152(1), 1–45 (2004) 

 



Hierarchical Self-Optimization

of SaaS Applications in Clouds�

Bradley Simmons1, Hamoun Ghanbari1, Sotirios Liaskos1,
Marin Litoiu1, and Gabriel Iszlai2

1 York University, 4700 Keele Street, Toronto, Canada
{bsimmons,liaskos,mlitoiu}@yorku.ca, hamoun@cse.yorku.ca

2 IBM, Toronto Software Lab., 8200 Warden Avenue, Markham, Canada
giszlai@ca.ibm.com

Abstract. This chapter introduces a framework and a methodology to
manage a SaaS application on top of a PaaS infrastructure. This frame-
work utilizes PaaS policy sets to implement the SaaS provider’s elasticity
policy for its application server tier. Adaptation is based on strategy-
trees, which allow for systematic capture, representation and reasoning
about adaptation variability, based on hierarchically organizing different
levels of temporal granularity. Thus, a strategy-tree is utilized at the
SaaS layer to actively guide policy set selection at runtime in order to
maintain alignment with the SaaS provider’s business objectives. This
way, the SaaS provider’s attitudes and preferences reflecting their gen-
eral business needs are incorporated into the adaptation mechanism in an
organized and accessible manner. Results from an experiment conducted
on a real cloud are presented in support of this approach.

1 Introduction

Cloud computing [2, 8, 15, 23] represents an approach to IT which has emerged
in large part due to improvements in virtualization technologies1 [5] and the
construction and commoditization of large data centers from which infrastruc-
ture (IaaS), platform (PaaS) and software (SaaS) are provided on-demand to
end users over the Internet. In fact, this three-layered cloud computing architec-
ture [20] has assumed the role of a de-facto standard.

� This is an extended version of a short paper published previously: B. Simmons, H.
Ghanbari, M. Litoiu and G. Iszlai, ”Managing a SaaS application in the cloud using
PaaSpolicy sets and a strategy-tree,”Network andServiceManagement (CNSM), 2011
7th InternationalConference on, vol., no., pp.1-5, 24-28Oct. 2011. “Permission tomake
digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than IFIP must be honored. Ab-
stracting with credit is permitted. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.”

1 http://www.vmware.com/

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 354–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.vmware.com/


Hierarchical Self-Optimization of SaaS Applications in Clouds 355

A PaaS provider is an enterprise that is responsible for leasing application envi-
ronment topologies to SaaS provider clients for various durations of time. A topol-
ogy is built upon infrastructure that is purchased from various IaaS providers upon
which the middleware container instances are run. An application environment
topology is composed of a set of system service instances S (e.g., load balancers,
LDAP servers, . . . ), platform service instances P (e.g., web server, application
server, database server, . . . ) and the set of licenses L to support all instances in P
(should they be required). Additional platform service instancesmay be purchased
from and/or released to the PaaS provider at runtime as needed.

A SaaS provider is an enterprise that provides a software offering that is run
from within a PaaS topology. There are many possible economic models which
can be utilized by a SaaS provider (e.g., free with advertisements, membership
cost per period of time, . . . ).

Regardless of the layer, a service provider has long term business objectives
to achieve. Further, as its service is providing some form of IT resources to a
dynamic set of clients, how effectively it manages these resources is key to how
successful it is in meeting its business objectives. In general, an enterprise will
attempt to maximize profit where profit can be understood to represent the
difference between revenue and cost.

Consider a SaaS provider running on a cloud. This SaaS provider leases a
platform topology from a single PaaS provider and offers one application to a
dynamic set of clients. Several aspects of a platform topology (as offered by
the PaaS provider) may be configured dynamically via policy. A policy can be
understood to represent “. . . any type of formal behavioural guide” that is input
to the system [16]. An elasticity policy governs how and when resources (e.g.,
application server instances at the PaaS layer) are added to and/or removed from
a cloud environment [13]. One way of specifying an elasticity policy is through
a set of policy rules. It has been described previously [30] that a set of policies
may be thought of as a strategy. Multiple strategies may be defined to achieve
the same set of objectives [31].

It is assumed that the SaaS provider’s business objective is to maximize profit.
This can involve both the maximization of revenue generation and the minimiza-
tion of cost. For example, maximization of revenue generation varies directly with
the number of clients serviced. Similarly, minimization of cost varies directly with
the number of platform service instances that are purchased over time. Different
strategies which are defined to achieve the same set of objectives might result in
very different outcomes.

Thus, constructing models that allow continuous adaptation of the strategy
based on the contextual circumstances (load quantity and quality, prices, service
level agreement violation costs) is a challenging problem. One of the problems
is the design, comprehension and communication of the adaptation approach
which is overly difficult with continuous mathematical models or parametrized
policies and without a more systematic modeling approach.

To address this problem of systematically designing the adaptability aspect
of software infrastructures, we have introduced the concept of strategy-trees [29].



356 B. Simmons et al.

Strategy-trees constitute hierarchical organizations of adaptation decisions, struc-
tured in a way that allows stratification of decisions based on the time horizon in
which they apply. Thus, long term decisions/options are refined into shorter term
ones until they reach rapid low level alternations of fixed configuration strategies.
Strategy-trees have the benefit of offering a better organization of adaptation
variability, in a way similar to goal models [18,22] and feature models [26] used
in application software engineering, while allowing designers to reason about the
depth and cost of adaptation actions.

In this chapter, we present one step toward the realization of our earlier con-
ceptual work with regards to applying strategy trees to a SaaS layer manager
in the context of a business driven cloud optimization architecture [19, 29].
The contributions are as follows. We introduce a framework and a methodology
to manage a SaaS application on top of a PaaS provider’s infrastructure. This
framework utilizes PaaS policy sets to implement the SaaS provider’s elastic-
ity policy for its application server tier. A strategy-tree is utilized at the SaaS
layer to actively guide policy set selection at runtime in order to maintain align-
ment with the SaaS provider’s business objective, specifically to maximize profit.
Experimental results are presented that reflect positively on this approach.

The remainder of the chapter is structured as follows. Section 2 introduces a sce-
nario involving a SaaS provider running on a PaaS topologywhich is used through-
out the remainder of the chapter. Section 3 provides a brief overview of the concept
of strategy-trees and describes the design of a simple strategy-tree for the scenario
introduced in the previous section. Section 4 introduces the management architec-
ture for managing SaaS applications on top of a PaaS provider’s infrastructure.
Section 5 presents an experiment demonstrating the effectiveness of this approach
in the context of the introduced scenario. Section 6 offers a discussion of the ex-
perimental results. Section 7 provides an overview of some related work. Section 8
presents our conclusions and thoughts on future work.

2 Scenario

Consider a SaaS provider offering a standard multi-tiered application to a dy-
namically growing and shrinking set of clients. Revenue is proportional to the
number of users (sessions) that utilize the service (as each user is statistically
linked to some amount of advertising dollars). Cost is impacted by the (i) cost of
purchasing the topology and (ii) additional platform service instances purchase
over time. There is also a (subjective) cost associated with the loss of future
business which is a more speculative (and varies with client response time).

The objective of this SaaS provider is to maximize profit by both maximizing
revenue and by minimizing cost. It should be noted that maximizing revenue
can have an adverse effect on minimizing cost and vice versa. This interrelated-
ness greatly complicates the achievement of the main objective. Trade-offs must
be made in the pursuit of the overall objective. The next section will consider
the design of three, alternative elasticity policies (policy sets), to achieve the
objectives under different sets of expectations and assumptions.



Hierarchical Self-Optimization of SaaS Applications in Clouds 357

2.1 Elasticity Policy

An elasticity policy governs how and when resources are added to and/or re-
moved from a cloud environment. In a production setting, the elasticity policy
might be highly complex in order to handle the numerous eventualities and sit-
uations that are likely to arise. However, in this illustrative scenario, several
simplifying assumptions have been made in order to streamline and focus the
discussion.

It is assumed that the SaaS offering (i.e., application) is tightly cpu-bound.
This assumption allows us to focus on the single metric, cpu idle, which is
considered exclusively in the design of the policy set for this scenario. Further,
the policy sets defining the elasticity policy focus only on the application server
tier of the SaaS offering. In reality, an elasticity policy is meant to govern changes
in resource allocation to all tiers of an application and this may (and would likely)
involve the consideration of various application specific QoS metrics as well.

A brief overview of the hierarchical2, heuristic elasticity policy, utilized in this
work, will now be presented (for a more complete overview please refer to [13]).
As mentioned already, the policy rules utilized in this work focus on the value
of a single performance metric (i.e., cpu idle). When this value is high the
implication is that an instance is not being heavily loaded3. From a high-level
perspective, decisions to grow or shrink the application server tier are made
based on a critical number of local observations triggering a global action (i.e.,
add/remove instances to the application tier). This will now be considered in
more detail.

Rules for Platform Service Instances. The policy rules defined for each
platform service instance member node of the application server tier of the SaaS
provider, introduced for the scenario above, are based on the definition of an
acceptable range for the cpu idle metric and an acceptable duration beyond
which a violation should be indicated to the management framework. For the
remainder of this chapter, we will refer to the upper threshold as cpu idle st

(i.e., the threshold indicating a need to shrink the tier) and cpu idle gt (i.e., the
threshold indicating a need to grow the tier) and the durations will be referred to
as shrink duration and grow duration respectively. Some details to consider in
relation to the action (i.e., add/remove instances to the application server tier)
are as follows. The selection of the range (i.e., cput idle gt - cpu idle st)
will directly impact the addition and removal of server instances to the tier.
Consider if the operating range of the system is well outside of this defined range
then violations will consistently occur. In contrast, assuming a more accurate

2 It is hierarchical in the sense that there are rules that are specified for individual
platform service instance nodes in the application server tier and then there are rules
that are specified to govern the application server tier that use the results of these
lower level rules in aggregate to guide the addition and/or removal of additional
platform service instances.

3 Alternatively, when this value is low the implication is that an instance is being
heavily loaded.



358 B. Simmons et al.

prediction of workload and hence a well defined range (i.e., typical operating
range is within the threshold values) it will then be the size of the range that will
have an impact. Specifically, the size of the range will define how sensitive it is to
variation in the workload. Further, the choice of durations will also impact this
sensitivity. Specifically, shorter durations will result in more frequent notification
to the management system while longer durations will have the opposite effect.

Rules for the Application Server Tier. The policy rules defined for the
application server tier of the SaaS provider, introduced in the scenario above,
involve several configurable parameters as well. First is the definition of the
value of a quorum. A quorum denotes the percentage of instances that must all
be indicating that they are in violation of their local policy rule (all members of
the quorum must indicate the same violation e.g., above cpu idle st or below
cpu idle gt) in order to trigger an auto-scaling action (i.e., grow or shrink
the tier). The amount by which the tier is meant to be grown is indicated by
the parameter incr val. The amount by which the tier is meant to be shrunk
is indicated by the parameter decr val. Whether an auto-scaling action even
occurs is controlled by the parameter refractory period which indicates the
amount of time that must have elapsed since the last auto-scaling action took
place. The way these parameters impact the auto-scaling behaviour of the tier
is as follows.

The values incr val (or decr val) affect how aggressively the grow/shrink
action will be. Specifically, a larger number indicates a more aggressive action.
The value of quorum impacts the sensitivity of individual indications of a viola-
tion. A larger quorum (i.e. closer to 100%) implies more sensitivity to individual
notifications while a smaller quorum implies the opposite. Finally, the larger
values of refractory period will result in a more gradual change in tier size
while a smaller value will have the opposite affect.

An example of the policy rules defining the auto-scale grow action are provided
in Listing 1.1. For the remainder of this document, an elasticity policy is defined
by a set of four policy rules (two for growing and two for shrinking). Three
different elasticity policies were designed to drive the auto-scaling actions of the
application server tier under different circumstances. These policy sets utilized
different settings of some of the configurable parameters mentioned above and
are presented in Table 1. The first elasticity policy, PSensitive , was designed to be
gentle in how it grew/shrunk the tier (i.e., adding/removing only one platform
service instance at a time). Similarly, the second elasticity policy, PTolerant,
increased and decreased the topology in a gentle fashion as well; however, the
range separating its two thresholds (upper and lower) was three times as large
as for PSensitive making it much less likely to be triggered as often (assuming
violations occur inside the defined range). The third elasticity policy, PAggressive ,
was designed to be much more aggressive in how it grew/shrunk the tier as
evidenced by both a small range between its upper and lower thresholds and an
increment value (up and down) of two.



