
Surprise: User-controlled Granular Privacy and Security for

Personal Data in SmarterContext

Juan C. Muñoz1, Gabriel Tamura1, Norha M. Villegas1,2,3, and Hausi A. Müller2,3

1Icesi University, Cali, Valle del Cauca, Colombia
2University of Victoria, Victoria, British Columbia, Canada
3IBM Canada CAS Research, Markham, Ontario, Canada

Abstract

The Smart Internet relies on the exploitation of
information obtained from interactions of users
with web applications. A critical aspect for
its success is the adoption of mechanisms that
guarantee the protection of information sensi-
tive to users. This paper presents Surprise,
our solution to empower users with privacy and
data security control for the access to their in-
formation, stored in Personal Context Sphere
repositories. These repositories are defined and
maintained by SmarterContext, our Smart
Internet infrastructure that improves the qual-
ity of user experience in their interactions with
web applications. Surprise (i) allows users
to configure access permissions to their sensi-
tive personal information to third parties, se-
lectively and with different levels of granular-
ity; (ii) supports changes in these configura-
tions at runtime to add or remove third parties
or permissions, and (iii) realizes partial encryp-
tion to share non-sensitive data with not explic-
itly authorized third parties, while protecting
user identity. We analyze details of our proof-
of-concept implementation with respect to the
SmarterContext’s privacy and security re-
quirements.

Copyright© 2012 Juan C. Muñoz, Gabriel Tamura,
Norha M. Villegas, and Hausi A. Müller. Permission to
copy is hereby granted provided the original copyright
notice is reproduced in copies made.

1 Introduction

SmarterContext is our dynamic context
management framework that identifies mean-
ingful context information from the interactions
that users perform with web resources through-
out their web experiences. SmarterContext,
driven by the user, stores this information in
Resource Description Framework (RDF) repos-
itories that we named personal context spheres
(PCSs). Most importantly, the access to the
information stored in a PCS is granted by
its owner, the user [14]. The case study de-
scribed in this paper focuses on guaranteeing
privacy and security of personal context infor-
mation in on-line shopping scenarios supported
by SmarterContext.

Context management must guarantee privacy
and security for personal context information.
The level of protection depends on the con-
text types from which the information is de-
rived. From the perspective of privacy and se-
curity, we classify personal context information
as sensitive and non-sensitive context. Sensi-
tive context corresponds to the context infor-
mation that must be encrypted along its life cy-
cle. Examples of sensitive data include credit
cards, user identities, personal agendas and cur-
rent and preferred locations. In our e-commerce
case study, examples of non-sensitive context
data are user preferences about product and ser-
vice categories. Since users control the access to
PCSs, SmarterContext must support them
in specifying the information they want to share
and the corresponding third parties with which
this information is exchanged.

131

SmarterContext relies on RDF [3], RDF-
S [12], and OWL-Lite [11] to represent and rea-
son about context information. Thus, we are
interested in approaches to privacy and secu-
rity targeting RDF data. A security approach
compliant with SmarterContext must ad-
dress three requirements: (i) dynamic selectiv-
ity, (ii) dynamic granularity, and (iii) partial
encryption. Dynamic selectivity empowers the
user to decide, at runtime, about third parties
authorized to exchange personal context with
the SmarterContext engine. Dynamic gran-
ularity enables the user to select, at runtime,
specific types of personal context data to be
shared with a particular third party. Finally,
partial encryption concerns the exploitation of
non-sensitive context data stored in PCSs. That
is, to enable PCS infrastructure providers to de-
velop new business models based on the sharing
of non-sensitive data, as long as user identities
remain undisclosed.

One of the most representative partial en-
cryption approaches for RDF data is Partial
RDF Encryption (PRE) [7, 8]. Even though
PRE does not support dynamic selectivity and
dynamic granularity as defined in Smarter-
Context, we selected PRE as a baseline for the
implementation of our solution for three main
reasons. First, it is a sound solution for partial
encryption. Second, both its specification and
implementation are publicly available. Third, it
is based on Jena [4], the semantic web frame-
work that we used to implement the Smarter-
Context engine.

The main contribution of this paper is
Surprise (Smartercontext UseR PRIvacy and
SEcurity), our user-controlled approach to en-
sure the privacy and security of the RDF data
stored in PCSs. To realize Surprise, we ex-
tended PRE in three main ways: (i) modify-
ing its policy language to enable the definition
of security policies as required in Smarter-
Context, (ii) modifying its data structures to
improve efficiency, and (iii) extending its API
to support the redefined policies and data struc-
tures.

The remaining sections in this paper are or-
ganized as follows. Section 2 introduces our on-
line shopping case study. Section 3 provides an
overview of SmarterContext and introduces
its privacy and data security requirements. Sec-

tion 4 explains PRE, the baseline of our ap-
proach. Section 5 highlights the most important
features of Surprise, and explains its specifi-
cation and implementation. Section 6 discusses
related work. Finally, Section 7 outlines future
work and concludes the paper.

2 Case Study

In a common on-line shopping scenario, the user
browses several stores’ web sites to shop for dif-
ferent kinds of products and services. Generally,
the user shares common concerns with others
while interacting with on-line stores in a partic-
ular shopping experience (e.g., a vacation trip
or an anniversary). Suppose Anne, a frequent
on-line buyer, is shopping for an anniversary gift
for her husband. Anne browses through differ-
ent web sites looking for a special gift accord-
ing to her husband’s preferences known to her.
Thus, during this shopping experience Anne in-
teracts with different web sites looking for prod-
ucts that could exploit her husband’s interests
actually stored in his web browsing history.
The interactions of users with web applica-

tions are valuable sources of meaningful infor-
mation to understand their intents and situa-
tions. Moreover, the information gathered from
the interactions with a particular web site could
be exploited to improve the quality of user expe-
rience provided not only by the same web site,
but also by others.
For conducting this case study we imple-

mented several on-line stores compliant with
SmarterContext.1 These stores, known as
personal web-enabled sites (PWE-sites), were
instrumented to exchange context information
about users with the SmarterContext en-
gine. SmarterContext exchanges personal
context with these third parties by taking into
account the nature of the PWE-site (e.g., the
web sites with which Anne is interacting will
receive information about Anne’s preferences,
only if they are related to the anniversary con-
cern), and the level of privacy and security con-
figured by the user (e.g., if Anne does not al-
low SmarterContext to share information

1http://smartercontext.org/shopsite1
http://smartercontext.org/shopsite2
http://smartercontext.org/ticketsite
http://smartercontext.org/musicsite

132

about her credit card, SmarterContext will
not share this information with PWE-sites, even
when they are part of Anne’s PCS).

In this case study the categories of personal
context information stored in PCSs correspond
to calendar events gathered from personal agen-
das, preferred product and service categories,
credit card details, and shipping and billing in-
formation. These data contain sensitive per-
sonal context information such as the user’s
identity, current and preferred locations, and
her credit cards numbers, expiration dates, and
verification numbers. Since the unauthorized
disclosure of this