Hierarchical Self-Optimization of SaaS Applications in Clouds 359

(a) inst oblig cpu_idle_breach_low {

subject s = inst_mgr ;

target t = platform_tier_mgr ;

on {e1 ; e2} ! e3

do emit(t, request_increase )

when e2.time - e1.time == grow_duration and

e1.cpu_idle < cpu_idle_gt and

e2.cpu_idle < cpu_idle_gt and

}// cpu_idle_breach_low

(b) inst oblig perform_autoscale_grow {

subject s = paas_mgr ;

target t = platform_tier_mgr ;

on quorum(platform_tid , action)

do t.elastic_grow_action (incr_val )

when action.equals("grow") and

!t.refractory_period and

t.id == platform_tid

}// perform_autoscale_grow

Listing 1.1. Sample policies to auto-scale grow the platform tier specified in a
Ponder-like [11] notation. In (a) it is assumed that e3 denotes an event indicating
e3.cpu idle ≥ cpu idle gt.

Table 1. Parameter settings defining the three elasticity policies as used in the exper-
iments (i.e., values related to time are scaled by one quarter)

Parameter PSensitive PTolerant PAggressive

incr val 1 1 2
decr val 1 1 2
quorum 51% 51% 51%

cpu idle gt 45 40 50
grow duration 7 min 7 min 8 min
cpu idle st 50 55 55

shrink duration 7 min 7 min 8 min
refractory period 8 min 8 min 6 min

3 Strategy-Trees

A strategy can be defined as ”...a plan of action designed to achieve a long-term or
overall aim”4. In the context of policy-based management, a set of policies can be
understood to implement a strategy. The strategy-tree was introduced to address
a deficiency in current approaches to distributed system’s management. Simply
put, there can exist multiple strategies to achieve a directive (i.e., a set of objec-
tives5). These alternative strategies often incorporate assumptions, biases and ex-
pectations within a given policy set (i.e., the management logic which governs the

4 http://oxforddictionaries.com/definition/strategy
5 An objective represents a constraint on a metric. A metric might be a low level tech-
nical metric (e.g. throughput) or a business metric (e.g., profit).

http://oxforddictionaries.com/definition/strategy


360 B. Simmons et al.

system’s behaviour attempting to achieve the set of objectives). Under different
scenarios various assumptions can be more/less correct than others resulting in
different degrees of effectiveness for the various strategies. Through monitoring
of the progression toward the system’s objectives and by utilizing feedback about
the effectiveness of the deployed strategy (with regards to achieving the defined
objectives) informed decisions can be made allowing an ineffective strategy to be
changed to an alternative, to better meet the long term objectives.

The concept of a strategy-tree was introduced to facilitate intelligent switch-
ing among defined policy sets (i.e. strategies) at runtime in response to moni-
tored data and in the pursuit of a a directive defined over a long-term horizon
of time. In essence, a strategy-tree represents a framework for reasoning about
the effectiveness of an active strategy. In this sense it is a tool for meta-policy
management [11]. While everything it accomplishes, might possibly be done us-
ing a set of highly complex and convoluted policies, this abstraction simplifies and
organizes the process of evaluating the effectiveness of a deployed policy set and
orchestrates the switching among alternative strategies over time in a defined, sys-
tematic and hierarchical manner. Further, this approach provides an architecture
to facilitate this process of strategic management6. For a more comprehensive and
formal consideration of strategy-trees and their use in policy management please
refer to [28–31]; however, a brief description of the key points follows.

A strategy-tree, Fig. 1, is composed of three types of nodes: Directive (i.e.,
circle), AND (i.e., triangle) and OR (i.e., inverted triangle). Associated with
each node in the tree is a quantum attribute value which denotes when7 a node’s
(that is a member of the active strategy) SAT-element 8 should be executed and
in the case of an OR type node its DEC-element as well. There is also a list,
results, that is associated with each node which enables a child node to pass up
the result of its evaluation (i.e., execution of its associated SAT-element) to its
parent node (for use in later evaluations). Each leaf node of a strategy-tree is
bound to a single policy set9.

6 Strategy-trees are not meant to handle asynchronous problems. Changes in strategy
are gradual and occur on scales of hours, days, weeks, months, years, etc. (not mil-
liseconds). It is assumed that for gross, pathological errors there are policies defined
to handle these situations. There is also overhead associated with deploying policy
sets and this should not be ignored.

7 A quantum attribute value represents a coefficient on some management time unit
(MTU).

8 SAT-elements are used to evaluate whether a set of objectives is satisfied. DEC-
elements are used in decision making to determine whether to maintain the current
strategy or to switch to an alternative.

9 While multiple leaf nodes may be bound to the same policy set, leaf nodes of different
strategies may only do so under certain constraints. The policy set Pa and Pb that
are bound by two leaf nodes that are both direct child nodes of the same OR type
node must not be equivalent. Further, should two leaf nodes have a Lowest Common
Ancestor (LCA) that is an OR type node and should there be no intervening OR
type nodes between either leaf node and this OR type node then the policy sets, Pa

and Pb, bound by these two leaf nodes must not be equivalent either [28].



Hierarchical Self-Optimization of SaaS Applications in Clouds 361

Fig. 1. An example strategy-tree with 11 nodes. There are four strategies S0 =
(0, 1, 2, 5, 6), S1 = (0, 1, 3, 7, 8), S2 = (0, 1, 4, 9) and S3 = (0, 1, 4, 10). Currently, S0 is
active as denoted by its yellow coloring (red indicates inactive). The quantum attribute
values presented in the table are determined through experimentation, simulation or
may even be selected arbitrarily.

At a high level, the algorithm for evaluating a strategy-tree goes as follows10.
Each time the strategy-tree is evaluated (i.e., each increment) the SAT-elements
in the active strategy are processed from leaf to root. A SAT-element is evaluated
when the increment value modulo the node’s quantum attribute value is equal to
zero. Once all the SAT-elements have been evaluated the DEC-elements of the
active strategy are evaluated from root to leaf11. Should any DEC-element decide
to switch strategy, the switch is implemented and the algorithm terminates. So,
if we assume the strategy-tree in Fig. 1, and further that S0 is the active strategy
then every hour the SAT-elements associated with nodes five and six evaluate
and pass up results to node two which aggregates12 this result and passes it
up to node one. At iteration 24, after the twenty-fourth evaluation of these
SAT-elements, the SAT-element associated with node one evaluates and passes
its result up to node zero. Next, the DEC-element associated with node one
is evaluated and a decision, based on the most recent epoch (i.e., 24 hours) of
collected data, is used to decide whether to continue using strategy S0 or whether
to switch to one of the three alternatives (i.e., S1, S2 or S3).

A strategy-tree that has multiple OR type nodes, as in Fig. 1, can be un-
derstood to have multiple MAPE loops [17] defined. For example, node four,
implements a loop that uses the six most recent results for the evaluation of
SAT-elements associated with node nine or ten (depending on whether strat-
egy S2 or S3 is active) as well as all monitored data for this six hour period
in its decision making process. In contrast, node one, implements a loop which

10 This assumes that the tree has been fully specified, all elements defined, all leaf
nodes have been bound to policy sets, and the initial strategy set to active.

11 This is a small, yet valuable (in terms of complexity) alteration to the algorithm.
12 Applies a boolean AND to the results.



362 B. Simmons et al.

utilizes the previous 24 results for the evaluations of SAT elements associated
with nodes five, six and two (when strategy S0 is active) or for the evaluations
of SAT-elements associated with nodes seven, eight and three (when strategy
S1 is active) or the four most recent evaluations of the SAT-element associated
with node four (when strategy S2 or S3 is active) as well as all monitored data
for this 24 hour period in its decision making process. It should be pointed out
that in all but the simplest cases, more data than just the previous epoch’s13

will be used in the decision making at a DEC-element.

3.1 Scenario: Designing a Strategy-Tree for the SaaS Provider

This section considers the development of a strategy-tree, Fig. 2, to help guide
the system to achieve the objective of the SaaS provider (i.e., maximize profit)
introduced in Section 2. Recall from Section 2.1 that three elasticity policies
have been defined: PSensitive, PTolerant and PAggressive. Each of these elasticity
policies (policy sets) can be viewed as a particular strategy to achieve the SaaS
provider’s objectives under a particular set of expectations and assumptions.

The strategy-tree that we will consider consists of only five elements: four
directive type nodes and one OR type node. This simple structure was inten-
tionally selected in order to focus on the development of the single DEC-element
for the OR type node. To achieve the objective, heuristic trade-offs between
maximizing revenue and minimizing costs are utilized. A bias which favours ser-
vicing the maximum number of clients while attempting to limit the number of
additional platform service instances purchased is applied.

Characterizing the Elasticity Policies. The various strategies need to be
understood in order to evaluate their effectiveness and reason about switching
among possible alternatives. The SaaS provider was able to characterize each
of the three (see Section 2.1 and Table 1) elasticity policies against a stan-
dard workload (i.e., trace data that they had access to). For each policy set,

Fig. 2. Strategy-tree used for the experiment

13 An epoch is equivalent to the quantum attribute value of the node in question so if
a node has a quantum attribute value of 24 hours then the epoch is 24 hours as well.



Hierarchical Self-Optimization of SaaS Applications in Clouds 363

the mean hourly number of additional platform service instances purchased was
computed. They were also able to monitor the current number of sessions at four
minute intervals. On this data, they performed hourly regressions and partitioned
the slopes of these regressions into four distinct categories (indicating different
degrees of increase/decrease in numbers of sessions).

Design of SAT-Elements. The three leaf nodes (e.g., nodes two, three and
four) each have quantum attribute values of one hour. This implies that each
hour, they evaluate their SAT-element and pass the result up to node one. Node
one evaluates its SAT-element every four hours and passes its result up to node
zero. Each of these elements is evaluating the following objective:

– The number of additional platform service instances purchased, divided by
the epoch, should not exceed the hourly mean for that particular strategy.

Design of the DEC-Element. The design of the DEC-element for node one
was much more involved than for the SAT-elements in the tree. This is normal
as deciding among alternative approaches can be difficult at the best of times.

In order to guide performance toward achieving the objective (i.e., maximize
profit) it was decided that a two step approach would be utilized when decid-
ing whether to continue using a particular strategy or whether to switch to an
alternative. This decision would be based first upon the detection (or lack of de-
tection) of a trend in the number of current sessions observed over the previous
epoch. Specifically, the slope of the hourly regressions (for the previous four hour
epoch) constructed from the readings (i.e., current number of sessions) taken ev-
ery four minutes would provide a simple heuristic for detecting a rapid increase
or decrease in the client demand on the system (and hence guide the decision
making process to use the more aggressive strategy). Should no strong trend
be detected, data from the MDB as indicated by the values from the results list
(about the additional purchased platform service instances) for the previous four
hour epoch would then be utilized.

The logic underpinning the DEC-element works as follows. Every increment of
the MTU14, prior to evaluation of the strategy-tree, data about the application
is collected and stored in the MDB. Specifically, it includes the previous 15 cur-
rent session readings and the 15 additional purchased platform service instance
readings as well. A regression is performed on the set of current session readings
and this is then stored for later use.

When the DEC-element at node one is executed and the method decider15

is invoked, the following steps occur. First, the four most recent regressions
are collected from the MDB. Next, the previous 60 additional platform service
instance purchases are collected and summed. This data in combination with
the current active strategy denotes the context. Regardless of whether the active
strategy is S0 = (0, 1, 2), S1 = (0, 1, 3) or S2 = (0, 1, 4), Fig. 2, a call is made to

14 MTU refers to the management time unit which in the case of this scenario is 60
minutes.

15 This is the name of the method which evaluates the DEC-element’s decision problem.



364 B. Simmons et al.

the method, map degrees to range. This method accepts an array of the four
most recent hourly regressions R = [r1, r2, r3, r4]. From each regression ri the
slope mi is extracted and an integer value returned denoting membership in one
of the four defined categories:

(i.) 0◦ < m ≤ 85◦ → 1
(ii.) m > 85◦ → 3
(iii.) 0◦ > m ≥ −85◦ → −1
(iv.) m < −85◦ → −3

This resultant array of integer values I = [i1, i2, i3, i4] is multiplied by an array
of weights W = [w1, w2, w3, w4] where w1 = 1, w2 = 2, w3 = 4 and w4 = 8.
Notice that the weight values in this array are increasing which ensures that
emphasis is placed on the more recent regression’s slope. The summation of the
multiplication of W ∗ I is returned: Σn

i=0W [i]I[i].
Two trends were identified as being of interest: steeply increasing (SI) and

steeply decreasing (SD). Specifically, any sum ≥ 27 is considered to be SI while
any sum ≤ -27 is considered to be SD. All other values are considered to be less
indicative of a trend (either increasing or decreasing) and this is when questions
about the number of purchased platform service instances are considered.

If the current active strategy is S0 the following reasoning is used. If the
value of sum as returned by the call to map degrees to range indicates SD or
SI then the variable next strategy is set to two. The rationale for this choice
is that if a steep increase or decrease in the number of sessions is observed, it
is important (according to the preferences of the SaaS provider) to respond to
this by using the aggressive policy set PAggressive (i.e., S2) in order to ensure
that available resources are allocated/de-allocated to handle the sharp change
in demand. Otherwise (i.e., it is not SD or SI), if the mean number of platform
service instances purchased (over the previous four hours) is greater than the
mean for S0 (recall that this is equivalent to PSensitive) then set next strategy to
two (indicating S2) otherwise, set it to one (indicating S1).

If the current active strategy is S1 the following reasoning is used. For the cases
where sum indicates either SD or SI the identical reasoning as for S0 is used. How-
ever, as it is now PTolerant being employed if no apparent trend is perceived and
if the mean number of platform service instances purchased (for the four hour
epoch) is greater than the mean for this strategy then next strategy is set to zero
otherwise it is set to one. A simple rationale is used in deciding the switch to S0.
It had been determined during characterization of the three elasticity policies (see
Section 2.1) that the hourly mean number of additional platform service instances
purchased is lower under S0 than S1. Since no trend has been observed (i.e., not
SD or SI), and the mean number of platform service instances purchased over the
previous epoch has exceeded the mean for S1 by switching to S0 there will be fewer
additional platform service instances purchased in the next epoch. It is hoped that
this will apply a downward pressure on the overall number of additional platform
service instances purchased (i.e., decrease the cost). Similarly, if the current active
strategy is S2 the same reasoning as for S1 is used, except, the threshold for S2 is
substituted in place of the threshold for S1.



Hierarchical Self-Optimization of SaaS Applications in Clouds 365

4 Architecture

The following section will provide an overview of our proposed management ar-
chitecture, Fig. 3. Since the scenario we are considering involves a SaaS provider
running an application on top of a PaaS topology we focus only on these two layers.

Fig. 3. Proposed management architecture

4.1 PaaS Layer

At the PaaS layer, we assume the traditional policy-based management architec-
ture (PBM) consisting of Policy Repository, Policy Decision Points (PDP) and
Policy Enforcement Points (PEP) [21]. While the SaaS provider may also utilize
PBM internally, we leave this undefined for now as we are only considering PaaS
layer policy sets in this work and their management by a strategy-tree in order
to achieve its root directive.

The PaaS provider has access, via a monitoring subsystem, to numerous per-
formance metrics (e.g., cpu utilization, throughput, etc). It also has access to
various OS (e.g., ps count, ps cputime, ...) and middleware level metrics (e.g.,
request queue length, transmitted bytes, session count, ...) as well. We assume
that the PaaS provider exposes these metrics to its SaaS clients so that they
may define policy rules with which to implement their elasticity policies. Policy
rules are specified in the traditional On-event-If-condition-Then-action syntax.

4.2 SaaS Layer

A strategy-tree is used at the SaaS layer16 to dynamically alter policy set deploy-
ment at runtime. We assume that it has access to various performance metrics
that allow it to determine whether the currently deployed strategy is effective or

16 It is the SaaS layer manager at this point.



366 B. Simmons et al.

not. For example, it is aware of how many platform service instances it has pur-
chased over time and also how many sessions it has serviced. The management
database (MDB) is where this data is stored. All elements of the strategy-tree
have access to it.

5 Experiment

The following experiment is based on the scenario of the SaaS provider intro-
duced in Section 2 and is composed of two parts. First, the three elasticity
policies (i.e., Table 1) are characterized against a workload as described in Sec-
tion 3.1. Then the strategy-tree (i.e., Fig. 2) is deployed and each policy set
and the strategy-tree are run against a novel workload and compared in terms
of total sessions, number of additional platform service instances purchased and
mean response time as measured at the client.

5.1 Experimental Setup

For this experiment, Amazon (i.e., EC2, EBS) was used as the IaaS provider.
All topology instances were built atop virtual machine instances (VMI)s running
either CentOS 5.4 i386 (i.e., front end servers and application server instances) or
Ubuntu 8.04 i386 (i.e., database) and configured as m1.small instances (i.e., 1.7
GB memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit),
160 GB instance storage, 32-bit platform and I/O Performance: Moderate).

RightScale was used as a PaaS management framework. A standard, multi-
tiered application topology was selected from their catalog (with various mod-
ifications to suit our needs). This platform topology consisted of two front-end
servers running Apache and HAProxy an array of Tomcat instances and a back
end database running MySQL 5.0. The concepts of elastic scaling of a server
array using alerts (based on voting tags) employed by Rightscale allowed us to
specify our elasticity policies. We wrote lightweight Policy and PolicySet classes
that were implemented in Ruby. Once fully specified, a PolicySet could be de-
ployed (utilizing Rightscale’s restful API) at which point it would result in the
configuration of the platform topology with the correct elasticity policy as pre-
viously described. The strategy-tree was implemented in Ruby and the initial
encoding is from within an XML file17.

The client is run on a separate EC2 instance and simulates the correct num-
ber of clients as defined by the workload for the duration of the experiment. The
workloads used both to characterize the three elasticity policies and for the actual
experiment were excerpts from the FIFA ’98 workload [1] (Figs.4a and 5a).

Experiment timewas scaled by fourThemonitoring system at the SaaS provider
takes a reading every minute (i.e., four minutes of experiment time). At the SaaS
provider layer, a simple Java-basedweb application was deployed on the described
PaaS topology. A client connects to the front-end, is directed to an application

17 This is an updated version from previous work where it was implemented in Java.



Hierarchical Self-Optimization of SaaS Applications in Clouds 367

server, a loop executes some pre-defined number of times (i.e., for this work we fo-
cused on the CPU) communication with the database tier occurs and a response
is issued. For the remainder of the chapter, this will represent a session.

5.2 Characterizing the Elasticity Policies

The first step when using a strategy-tree requires that a characterization of the
various strategies be performed. The results of running a single workload (FIFA
’98, Day 41, partial excerpt) against the SaaS application utilizing each of the
three elasticity policies is presented in Fig. 4. Notice that the differences in both
current sessions (Fig. 4b) and additional platform service instances utilized over
time (Fig. 4c) varies substantially among the three alternative strategies.

Following each run, the hourly mean number of platform service instances
purchased by the SaaS provider when operating under that elasticity policy was
computed. Also, hourly regressions were computed on the number of sessions 18

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

Time

C
lie
nt
s

(a)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

Time

C
ur

re
nt

 S
es

si
on

s

 

 
EP One
EP Two
EP Three

(b)

(c)

Fig. 4. (a) FIFA ’98, Day 41, partial excerpt. (b) Number of sessions processed by
the application in response to the workload using three alternative elasticity policies
(EP)s. (c) Additional platform service instances being added and released in response
to the workload under the three alternative EPs during characterization phase.

18 There were 15 readings per experiment hour.



368 B. Simmons et al.

serviced by the SaaS offering for each complete run under each elasticity policy.
The slopes of these regressions were then partitioned into four categories (i.e.,
ranges) of roughly equal occurrence as described in Section 3.1. These character-
izations were used in the design of elements for the strategy-tree as previously
described.

5.3 Experimental Results

An alternative workload (Fig. 5a) was selected (FIFA ’98, Day 43, partial ex-
cerpt). The workload was pre-processed so as to stretch the y-coordinates by a
factor of 1.4 (to increase the number of clients)19. We ran three repetitions for
each strategy, Table 1, and for the strategy-tree, Fig. 2. Plots from one of the
three runs using a strategy-tree are presented in Figs. 5b and 5c. In this run,

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

Time

C
lie
nt
s

(a) (b)

(c)

Fig. 5. (a) FIFA ’98, Day 43, partial excerpt (stretched by 1.40). (b) Total number of
sessions processed versus time: strategy-tree. (c) Platform service instance usage versus
time: strategy-tree.

19 This stretch was applied as the workload did not look very interesting initially (i.e.,
its maxima were much less than the day 41 partial excerpt data we had initially
worked with)



Hierarchical Self-Optimization of SaaS Applications in Clouds 369

Table 2. Placement for various approaches. Total Sessions (Tot. Ses.), Additional
Instances (Add. Inst.), Mean Response Time at the client (MRT), and Strategy-Tree
(ST). There are twelve trials. For each row, 1 denotes the best result for that metric
and 12 denotes the worst.

Metric PSensitive PTolerant PAggressive ST

Tot. Ses. 8,11,12 3,4,6 5,9,10 1,2,7
Add. Inst. 4,5,6 1,3,7 9,11,12 2,8,10

MRT 2,10,11 6,8,12 4,5,9 1,3,7

all three strategies were used at various points in time as indicated by the alter-
native background colourings. An overview of the results for the individual trials
is presented in Table 2. This table assigns an integer ranking (i.e., one denotes
best while 12 denotes worst) as follows: a strategy is more successful when it
services a greater number of total sessions, purchases fewer additional platform
service instances and provides a lower mean response time to its clients.

Figure 6apresents themean total number of sessions serviced for each set of three
runs for each approach (i.e., PSensitive, PTolerant, PAggressive and the strategy-
tree). Figure 6b presents the mean number of platform service instances purchased
for each set of three runs for each approach.Figure 6cpresents themeanof themean
response time at the client for each set of three runs for each approach.

(a) (b)

(c)

Fig. 6. Mean of three trials for each elasticity policy and for the strategy-tree (plus
and minus one standard error) for (a) Total sessions. (b) Total number of platform
service instances. (c) Mean response time as measured at the client.



370 B. Simmons et al.

6 Discussion

The experiment presented in Section 5 was preliminary in both its scope and
complexity; however, it demonstrates that a strategy-tree can achieve its root’s
directive (i.e., maximize profit). Recall from Section 2 that the objective of the
SaaS provider is to maximize profit by both maximizing revenue and by mini-
mizing cost. It attempts to achieve this through the strategy-tree which employs
a bias (at its DEC-element) that favours servicing the maximum number of
clients while attempting to limit the number of additional platform service in-
stances purchased. Finally, recall that their is also an additional speculative cost
associated with loss of future business due to sub-par response time.

In terms of best individual results (see Table 2) the strategy-tree approach
finished first both in total number of sessions serviced and mean response time
at the client. It also finished second for additional platform service instances
purchased. The best individual results for PSensitive were eighth for total number
of sessions, fourth for additional platform service instances purchased and second
for mean response time at the client. The best individual results for PTolerant

were third for total number of sessions, first for additional number of platform
service instances purchased and sixth for mean response time at the client. The
best individual results for PAggressive were fifth for total number of sessions,
ninth for additional number of platform service instances purchased and fourth
for mean response time at the client. Further, it should be pointed out that the
strategy-tree approach never obtained the worst result for any of the metrics
while all individual strategies did. Also, its two worst individual results were in
terms of the number of additional platform service instances purchased and this
can be understood due to the bias in favour of servicing client sessions. These
results argue in favour of the effectiveness of the strategy-tree at facilitating
trade-offs while maintaining alignment with the root directive.

In terms of aggregate results, the mean value over three trials for the to-
tal number of sessions (see Fig. 6a) and the mean value over three trials for
mean response time at the client (see Fig. 6c) were better for the approach
utilizing a strategy-tree than for any of the individual strategies. Further, the
mean value over three trials for number of platform service instances purchased
(see Fig. 6b) was much less for the approach utilizing a strategy-tree than for
PAggressive. More precisely, the strategy-tree approach serviced approximately
26% more sessions, while using approximately 16% more platform service in-
stances and achieving an improvement in mean response time at the client of
approximately 10% when compared to PSensitive. The strategy-tree serviced ap-
proximately 8% more sessions20, while using approximately 20% more platform
service instances and achieving an improvement in mean response time at the
client of approximately 14% when compared to PTolerant. The strategy-tree ser-
viced approximately 13% more client sessions, while using approximately 19%
fewer platform service instances and achieving an improvement in mean response
time at the client of approximately 6% when compared to PAggressive.

20 This is actually quite substantial (i.e., approximately 10,000 sessions).



Hierarchical Self-Optimization of SaaS Applications in Clouds 371

Various factors may have adversely impacted the results presented here. For
example, the set of experiments (both characterizations of the three elasticity
policies and the actual experimental runs) were performed on the Internet and
not on a private test-bed; further, the experiments were run without regard for
time of day and this might have had an impact.

The policy sets that were used were heuristic in nature with no formal method-
ology utilized in their design. We intend to investigate designing techniques to
better determine thresholds for our policy rules, using formal modelling tech-
niques and building on work done in [6]. It should be emphasized that the intent
of this chapter was to explore reasoning about the performance of the policy
sets via a strategy-tree rather than focusing on the optimal design of a specific
elasticity policy. In fact, the elasticity policies used in this chapter were devel-
oped in an ad-hoc fashion in contrast to the formal refinement approaches such
as [4, 10, 25].

One limitation of the strategy-tree presented here is that it is only reactive
in nature. Specifically, it only considers the previous epoch’s history. This falls
into the problem of local minima/maxima (i.e., hill climbing problem) . One
possible approach to improve this limitation would be to utilize the growing
history over time. However, to truly implement good decision making in DEC-
elements prediction is required. Work by [14] utilized signal processing techniques
to detect patterns in workloads to assist in prediction. These forms of techniques
would be interesting to apply inside DEC-elements of a strategy-tree.

7 Related Work

The strategy-tree was introduced to allow for changes in strategy (i.e., policy set)
to be made in response to changes in experienced workloads and/or failures of
the implicit assumptions underpinning policy set construction. Regardless, it is
predicated on achieving a long-term directive over some horizon of time based on
a pre-defined set of policy sets. The work presented by [3] describes a mechanism
for applying reinforcement learning in the context of policy management. In this
work, the active (i.e., deployed) policy set is utilized to dynamically construct a
model of the system which guides the autonomic manager resulting in improved
performance. As changes in the deployed policy set occur Bahati et al. are able
to demonstrate that in a majority of cases transformations can be performed on
the state-transition graph thus retaining much of the previously learned infor-
mation; however, they also demonstrate that in certain circumstance (i.e. model
transformation Ψ5[G

P
n ]), the initial model must be discarded and a new one ini-

tialized. We see a DEC-element as potentially representing a transformation of
this type. Further, the idea of dynamically evolving a policy set is one that we
have currently left unexplored but see value in. Presently, a change in policy set
implies a change in strategy (at any particular DEC-element). However, allowing
for policy sets to be learned may result in a less constrained approach.

The work in [7] introduces the SYMIAN decision support tool which is used
to determine effective incident management strategies. Each DEC-element in



372 B. Simmons et al.

a strategy-tree denotes a unique locus of control for selecting among a set of
strategies. However, unlike SYMIAN, there exists a hierarchy of objectives to
achieve in which the effectiveness of employed strategies to achieve lower layer
objective sets directly contributes to the perceived achievement of those objec-
tive sets higher in the tree structure. Further, unlike SYMIAN, which facilitates
strategy design, the decision making at a DEC-element in a strategy-tree is
done automatically at runtime over a pre-determined set of alternative strate-
gies. While the DEC-element described in this chapter was designed based on a
simple heuristic, a need for more involved reasoning among potential strategies
especially as temporal granularities grow and out-degree of DEC-elements (i.e.,
OR type nodes) increases is clear. Each DEC-element represents a multi-criteria
decision problem in which the current context (i.e., monitored data, the current
active strategy and the set of available strategies at the particular node) must
be considered while trying to achieve a local set of objectives. The decision to
maintain or switch current strategies can become a highly complex and chal-
lenging problem requiring well thought out models, and approaches. In effect, a
strategy-tree with multiple DEC-elements (as in Fig. 1) represents a hierarchical
(over time) set of decision problems to be solved.

The work in [24] manages the Quality of Service (QoS) provisioning of Diff-
Serv over MPLS networks in alignment with business objectives. A model of
business utility is introduced relating business indicators, SLA indicators, ob-
jectives and policies. The business indicators are assigned weights and a set
of mapping functions are derived to facilitate the generation of effective pol-
icy parameters. This approach is an extension to the policy refinement work
in [25]. The policies that are considered are simple rules and the weights (while
justified) appear somewhat arbitrarily selected. Regardless, the method demon-
strated through simulation seems promising. It should be emphasized that once
a strategy is selected, that is it. There is no mechanism to change strategy au-
tomatically. In contrast, a strategy-tree utilizes feedback at (typically) multiple
temporal granularities to allow for changes in strategy to be made over time.
One possible avenue would be to determine various weight settings based on
sets of assumptions (as presented informally in the paper) and then to construct
a strategy-tree to alternate among these alternative strategies over time while
maintaining alignment with the long term business objectives.

The Stitch language [9] was introduced to specify adaptation strategies in
the context of the Rainbow Framework [12]. Stitch is based on three main con-
cepts: operators, tactics and strategies. An operator maps to a system provided
command (i.e., an effector), a tactic represents a conditional evaluation of a set
of actions (i.e., calls to operators) and an expected set of effect(s) and a strat-
egy which is a tree of conditional tactic delay nodes21. At runtime a strategy
is selected from the set of possible strategies based on its overall utility across
a set of quality dimensions, d, in a particular context. The sum of utility values is

21 Associated with each node in a strategy is a probability that its condition will
evaluate to true and a delay specifying the horizon over which the effect of the
tactic’s execution will be observable.



Hierarchical Self-Optimization of SaaS Applications in Clouds 373

constructed based on weights,wi, which are arbitrarily defined (e.g., U =
∑

wdud)
as are the utility functions for each dimension. Comparatively, a strategy, in
terms of a strategy-tree, denotes the entire set of management policies which are
deployed at any given point in time. With strategy-trees we are not trying to
manage a single adaptation, rather, we are attempting to guide the system, in a
more scalable fashion to achieve the long-term objectives of the administrator.
In fact, Stitch and the strategy-tree approach are complementary, as a module
of Stitch strategies could be viewed as the deployed policy set while alternative
modules of strategies (i.e., ones with different probabilities, weights and util-
ity functions) could be thought of as alternative policy sets and a strategy-tree
could then be constructed to switch among these modules at runtime to maintain
alignment with the long term management objectives.

8 Conclusions

The work presented in this chapter is an initial step toward the realization of our
business driven cloud optimization architecture. We introduced an architecture
and methodology for managing a SaaS application on top of a PaaS provider’s
infrastructure. This framework utilizes PaaS policy sets to implement the SaaS
provider’s elasticity policy for its application server tier. A strategy-tree is uti-
lized at the SaaS layer to actively guide policy set selection at runtime in order to
maintain alignment with the SaaS provider’s business objectives. An experiment
on a real cloud was presented that demonstrates the promise of this approach
and the usefulness of dynamically switching among active strategies at runtime.

In future work we would like to use a more realistic application in which
multiple classes of clients are defind and various admission control policies and
tuning policies can be used to augment the complexity of the application’s elas-
ticity policy. We also intend to continue developing the concept of the strategy-
tree. While initially, a strategy-tree was designed to capture implicit objectives
underpinning the various policy sets, we think there may also be an interest-
ing research space connecting it to explicit objectives. Specifically, we feel that
there may exist a link between the concepts of goal-models, awareness require-
ments [27] and strategy-trees that might allow us to automate the generation of
the tree structure as well as the various SAT-elements so that the strategy-tree
is more directly connected to the objectives of the service (e.g., SaaS) provider
and easier to build and use. We are also beginning to suspect that perhaps sim-
ulation is a better avenue for demonstrating longer-term strategic management
than through experimental work.

Acknowledgment. This research was supported by the IBM Centre for Ad-
vanced Studies (CAS), the Natural Sciences and Engineering Research Council of
Canada (NSERC), Ontario Centre of Excellence (OCE), Amazon Web Services
(AWS) and Rightscale.



374 B. Simmons et al.

References

1. Arlitt, M., Jin, T.: A workload characterization study of the 1998 world cup web
site. IEEE Network 14(3), 30–37 (2000)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berke-
ley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley (February 2009)

3. Bahati, R.M., Bauer, M.A.: Towards adaptive policy-based management. In:
NOMS, pp. 511–518 (2010)

4. Bandara, A., Lupu, E., Moffett, J., Russo, A.: A goal-based approach to policy
refinement. In: Proceedings of Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, POLICY 2004, pp. 229–239 (2004)

5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp.
164–177. ACM, New York (2003)

6. Barna, C., Litoiu, M., Ghanbari, H.: Autonomic load-testing framework. In: 2011
International Conference on Autonomic Computing. ACM, New York (2011)

7. Bartolini, C., Stefanelli, C., Tortonesi, M.: Symian: Analysis and performance im-
provement of the it incident management process. IEEE Transactions on Network
and Service Management 7(3), 132–144 (2010)

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Comp. Syst. 25(6), 599–616 (2009)

9. Cheng, S.W., Garlan, D.: Stitch: A language for architecture-based self-adaptation
(submitted for publication, 2012)

10. Craven, R., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Decomposition techniques
for policy refinement. In: 2010 International Conference on Network and Service
Management (CNSM), pp. 72–79 (October 2010)

11. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

12. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

13. Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Exploring alternative approaches
to implement an elasticity policy. In: 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 716–723 (July 2011)

14. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud
systems. In: 2010 International Conference on Network and Service Management
(CNSM), pp. 9–16 (2010)

15. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)

16. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic
computing policies. In: POLICY 2004: Proceedings of the 5th IEEE International
Workshop on Policies for Distributed Systems and Networks, pp. 3–12. IEEE Com-
puter Society (June 2004)

17. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)



Hierarchical Self-Optimization of SaaS Applications in Clouds 375

18. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based vari-
ability acquisition and analysis. In: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE 2006). IEEE Computer Society, Min-
neapolis (2006)

19. Litoiu, M., Woodside, M., Wong, J., Ng, J., Iszlai, G.: A business driven cloud op-
timization architecture. In: 25th Symposium on Applied Computing. ACM (March
2010)

20. Mell, P., Grance, T.: The nist definition of cloud computing (2009)
21. Moore, B.: Policy core information model (pcim) extensions, rfc 3460 (January

2003)
22. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during

requirements analysis. IEEE Software 18(1), 92–96 (2001)
23. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M.,

Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., Ben-Yehuda, M., Emmerich,
W., Galan, F.: The reservoir model and architecture for open federated cloud com-
puting. IBM Journal of Research and Development 53(4), 4:1 –4:11 (2009)

24. Rubio-Loyola, J., Charalambides, M., Aib, I., Serrat, J., Pavlou, G., Boutaba,
R.: Business-driven management of differentiated services. In: 2010 IEEE Network
Operations and Management Symposium (NOMS), pp. 240–247 (2010)

25. Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G.: A method-
ological approach toward the refinement problem in policy-based management sys-
tems. IEEE Communications Magazine 44(10), 60–68 (2006)

26. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: IEEE International Conference on Requirements Engineering,
pp. 139–148 (2006)

27. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
requirements for adaptive systems. In: Proceedings of the 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2011, pp. 60–69. ACM, New York (2011)

28. Simmons, B.: Strategy-Trees: A Novel Approach To Policy-Based Management.
Ph.D. thesis, The University of Western Ontario (2010)

29. Simmons, B., Litoiu, M., Ionescu, D., Iszlai, G.: Towards a cloud optimization ar-
chitecture using strategy-trees. In: I2TS 2010: Proceedings 9th International Infor-
mation and Telecommunication Technologies Symposium, Rio de Janeiro, Brazil,
December 13-15 (2010)

30. Simmons, B., Lutfiyya, H.: Strategy-Trees: A Feedback Based Approach to Policy
Management. In: van der Meer, S., Burgess, M., Denazis, S. (eds.) MACE 2008.
LNCS, vol. 5276, pp. 26–37. Springer, Heidelberg (2008)

31. Simmons, B., Lutfiyya, H.: Achieving High-Level Directives Using Strategy-Trees.
In: Strassner, J.C., Ghamri-Doudane, Y.M. (eds.) MACE 2009. LNCS, vol. 5844,
pp. 44–57. Springer, Heidelberg (2009)



R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 376–392, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Self-Adaptivity from Different Application Perspectives 
Requirements, Realizations, Reflections 

Kurt Geihs 

University of Kassel, Wilhelmshoeher Allee 73, D-34121 Kassel, Germany 
geihs@uni-kassel.de 

Abstract. Self-adaptivity can be beneficial in many application domains. In re-
cent years we have researched the engineering of self-adaptive software sys-
tems in three rather diverse domains: ubiquitous computing applications, teams 
of autonomous mobile robots, and management of service-oriented software 
systems. While all of them perform dynamic adaptation at run-time following a 
specified control loop, they differ fundamentally in their specific objectives,  
requirements, properties, and constraints. Consequently, their design and reali-
zation focus on different domain aspects and require different modeling and en-
gineering techniques. In this paper we elaborate on synergies and discrepancies 
in developing the three case studies. We evaluate these self-adaptive systems 
using a recently published framework for evaluating self-adaptive software sys-
tems. The main contributions of this paper are a reflection on the design space 
of self-adaptive systems and a critique of the proposed evaluation framework.  

Keywords: self-adaptive system, run-time adaptation, software engineering, 
model-driven development, evaluation framework. 

1 Introduction 

There are many reasons why software systems need to be self-adaptive at run-time. 
Often self-adaptation occurs as some form of reaction to events that happen in the 
environment of the running software. Some examples for such events are: a service is 
no longer available due to service failure; negotiated execution conditions are no 
longer satisfied; the user situation has changed and requires a different mode of  
interaction; an application configuration is no longer appropriate because another 
application suddenly interferes with the application. Other motivations for self-
adaptive systems may be to modify the system in order to proactively handle load 
peaks during certain anticipated situations, or to adapt the execution mode of applica-
tions depending on the resource conditions on the computing device. Clearly, reasons 
for self-adaptation are as manifold as application scenarios and there is a very large 
spectrum of adaptation requirements and techniques.  

Why has self-adaptation moved into the focus of so many research and develop-
ment activities in the computing realm? Obviously, this major trend is to a large de-
gree due to the widespread availability of powerful and affordable computing devices 
equipped with different kinds of sensors that provide information on the application 



 Self-Adaptivity from Different Application Perspectives 377 

run-time context and thus enable the applications to react to changes. For example, 
current smartphones employ up to ten integrated sensors. There are sensors such as 
brightness indicator, geographical positioning, acceleration, sound, video, compass, 
gyroscope and object distance. Some of these sensors, e.g. microphone and camera, 
are built in twice to enhance the usability of the smartphone. This increasing availa-
bility of readily accessible sensors in very popular computing devices fosters the de-
velopment of applications that derive situational knowledge about their environment 
and that self-adapt in order to provide the best possible service to their users in differ-
ent situations. In addition, a smartphone provides even more “sensor information” in 
the form of user-specific information stored in calendars and contact lists that may be 
taken into account for adaptation reasoning.  

Another motivation for adaptivity in software systems is the expectation that adap-
tive software is easier to maintain and evolve. Hence, it is hoped that built-in adaptivi-
ty reduces the cost for the lifecycle management of deployed applications. While 
context-aware adaptive applications react to changes in their execution environment, 
adaptation in the sense of software evolution is caused mainly by changing applica-
tion requirements and infrastructure properties. Consequently, there is a huge interest 
nowadays in the engineering of self-adaptive systems and applications. Many adapta-
tion mechanisms have been identified and studied. It is generally acknowledged that 
the development of software with self-adaptive features adds another level of com-
plexity to the software development process. Several software engineering frame-
works for self-adaptive software systems have been proposed that help to master the 
complexity.  

In our research group we have explored software adaptivity in three completely 
different application domains, i.e. mobile ubiquitous computing, teams of autonomous 
mobile soccer robots, and dynamic service-oriented computing systems. These do-
mains pose very different adaptation requirements and constraints. Nevertheless, from 
an abstract point of view we were able to employ common adaptation principles and 
mechanisms in all three cases, leading to substantial synergies and cross fertilization 
in the design and implementation of software prototypes in these domains. In this 
paper we discuss lessons learned and open research questions.  

In a recent publication Villegas et al. have proposed a comprehensive framework 
for evaluating quality-driven self-adaptive software systems [21]. It includes classifi-
cation dimensions, adaptation properties, and a set of metrics to evaluate self-adaptive 
systems. In this paper we apply this framework to our three case studies. By doing so, 
we evaluate strengths and weaknesses of the proposed evaluation framework.    

The remainder of this paper is organized as follows. First we will introduce the 
three application domains where we have built adaptive systems: mobile ubiquitous 
computing (Section 2), teams of autonomous mobile soccer robots (Section 3), and 
dynamic service-oriented computing systems (Section 4). The presentation of these 
case studies is kept short and focused on their specific characteristic features. In Sec-
tion 5 we apply the above mentioned new evaluation framework to our solutions. This 
also results in a critique of the framework. Finally, Section 6 concludes the paper.  



378 K. Geihs 

2 Mobile Ubiquitous Computing  

The European project MUSIC focused on development support for self-adaptive mo-
bile applications in ubiquitous computing environments [8]. MUSIC has provided a 
profound model-driven software development methodology complemented by a mid-
dleware framework, supporting the implementation and deployment of self-adaptive 
mobile applications on mobile computing devices [18, 22].  

The motivation and requirements for MUSIC were derived from user scenarios 
where people move around in ubiquitous computing environments and take advantage 
of computer-mediated assistance. Specifically, such environments are characterized 
by the following domain assumptions: 

• People carry smart networked handheld devices when they are on the move, and 
use mobile applications that support them in performing everyday tasks in dynamic 
and different environments. 

• Mobile computing environments are highly dynamic: network connections come 
and go and vary in quality; availability, accessibility and usability of ambient de-
vices change; services available for use appear and disappear and vary in quality; 
user tasks and needs vary depending on the situation. 

• In order to maintain utility and user satisfaction, mobile applications need to adapt 
their operations according to changes in the environment. 

• Mobile applications, similarly to desktop applications, may make use of services 
available over the Internet to provide enhanced functionalities. 

• Mobile applications may interact with external embedded devices and peripherals 
that are strategically located to both improve functionalities and augment the ex-
perience and comfort of the mobile user.  

• People switch between multiple mobile applications, which have to be co-
ordinated with respect to their functional and non-functional properties. These ap-
plications are usually developed and deployed independently, but may interact. 

To demonstrate the wide applicability of the MUSIC approach the project developed 
a range of different demonstrators that vary in their architectural and functional prop-
erties. Additionally, we are building on the MUSIC framework in follow-on research 
projects where self-adaptive applications are developed by application developers 
who were not involved in the MUSIC project and had to learn the methodology from 
scratch.  

In this paper we do not present a detailed description of the MUSIC technology, as 
that has been done elsewhere [10, 12, 18]. Instead, we focus mainly on its adaptation 
features and methodological development approach.  

2.1 Adaptation Mechanisms 

MUSIC applications are component-based. The requirements analysis of the MUSIC 
project revealed the need for the following adaptation mechanisms. All of them are 
supported in the framework.  



 Self-Adaptivity from Different Application Perspectives 379 

• Compositional adaptation allows the modification of the application component 
architecture, i.e. components may be added, removed, or replaced, in order to adapt 
the functionality of the application. For example, an application may switch from 
an outdoor GPS navigation component to an indoor navigation service when the 
user enters a building. In MUSIC, an application component is either atomic or a 
composite itself, enabling hierarchical decomposition. This hierarchical decompo-
sition creates variation points in the architecture, where there is a choice of alterna-
tive component realizations. Thus, by selecting different combinations of  
component realizations application variants can be derived. In MUSIC we use a 
developer-defined utility function to express how well a given application configu-
ration fits a given context. As properties vary depending on the context, so does the 
utility of the different application variants. The middleware adapts the running ap-
plications to maximize the overall utility. 

• Parametric adaptation supports fine tuning of applications by changing the val-
ues of component parameters. For example, the speaker volume is adjusted in ac-
cordance with the environmental noise. Parametric adaptation is an intuitive and 
effective way to implement variability, but obviously it is less powerful than com-
positional adaptation [14].  

• Adaptation to external services extends compositional adaptation by support for 
dynamic service discovery and binding, such that a local component may be re-
placed by an externally provided service. For example, when the user enters her car 
the navigation running locally on her mobile device can be improved by using in-
stead the more powerful and more precise navigation service of the car. In MUSIC, 
the middleware takes care of service discovery and adaptation reasoning including 
external services. Service level negotiations and agreements between service client 
and service provider are supported by the middleware.  

• Deployment adaptation enables to modify the deployment of the components of a 
distributed application to the nodes of the computing environment. Component re-
location typically occurs when new computing nodes appear or disappear in the 
environment, or when the quality of the communication path between nodes 
changes. For example, if a new powerful computing node appears in the dynamic 
run-time environment, a resource-draining component on a mobile device can be 
relocated from the mobile to this new node in order to save resources on the mobile 
device and to speed up the computations. Clearly, there is some overlap with de-
ployment adaptation and adaptation to external services. We will come back to this 
issue.  

• Device adaptation supports the adaptation of the hardware resources of the mobile 
device. For example, it is common practice that users activate GPS only when they 
need it in an application and switch it off otherwise to save battery. Based on 
MUSIC, it is possible to automatically adjust the device configuration without user 
intervention.  

While all of these adaptation mechanisms are supported by the MUSIC framework, it 
is fair to say that compositional adaptation and adaptation to external services were 
the most interesting research questions, in particular because their modelling concepts 



380 K. Geihs 

are tightly linked to each other and there is no other approach, to the best of our 
knowledge, that integrates components and services into an adaptation framework for 
mobile and ubiquitous computing in a comparable way [11]. The list of adaptation 
mechanisms of MUSIC is not specific for ubiquitous computing applications. Other 
kinds of distributed applications might also benefit from such mechanisms, provided 
that the execution environment supports the required reconfigurations. In fact, the two 
other case studies, presented in the following sections, use some of these mechanisms, 
but their instantiations differ fundamentally due to specific domain requirements.  

2.2 Model-Driven Development 

Model-driven software development in MUSIC means that an application developer 
defines the architectural adaptation model for the application at design time. The ap-
plication variants and their context dependencies and properties are captured by a 
variability model. Adaptation reasoning is based on a utility function which is part of 
the variability model of an application. At run-time the utility function is called by the 
adaptation middleware to evaluate the utility of different application variants and to 
find the variant with the highest utility in a given situation.  

A new UML profile, that we developed using standard UML extension mecha-
nisms, is provided as a modelling language for the variability model. In addition to 
the application variability and context dependencies, further information is needed to 
allow the modelling of heterogeneous service and context information in an open 
ubiquitous computing environment. This information is stored in the domain model, 
which is an OWL ontology.  

In MUSIC, context provision (e.g., context sensors and reasoners) is separated and 
decoupled from context consumers in order to allow independent development and 
reuse of context access technologies. Context dependencies can be seen as a link be-
tween the context providers and the context consumers and are specified by using the 
MUSIC Context Query Language (CQL) [16]. Therefore, the modelling notation 
includes support for the MUSIC CQL as well as for concepts that facilitate the devel-
opment of context sensors and reasoners.  

MUSIC has delivered a software development methodology for self-adaptive ap-
plications based on the model-driven architecture (MDA) paradigm together with an 
integrated tool suite that support platform-independent modelling of the application 
variability and context dependencies, transformation to code, validation, and testing 
[20, 22]. The variability and domain models are transformed into code which is exe-
cuted by the middleware in order to do the adaptation planning. Deliberately, the 
MUSIC project did not spend any effort on research into software engineering tech-
niques for the development of the application components themselves, because the 
application components do not play an active role in the adaptation. Component de-
velopment is considered an orthogonal, well-understood issue [9, 13] and simply out-
side of the project scope. 



 Self-Adaptivity from Different Application Perspectives 381 

2.3 Proof of Concept 

The MUSIC approach and framework for self-adaptive applications has been evalu-
ated in many application prototypes during and after the project lifetime. The biggest 
event was a live demonstration in the Paris Metro in June 2010 showing several adap-
tive applications, developed by the MUSIC consortium, that aid the Metro traveller in 
various ways. For example, the Travel Assistant application provides support for the 
creation of itineraries, station navigation, and retrieval of tourist information. In case 
of delays it automatically re-calculates the itinerary. Depending on user needs and 
context, the application offers different levels of functionalities and modes. Notifica-
tions can be presented in different modes such as text, speech, or vibration. Naviga-
tion information can either be processed on the mobile device or accessed using an 
external device with a larger screen available in Metro stations. Depending on net-
work availability, the application adapts accordingly. If no network connection is 
available, all necessary functionality executes locally on the mobile device, allowing 
the application to function in a stand-alone mode. Otherwise, the application makes 
use of external 3rd party services, such as the RATP Public Transport Service. 

A television report about the demonstration event is available on euronews1.   

3 Teams of Autonomous Mobile Robots  

Robot soccer is an exciting and very challenging field for research and experimenta-
tion on autonomous mobile robots. The RoboCup tournaments provide an internation-
al competition platform for teams of soccer robots [17]. Different kinds of robots play 
in different RoboCup leagues. Since five years our team has participated successfully 
in the Middle Size League tournaments of RoboCup. Middle Size League soccer ro-
bots are fully autonomous without any remote control, except for referee commands. 
A team consists of up to five robots. The size of the playing field is 18m x 12m. Ro-
bots are custom-built, can move with speeds up to 8 m/s, and communicate via 
WLAN with their team mates. RoboCup tournaments are great opportunities to test 
new research results and compare the team performance with other teams.  

The cooperative behavior is one of the biggest challenges most pronounced in the 
RoboCup Middle Size League. The highly dynamic nature of the game requires very 
swift adaptations by each robot and the team as a whole. In addition, the robots have 
to cope with unreliable communication and sensory noise that are a matter of fact in 
the tournament halls, often for unknown reasons. The ability to establish highly reac-
tive teamwork in the presence of unreliable communication and sensory noise is a key 
to the success of robot soccer teams. Each autonomous robot and the team as a whole 
are constantly self-adapting to react to the constantly changing game and resource 
situation.  

Let us give an example. If the team executes a plan called Defend, i.e. the oppo-
nent team has the ball and is attacking, a popular strategy is called 1-2-1 or diamond 

                                                           
1 Euronews Futuris,  
 http://www.euronews.net/2010/06/16/music-to-you-mobile-s-ears/ 



382 K. Geihs 

strategy: One robot tries to intercept the opponent dribbler, two robots stay in the mid-
field trying to direct the opponent towards a side-line, and another robot moves close 
to the own goal to secure it if the other three team members fail. The assignment of 
robots to these tasks is dynamically adapted according to the situation. Should the 
first robot be outplayed, one of the two mid-field robots will take over its task and 
rush towards the opponent, while the outplayed robot circles around to assume the 
free mid-field position. All decisions are made completely autonomously by the indi-
vidual robots and only later aligned by means of communication. 

Clearly, the requirements and constraints of such a self-adaptive technical system 
are radically different from those of the ubiquitous computing scenario in the previous 
section. The soccer robot scenario is characterized by the following domain assump-
tions: 

• The most important sensor in a robot is its video camera. Images are processed at a 
speed of 30 frames per second. The image processing component of a robot tries to 
detect the important objects on the soccer field, i.e. the ball, the opponents, the 
white lines, the goal etc. Unfortunately, the video/image processing system is dis-
turbed often by changing light conditions in the tournament hall, by misleading 
colourful objects in the audience, as well as by other effects. Therefore, video sen-
sor input is inherently unreliable and imprecise, and robots need to collaborate in 
order to establish a joint view of the world. In addition to the video camera, other 
types of sensor equipment may be used on a robot, such as laser scanners and infra-
red sensors, which mainly support the localisation of the robot and the detection of 
obstacles in its vicinity.   

• Robot team members communicate via WLAN. Experience has shown that in 
tournament situations with large audiences WLAN communication is inherently 
unreliable. This empirical fact has to be taken into account in the design of the ro-
bot cooperation protocols. Therefore, robots cannot rely on and cannot wait for 
particular messages from their team mates. Instead, each robot must individually 
make its own decision how to react to an observed game situation and then try to 
communicate and align its decision with the team mates. The goal is to achieve 
collaborative behaviour based on individual decisions.  

• The ball can move very fast, certainly faster than the robots. Thus, the game situa-
tion, i.e. the decision context, changes rapidly all the time. Therefore, adaptation 
decisions are highly time-critical. The performance of the adaptation management 
is crucial for the success of the team.  

• During a match, soccer robots may break down for various reasons. Or a robot may 
be sent out by the referee due to a committed rule violation. In such cases, a rapid 
change in the team strategy is required to cope with such events. Hence, adaptation 
planning must react flexibly and find the best configuration among many different 
options.  

It is not our intention to present a detailed discussion of the software framework of 
our soccer robots. Such details can be found in [2]. Instead, we focus mainly on the 
self-adaptive behavior of the individual robots and the robot team.  



 Self-Adaptivity from Different Application Perspectives 383 

3.1 Context Model 

Soccer robots, modelled in the software as autonomous agents, need to make swift 
and autonomous reactive decisions, which cannot always be explicitly communicated 
beforehand. Taking such decisions bares the risk of degrading the level of coherence 
within a team. In our approach, this is compensated by the fact that each agent keeps 
track of its teammates and anticipates their decisions with respect to the common 
strategy.  

Each robot builds and updates continuously its own context model, called world 
model. This model describes the perceived current state of the environment, e.g. the 
robot’s own location, the location of the team mates, the location and direction of the 
ball, the goals, and more. The world model of a robot is derived from its own sensor 
input at a frequency of 30 Hz as well as from communicating and merging the world 
models of the other team members with the local world model on a best effort basis at 
a frequency of 10 Hz. Discrepancies among the individual world models will happen 
frequently due to deviations in individual sensor readings and interpretations. Prob-
abilistic filtering techniques are used to align the context models [1].  

Due to the highly dynamic nature of the game, the state of the context of a robot is 
changing continuously and very quickly. Moreover, robots are unable to fully observe 
the whole state of the game. Hence, they need to estimate the actual state of their 
environment, and it is very important that they anticipate the dynamic evolution of the 
situation.  

3.2 Behavioral Modeling Language 

Obviously, in this application domain reactivity and adaptivity refer to both the activi-
ties of the individual robots as well as the collaboration of the complete team. This 
requires a fundamentally different approach to adaptation modelling compared to the 
mobile ubiquitous computing applications of the previous section. Key to the specifi-
cation of cooperative behaviour in our robot team is ALICA, a language for modeling 
interactive cooperative agents.  

In respect to specifying the adaptive behaviour of a robot team, ALICA satisfies 
the following requirements:  

• Single agent behaviours such as tackling, dribbling, and catching the ball need to 
be combined to multi-agent strategies in a meaningful manner to facilitate the for-
mulation of team actions such as an attack over the side-line, or a diamond defen-
sive formation.  

• The tasks in a team strategy need to be independent from the concrete robots exe-
cuting them, in order to accommodate the dynamic nature of the game and to sim-
plify the development. 

• The adaptation should be modelled from a global team perspective from which the 
behaviour of the single agent is derived.  

• The resulting team behaviour should be robust, such that if a malfunctioning robot 
is detected, the strategy can seamlessly be adapted to work without it. 



384 K. Geihs 

• The model needs to express how the agents will decide among alternative strate-
gies, if several options are available in a given situation.  

• Strategy models should be reusable and not tied to specific situations. This en-
hances an agent team’s adaptability and avoids redundant developer work.  

In this paper we will not describe ALICA in detail. The reader is referred to [19] for 
such a description which also includes the definition of its operational semantics. 
Here, it is important to note that the language provides a modelling solution for highly 
dynamic domains in which reactive autonomous agents collaboratively take decisions 
under tight time constraints and unreliable context information. The team adaptation 
is as important as the individual adaptations.   

3.3 Proof of Concept 

We have built a team of soccer robots called CarpeNoctem which consists of six ro-
bots and participates successfully in international RoboCup Middle Size League tour-
naments. In 2009 we achieved a seventh place in the RoboCup world championship in 
Graz/Austria, in 2010 we won a third place in the international RoboCup Ger-
manOpen in Magedeburg/Germany. The robot team has demonstrated impressively 
that it is able to quickly adapt its behaviour to the continuously changing game situa-
tions.  

Clearly, ALICA is one of the cornerstones of these achievements. Thus, we 
showed experimentally that our adaptation approach satisfies the timing constraints 
and is robust against a high degree of packet loss and delay. Even with occasional bad 
network quality, the robots were able to achieve swift adaptations to changing situa-
tions, while maintaining team coherence. 

4 Dynamic Service-Oriented Architectures  

Modern enterprise applications are often built as dynamic service-oriented architec-
tures (SOA) that facilitate dynamic evolution by service rebinding and reconfigura-
tion at run-time. In such environments, a business process is modelled as a service 
orchestration, i.e. a composition of multiple services that collaboratively realize the 
business process. The flexibility of a SOA depends on the ability to discover, add, 
remove, or update services during run-time without stopping the execution of the 
business process. Dynamic SOA systems are adaptive-systems that monitor the qual-
ity of service (QoS) and adapt the service configuration if necessary. QoS contract 
violations are the primary reason for dynamic reconfiguration. 

We are developing a service management framework for dynamic SOA systems. 
For such kind of adaptive systems we make the following domain assumptions, as far 
as the adaptive behaviour is concerned:  

• A service is characterized by its service type, interface, and QoS attributes. There 
may be several instances of a service type that differ in their QoS values.  



 Self-Adaptivity from Different Application Perspectives 385 

• Service users and service providers conclude service-level agreements (SLA) that 
formally define the contractually agreed QoS levels.   

• QoS monitoring components will detect SLA violations for individual services and 
for whole service orchestrations, and trigger reactive actions, if needed.   

• An adaptation following an SLA violation may involve the replacement of one or 
more underperforming service instances. 

• Service selection is governed by an objective function for the entire orchestration 
that represents the user expectations and requirements.  

For example, let us assume that the response time of some service orchestration is too 
long, i.e. violates the negotiated threshold. Process monitoring data indicates that a 
certain sub-process, composed of several services, causes the unexpected delay. The 
service orchestration is adapted by replacing either the composed sub-process as a 
whole or by replacing individual service instances such that the overall QoS is re-
stored to acceptable values.  

Services may be offered by independent service providers. The matching of service 
offers and requests in a heterogeneous service landscape raises several challenging 
questions concerning type compatibility, domain ontologies, semantic annotations, 
proxy generation, and many more. However, these questions do not play a significant 
role in the adaptation process. Therefore, we do not discuss how we solved these 
questions, but refer the reader to the literature [4].  

4.1 Monitoring  

Service adaptations based on QoS contracts require QoS monitoring at run-time. Our 
particular focus is on the QoS of composed services, i.e. on the QoS of whole service 
orchestrations. This requires the aggregation of QoS of (sub-)services. In contrast to 
the measurement of QoS for single service instances, the aggregated QoS monitoring 
of business processes needs to take into account the process control structure with 
constructs such as if-conditions, loops or parallel invocations of services [7]. Thus, 
the process structure is reflected in the formulas used to compute the aggregated QoS 
of service orchestrations.  

For the QoS monitoring, previous to the process deployment specific QoS sensors 
are associated to activities in a process. Thus, sensors become part of the process model. 
Our prototype is built on top of the Oracle BPEL Process Manager [15] and uses the 
provided sensors to monitor the various activities of the business process. Sensors de-
liver information such as timestamps when an activity was activated, completed or 
faulted. The QoS Aggregator computes aggregated QoS values for composed activities 
and for the whole business process in accordance with the process control structure. 
Violation of a QoS contract triggers the service selection and adaptation.   

4.2 Service Selection and Adaptation 

A service orchestration is a composition of multiple services that are required in order 
to support some business process. We assume that for a given service type there are 



386 K. Geihs 

several instances available that provide the service functionality but have different 
QoS levels. The QoS of the entire process is computed from the QoS of the services 
that build up the service composition. Adaptation in this application domain refers to 
the adaptation of the service orchestration if the overall QoS of the orchestration or 
the QoS of an individual service instance becomes unsatisfactory. If the QoS monitor 
reports such an event, the service management will search for a new configuration 
that satisfies the QoS constraints.  

Finding the optimal solution for a given set of service offers means selecting a set 
of service instances for the orchestration that satisfies the QoS requirements and op-
timizes a given objective function for the whole orchestration. This objective function 
depends on the QoS properties of the involved services. It is a kind of utility function 
that evaluates the utility of different service orchestrations. However, as soon as we 
have to take several independent QoS dimensions into account, finding the optimal 
combination from all possible service candidates leads to an NP-hard problem [3]. In 
[6] we propose several heuristic algorithms for the selection of services in service 
orchestrations.  

The adaptation is controlled and executed by the business process management 
component which is triggered by the monitoring component. The adaptation reason-
ing takes the available service offers into account and uses the QoS-based objective 
function. Executing an adaptation decision involves the rebinding of services to the 
business process.    

4.3 Proof of Concept 

The service management framework has been implemented in a prototype based on 
the Oracle BPEL Process Manager [15]. The functionality and algorithmic perform-
ance were tested and evaluated in a variety of simulation experiments, some of them 
using real services as part of the simulated service environment. These experiments 
have shown the viability of the conceptual approach and the superior performance of 
the service selection algorithms [6].  

Nevertheless, more experiments in real service-oriented computing environments 
are needed in order to get more insights into the adaptation planning based on QoS 
properties as well as into the response times of adaptation management activities. This 
is future work. 

5 Evaluation 

The three case studies described in the previous sections address different application 
domains and consequently were built with different application requirements in mind. 
In this section we compare the results of the case studies in terms of criteria that were 
proposed in a recently published comprehensive evaluation framework for self-
adaptive systems [21]. While there have been other proposals before for the classifica-
tion and evaluation of self-adaptive systems, the framework by Villegas et al. stands 
out because it is based on the analysis of “over 20 published approaches dealing with 



 Self-Adaptivity from Different Application Perspectives 387 

such systems” [21]. In this respect it seems to be the most comprehensive and up-to-
date investigation. Therefore, we have selected their framework for elaborating on the 
adaptation characteristics of our three case studies. By doing so, we have discovered 
some issues with the evaluation framework that deserve further discussions.  

5.1 Evaluation Framework 

The evaluation framework provides  

(i) a set of dimensions for the classification of self-adaptive systems, 
(ii) a set of adaptation properties  
(iii) a mapping of adaptation properties to quality attributes, and 
(iv) a set of quality metrics for quality attributes.  

Here, we summarize these issues just briefly, as much as is needed to understand the 
following discussions. The reader is referred to [21] for the complete story.  

(i) Dimensions. There are eight analysis dimensions: adaptation goal (Why does 
the system adapt?), reference inputs (How is the adaptation goal represented?), 
measured outputs (What triggers the adaptation?), computed control actions (How 
does the adaptation affect the system?), system structure (Can the system structure 
consisting of adaptation controller and managed system be modified?), observable 
adaptation properties (What adaptation properties are emphasized?), proposed 
evaluation (What evaluation criteria are proposed by the system designers?), and 
identified metrics (What evaluation metrics are proposed by the system designers?). 
The explanatory questions in parentheses are not taken from the paper, but are our 
own wordings.  

(ii) Adaptation properties. These are properties that can be identified and  
measured in the adaptation process. The framework differentiates between observable 
adaptation properties in the adaptation controller and in the managed system. The 
identified observable properties in the controller are stability, accuracy, settling-time,  
small-overshoot, robustness, termination, consistency, scalability, and security. For 
the managed system, the identified properties are behavioural/functional invariants, 
and quality of service conditions.  

(iii) Mapping of adaptation properties. A basic assumption of the framework is 
that the above adaptation properties can be mapped to (and thus measured by) quality 
attributes such as performance, dependability, safety, and security.    

(iv) Quality metrics. These metrics are an attempt to measure quality attributes, 
and thereby adaptation properties.  

While working with the evaluation framework to evaluate our own case studies, we 
have drawn our own conclusions on the adequacy of these criteria. These will be dis-
cussed in-line with the following evaluation.  

5.2 Analysis of the Three Case-Studies  

The results of the analysis of the three case studies are summarized in Table 1.  



388 K. Geihs 

Table 1. Applying the evaluation framework dimensions 

Case 
Study 

Adaptation 
Goal 

Reference 
Inputs 

Measured 
Outputs 

Control 
Actions 

System Struc-
ture 

Adaptation 
Properties 

Metrics 

MUSIC situational 
awareness to 
improve 
service to 
user 

degree of 
user satis-
faction with 
application 
performance 

context data 
(environ-
ment para-
meters, 
system 
parameters, 
user info)  

composi-
tional,  
parametric, 
external 
services,  
deploym.,  
device  

middleware 
drives adapta-
tion, reconfi-
gurable mid-
dleware, 
hybrid centra-
lized / decen-
tralized adap-
tation control 

stability, 
scalability, 
perfor-
mance, 
security, 
small over-
shoot  

planning 
time, 
adaptation 
time 

Autonom-
ous, 
mobile 
robots 

coordination 
of team 
action to 
achieve 
common 
goal 

depends on 
currently 
active plan, 
activated 
according to 
game situa-
tion, e.g. 
plans De-
fend and 
Attack have 
different 
reference 
inputs  

depends on 
currently 
active plan, 
e.g. distance 
to ball, 
distance to 
goal, rela-
tive position 
of team 
members 
etc. 

task alloca-
tion to team 
members 

decentralized 
behavior 
engines (one 
per robot) 
compute plans 
and control 
actors; evolu-
tion of plan-
ning through 
machine 
learning 

short sett-
ling time 
(soft real-
time), con-
sistency (of 
distributed 
task alloc.),  
robustness 
(facing 
unreliable 
communica-
tions)  

task ful-
fillment 
(success 
of coordi-
nated 
actions) 

Dynamic 
SOA 

QoS preser-
vation 

QoS con-
tracts (SLA) 

monitored 
QoS of 
services and 
service 
composition

replace and 
rebind 
service 
instances; 
adapt ser-
vice compo-
sition  

service or-
chestration 
controlled by 
central busi-
ness process  
mgr.; evolva-
ble QoS 
management 
policies    

short sett-
ling time, 
consistency, 
robustness, 
scalability, 
security   

negotiated 
QoS 
parameters 

 
From this table it is obvious that the dimensions provide a rather coarse grained 

overview of a system’s self-adaptation features. Nevertheless, we believe that charac-
terising a self-adaptive system by such adaptation dimensions and properties provides 
valuable coordinates for positioning a system in the design space of self-adaptive 
systems which not only is huge but also has a very fuzzy delineation.  

5.3 Evaluation Framework Critique  

While we found the adaptation dimensions and the adaptation properties rather intui-
tive and more or less straightforward to apply in order to describe and characterise our 
case studies, the need for the quality attributes was less obvious. The quality attributes 
introduced in the evaluation framework, such as performance, dependability and 
safety, in our opinion are not needed as an intermediate construct in order to map the 
adaptation properties to specific metrics that allow measuring how much a system 
satisfies a certain adaptation property. Even in the publication that presents the 
evaluation framework there are signs that we interpret as supporting indications for 
our claim. Two examples: In a table showing the mapping of properties to quality 



 Self-Adaptivity from Different Application Perspectives 389 

attributes, adaptation property “security” is mapped to quality attribute “security”, and 
“safety” appears both as a quality attribute and as a metric. In summary, we believe 
that it would be sufficient and appropriate to map the specified adaptation properties 
directly onto suitable metrics. (If at all possible: for example, it is very difficult and 
often ambiguous to measure the degree of security of a system.) Therefore, we do not 
discuss quality attributes of the case studies in this paper.  

As a second conclusion from our work with the framework, we found that one as-
pect is absent, or at least underrepresented, in the evaluation framework that is an 
important characteristic of self-adaptive systems, i.e. centralized vs. decentralized 
adaptation control. For example, in our service management framework essentially 
there is a central business process management component that computes adaptation 
decisions and triggers reconfiguration activities, while in the robot soccer robot sce-
nario all team members must autonomously decide about their reactions to the evolv-
ing game situation. The individual actions are periodically communicated to the team 
members in order to make the team action consistent. Such a completely decentralized 
adaptation control is a necessity in this application scenario because of the inherent 
timing and communication constraints of the environment. It is interesting to note 
here, that in the adaptation approach of MUSIC we employ basically a centralised 
approach to application reconfiguration. However, a deployment adaptation requires 
collaboration of adaptation managers on different nodes of the system. Hence, there is 
also some aspect of decentralized adaptation control here. A characterization of a self-
adaptive distributed system according to “centralized” and “decentralized” adaptation 
control is an important issue that determines the applicability of a certain adaptation 
approach for specific application domains.   

A minor comment on the comparison with classic control theory: We agree with 
the authors of the evaluation framework that “Borrowing properties and metrics from 
control theory and re-interpreting them for self-adaptive software is not a trivial 
task.” It is not at all obvious how the two dimensions Reference Inputs (“the values 
and corresponding types that are used to specify the state to be achieved and main-
tained in the managed system by the adaptation mechanism”) and Measured Outputs 
(“the set of values and corresponding types that are measured in the managed sys-
tem”) are mapped to self-adaptive applications built on compositional adaptation. For 
example, what should be called the Reference Input for an adaptive application that 
reconfigures a multimodal user interface depending on the situation? It is questionable 
whether the use of classic control theory terminology aids the understanding of self-
adaptive software systems.  

Last but not least we would like to point to another issue which we were missing in 
the dimensions of the evaluation framework. Particularly from the perspective of a 
software engineer one would really like to have information on any methodological 
support for developing self-adaptive systems based on a certain platform or frame-
work. It is well known that the development of adaptive applications is a complex and 
challenging task. Software engineering support is needed urgently to master this com-
plexity. However, only very few adaptation approaches come with a coherent devel-
opment methodology. The MUSIC project has emphasised this requirement and has 
provided a model-based development methodology for self-adaptive applications 



390 K. Geihs 

[12]. The application variability model plays a key role in this approach. In general, 
the provision of an integrated, tool supported development methodology certainly is a 
distinguishing feature of an adaptation framework and should be represented as a 
criterion in an evaluation framework for self-adaptive systems. 

6 Conclusions 

This paper has characterized three kinds of self-adaptive systems in different applica-
tion domains and has presented an evaluation of these systems based on a recently 
proposed comprehensive evaluation framework for self-adaptive systems.  

The characterization and evaluation underline the breadth and the diversity of the 
design space for self-adaptive systems. Nevertheless, when designing and building 
these systems we were able to capture synergies in different realms such as context 
modelling, context fusion, utility-based objective functions, and service-based adapta-
tion. This is not to say that a single framework, such as MUSIC, would have been 
sufficient to support the three different application domains. Their specific require-
ments are just too different: Soccer robots depend on real-time communication and 
team-oriented adaptation decisions. Adaptation takes place up to 30 times per second 
which cannot be achieved by the MUSIC framework: (1) due to the exhaustive search 
for a global optimum of the adaptation decision, while a soccer robot must make a 
local adaptation decision first, and (2) due to the fact that in MUSIC components may 
be loaded on demand by the configuration manager while in a soccer robot all com-
ponents are held in stand-by. Clearly, neither the MUSIC framework nor the SOA 
platform is capable to satisfy these timing constraints. Dynamic SOA and MUSIC 
looks like a better match. However, the elaborated support of MUSIC for composi-
tional adaptation incurs development and runtime overhead that is probably not 
needed in a typical SOA application.   

By working with the evaluation framework proposed by Villegas et al. we col-
lected insights in the framework itself that we would like to contribute as feedback to 
the discussion of such frameworks. We hope that our comments will help to improve 
the evaluation approach.  

One interesting, challenging aspect of evaluating adaptive systems is the question 
of benchmarks. While this aspect has neither been addressed in our work nor in the 
cited evaluation framework, Cheng et al. have reported on a benchmarking case study 
and have contributed general reflections on benchmarks for self-adaptive systems [5]. 
Looking at the design spectrum of our three case studies, it is absolutely clear that 
there cannot be a single benchmark for self-adaptive systems. However, it seems like 
a very attractive research question whether one can develop a kind of generalized 
benchmark framework that would provide general principles and guidelines for the 
evaluation of self-adaptive systems and could be tailored to specific application do-
mains such as dynamic SOA systems or ubiquitous computing systems. With the 
increasing popularity of self-adaptive systems, the demand for such a benchmark 
framework will increase, too.   



 Self-Adaptivity from Different Application Perspectives 391 

Acknowledgements. The author thanks all members of the Distributed Systems 
Group at the University of Kassel and the European MUSIC team for their contribu-
tions to the described projects and the anonymous reviewers for their constructive 
comments.  

References 

1. Baer, P., Reichle, R.: Communication and Collaboration in Heterogeneous Teams of Soc-
cer Robots. In: Soccer, R., Lima, P. (eds.). I-Tech Education and Publishing, Wien/Austria 
(2007) ISBN 978-3-902613-21-9 

2. Baer, P., Reichle, R., Geihs, K.: The SPICA Development Framework - Model-Driven 
Software Development for Autonomous Mobile Robots. In: Intelligent Autonomous Sys-
tems 10 (IAS 2010), Baden-Baden, Germany, pp. 211–220 (July 2008) 

3. Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware Web Ser-
vice Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. 
LNCS, vol. 4749, pp. 422–428. Springer, Heidelberg (2007) 

4. Bleul, S., Zapf, M., Geihs, K.: Flexible Automatic Service Brokering for SOAs. In: 10th 
IFIP / IEEE Symposium on Integrated Management (IM 2007), Munich, Germany (May 
2007) 

5. Cheng, S.-W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rainbow self-
adaptive system. In: 2009 ICSE Workshop on Software Engineering for Adaptive and 
Self-Managing Systems (SEAMS), Vancouver, BC, Canada (May 2009) 

6. Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K.: Heuristic Approaches for QoS-
Based Service Selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) 
ICSOC 2010. LNCS, vol. 6470, pp. 441–455. Springer, Heidelberg (2010) 

7. Comes, D., Bleul, S., Weise, T., Geihs, K.: A Flexible Approach for Business Processes 
Monitoring. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS, vol. 5523, pp. 116–
128. Springer, Heidelberg (2009) 

8. EU IST FP6 project MUSIC, http://www.ist-music.eu 
9. Floch, J., Carrez, C., Cieślak, P., Rój, M., Sanders, R., Shiaa, M.M.: A comprehensive en-

gineering framework for guaranteeing component compatibility. Journal of Systems and 
Software 83(10), 1759–1779 (2010) 

10. Geihs, K., et al.: A Comprehensive Solution for Application-Level Adaptation. Software 
Practice & Experience 39(4), 385–422 (2009) 

11. Geihs, K., Evers, C., Reichle, R., Wagner, M., Khan, M.U.: Development Support for 
QoS-Aware Service-Adaptation in Ubiquitous Computing Applications. In: Proceedings of 
DADS Track of ACM SAC 2011, Taichung/Taiwan (2011) 

12. Geihs, K., Reichle, R., Wagner, M., Khan, M.U.: Modeling of Context-Aware Self-
Adaptive Applications in Ubiquitous and Service-Oriented Environments. In: Cheng, 
B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. 
LNCS, vol. 5525, pp. 146–163. Springer, Heidelberg (2009) 

13. Kraemer, F.A., Slåtten, V., Herrmann, P.: Tool Support for Rapid Composition, Analysis 
and Implementation of Reactive Services. Journal of Systems and Software 82(12), 2068–
2080 (2009) 

14. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. IEEE Computer 37(7), 56–64 (2004) 

15. Oracle BPEL Process Manager, 
http://www.oracle.com/technology/products/ias/bpel/ 



392 K. Geihs 

16. Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Valla, M., Fra, C., Paspallis, N.,  
Papadopoulos, G.A.: A Context Query Language for Pervasive Computing Environments. 
In: Proceedings of IEEE Int. Conf. on Pervasive Computing and Communication,  
pp. 434–440 (2008) 

17. RoboCup Project Homepage, http://www.robocup.org/ 
18. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A., 

Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, 
J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 164–182. Springer, Heidelberg 
(2009) 

19. Skubch, H., Wagner, M., Reichle, R., Geihs, K.: A Modelling Language for Cooperative 
Plans in Highly Dynamic Domains. Mechatronics 2(21), 423–433 (2011) 

20. Vanrompay, Y. (ed.): MUSIC Studio and Tools (final version). MUSIC Deliverable D7.3 
(2010), http://ist-music.berlios.de 

21. Villegas, N., Müller, H., Tamura, G., Duchien, L., Casallas, R.: A Framework for Evaluat-
ing Quality-Driven Self-Adaptive Software Systems. In: Proceedings of SEAMS 2011, pp. 
80–89 (2011) 

22. Wagner, M. (ed.): Modelling notation and software development method for adaptive ap-
plications in ubiquitous computing environments (final version). MUSIC Deliverable D6.5 
(2010), http://ist-music.berlios.de 

 



Author Index

Andersson, Jesper 1, 51, 76

Baresi, Luciano 1, 51
Becker, Basil 1, 108
Bencomo, Nelly 1, 51
Brun, Yuriy 1, 33

Casallas, Rubby 265
Cukic, Bojan 1

de Lemos, Rogério 1, 51
Desmarais, Ron 1, 33
Dubey, Abhishek 294
Duchien, Laurence 265
Dustdar, Schahram 1

Engels, Gregor 1
Esfahani, Naeem 214

Geihs, Kurt 1, 33, 376
Ghanbari, Hamoun 354
Ghezzi, Carlo 191
Giese, Holger 1, 76
Gorla, Alessandra 1, 51
Göschka, Karl M. 1, 76
Grassi, Vincenzo 1, 76

Inverardi, Paola 1, 51, 239
Iszlai, Gabriel 354

Karsai, Gabor 1, 108, 294
Kramer, Jeff 1

Lapouchnian, Alexei 133
Liaskos, Sotirios 354
Litoiu, Marin 1, 33, 354
Lopes, Antónia 1, 33, 162

Magee, Jeff 1
Mahadevan, Nagabhushan 294
Malek, Sam 1, 76, 214
Mankovskii, Serge 1, 108
Mirandola, Raffaela 1, 76
Molzam Sharifloo, Amir 191
Mori, Marco 239
Müller, Hausi A. 1, 108, 265
Mylopoulos, John 1, 133

Nierstrasz, Oscar 1

Pezzè, Mauro 1, 108
Prehofer, Christian 1, 76

Robinson, William N. 133
Rodrigues, Lúıs 162
Rosa, Liliana 162

Schäfer, Wilhelm 1, 108
Schlichting, Rick 1
Schmerl, Bradley 1, 76
Shaw, Mary 1, 33
Simmons, Bradley 354
Smit, Michael 33
Smith, Dennis B. 1
Sousa, João Pedro 1, 108, 324
Souza, Vı́tor E. Silva 133

Tahvildari, Ladan 1, 108
Tamura, Gabriel 1, 108, 265

Villegas, Norha M. 1, 108, 265
Vogel, Thomas 1, 51

Weyns, Danny 1, 76
Wong, Kenny 1, 108
Wuttke, Jochen 1, 76


	Title
	Preface
	Table of Contents
	Part I: Research Roadmap
	Software Engineering for Self-Adaptive Systems: A Second Research Roadmap
	Introduction
	Design Space
	Design Space Definitions
	Key Design Space Dimensions
	Research Challenges

	Processes
	Example: Migrating Evolution Activities 
	Understanding a Self-Adaptive Software System's Lifecycle
	Research Challenges

	Decentralization of Control Loops
	Distribution versus Decentralization
	Drivers for Selecting a Control Schema for Adaptation
	Patterns for Interacting Control Loops
	Outlook

	Practical Run-Time Verification and Validation
	Run-Time V&V Research Enablers
	Run-Time V&V Research Directions
	Research Challenges

	Overall Challenges
	References

	A Design Space for Self-Adaptive Systems
	Introduction
	Related Work
	Self-Adaptive Systems
	Dimensions of the Design Space
	Observation
	Representation
	Control
	Identification
	Enacting Adaptation

	Using the Design Space
	Observation
	Representation
	Control
	Identification
	Enacting Adaptation

	Self-Adaptive System Design Space Challenges
	Conclusion
	References

	Software Engineering Processes for Self-Adaptive Systems
	Introduction
	Revising the System Life-Cycle
	Illustrative Example: Automatic Workarounds
	A Refined Life-Cycle Perspective

	Processes for Self-Adaptive Software Systems
	The Need of Reconceptualizing Software Processes
	Engineering Self-Adaptive Software System with Effective Process Support

	Process Modeling for Self-Adaptive Software Systems
	SPEM-Based Process Modeling
	Reconceptualization of SPEM-Based Process Modeling

	Engineering Challenges
	Related Work
	Conclusion and Future Work
	References

	On Patterns for Decentralized Control in Self-Adaptive Systems
	Introduction
	Terminology
	Managed and Managing Subsystem
	Distribution and Decentralization

	A Notation for MAPE Patterns
	Patterns for Decentralized Control
	Coordinated Control Pattern
	Information Sharing Pattern
	Master/Slave Pattern
	Regional Planning Pattern
	Hierarchical Control Pattern

	Drivers for Selecting Control Schemas for Adaptation
	Discussion
	Related Work
	Conclusions and Challenges Ahead
	References

	Towards Practical RuntimeVerification and Validation of Self-Adaptive Software Systems
	Introduction
	Application Example
	V&V Drivers for Self-Adaptive Software Systems
	The Classic V Model for System Development
	The Viability Zone of Self-Adaptive Software Systems
	What: Requirements and Adaptation Properties
	Where: Separation of Concerns
	When: V&V in the Adaptation Process

	Making V&V Explicit in the Self-Adaptation Loop
	Runtime V&V Tasks
	Runtime V&V Enablers

	Conclusions
	References


	Part II: Requirements and Policies
	Awareness Requirements
	Introduction
	Baseline
	Goal-Oriented Requirements Engineering
	Feedback Loops
	Requirements Monitoring

	Awareness Requirements
	Characterization
	Patterns and Graphical Representation
	Sources of Awareness Requirements

	Specifying Awareness Requirements
	Implementation and Evaluation
	Monitoring Awareness Requirements Patterns
	Evaluating an Awareness Requirement Scenario
	Monitor Performance

	Related Work
	From Awareness Requirements to Feedback Loops
	System Identification
	Adaptation Strategies

	Conclusions
	References

	Self-management of Distributed Systems Using High-Level Goal Policies
	Introduction
	Example: High Traffic Web Cluster
	Approach Overview
	Monitor
	Planner
	Executor

	Adaptation Model
	KPIs
	Goal Policy
	Component Specification
	Adaptation Specification

	Rule Generation and Evaluation
	Offline Phase
	Online Phase

	Example Revisited
	KPIs
	Component Specification
	Adaptation Specification
	Policy
	Prototype
	Evaluation

	Related Work
	Conclusions and Final Remarks
	References

	Dealing with Non-Functional Requirements for Adaptive Systems via Dynamic Software Product-Lines
	Introduction
	Related Work and Background Approaches
	Self-Adaptive Systems for NFRs Satisfaction 
	Dynamic Software Product Lines
	Probabilistic Models for Non-Functional Requirements

	Running Example
	The Proposed Approach
	Design Time
	Run Time

	Conclusion
	References


	Part III: Design Issues
	Uncertainty in Self-Adaptive Software Systems
	Introduction
	Illustrative Example
	Sources of Uncertainty in Self-Adaptive Software
	Impact of Uncertainty on Self-Adaptive Software
	Reconceptualizing Optimality under Uncertainty
	Uncertainty Distilled
	Reducibility versus Irreducibility
	Variability versus Lack of Knowledge
	Spectrum of Uncertainty
	Characterizing the Sources of Uncertainty

	Mathematical Techniques for Representing and Incorporating Uncertainty
	Probability Theory
	Fuzzy Sets and Possibility Theory

	State-of-the-Art
	Rainbow
	RELAX
	FLAGS
	FUSION
	Anticipatory Dynamic Configuration (ADC)
	RESIST
	POISED

	Conclusion
	References

	A Software Lifecycle Process to Support Consistent Evolutions
	Introduction
	Related Work
	Evolution Framework
	Context Model
	Unit of Behavior
	System Configuration
	Consistency Checking

	Software Development Process
	Working Example

	System Evolution
	Foreseen Evolution
	Working Example
	Unforeseen Evolution
	Working Example

	Evolution Framework Architecture
	Framework Instantiation

	Conclusion and Future Work
	References

	DYNAMICO: A Reference Model for Governing Control Objectives and Context Relevance in Self-Adaptive Software Systems
	Introduction
	Application Example
	The Need for Dynamic Context Monitoring

	Design Drivers in the Engineering of Self-Adaptive Software
	Feedback Loops
	Visibility of Feedback Loops
	The Three Levels of Dynamics

	DYNAMICO: Our Reference Model
	Addressing Separation of Concerns
	The Control Objectives Feedback Loop (CO-FL)
	The Adaptation Feedback Loop (A-FL)
	The Monitoring Feedback Loop (M-FL)
	Feedback Loop Interactions
	Governing and Controlling Feedback Loop Interactions
	Possible DYNAMICO Variations

	Discussion of Related Work
	Optimizing Existing Implementations
	Comparing DYNAMICO to Other Self-Adaption Models

	Conclusions and Future Work
	References


	Part IV: Applications
	Fault-Adaptivity in Hard Real-Time Component-Based Software Systems
	Introduction and Motivation
	Related Research and Background
	Overview of ARINC-653 Component Model
	Component Development
	Component Execution and Failure Scenarios
	System Integration

	Health Managers
	Component Level Health Manager
	System-Level Health Manager
	Diagnosis : Isolation and Identification of the Fault Source
	Automated Synthesis of TFPG from ACM Assembly Model
	Example
	System Level Diagnosis Process
	System Level Mitigation Strategy

	Known Limitations and Future Work
	Conclusion
	References

	Towards User Tailoring of Self-Adaptation in Ubiquitous Computing
	Introduction
	Motivation
	Classifying Self-Adaptation
	End-User Design of Ubicomp Systems
	Tool Support
	Adaptation Loop Closed by User

	Design Meshing
	A Variety of Design Artifacts
	Understanding the Details
	Meshing
	Under the Hood
	Scalability

	Pliable Apps
	Designing Structural Adaptation
	User Control of Adaptation

	Bself-Healing
	Healing Protocol
	Architectural Properties

	A Style for Adaptation in Ubicomp
	Impact of Decentralization
	Diversity in Triggers and Changes

	Related Work
	Conclusion and Future Work
	References
	Hierarchical Self-Optimization of SaaS Applications in Clouds
	Introduction
	Scenario
	Elasticity Policy

	Strategy-Trees
	Scenario: Designing a Strategy-Tree for the SaaS Provider

	Architecture
	PaaS Layer
	SaaS Layer

	Experiment
	Experimental Setup
	Characterizing the Elasticity Policies
	Experimental Results

	Discussion
	Related Work
	Conclusions


	Hierarchical Self-Optimization of SaaS Applications in Clouds
	Introduction
	Scenario
	Elasticity Policy

	Strategy-Trees
	Scenario: Designing a Strategy-Tree for the SaaS Provider

	Architecture
	PaaS Layer
	SaaS Layer

	Experiment
	Experimental Setup
	Characterizing the Elasticity Policies
	Experimental Results

	Discussion
	Related Work
	Conclusions
	References

	Self-Adaptivity from Different Application Perspectives Requirements, Realizations, Reflections
	Introduction
	Mobile Ubiquitous Computing
	Adaptation Mechanisms
	Model-Driven Development
	Proof of Concept

	Teams of Autonomous Mobile Robots
	Context Model
	Behavioral Modeling Language
	Proof of Concept

	Dynamic Service-Oriented Architectures
	Monitoring
	Service Selection and Adaptation
	Proof of Concept

	Evaluation
	Evaluation Framework
	Analysis of the Three Case-Studies
	Evaluation Framework Critique

	Conclusions
	References


	Author Index



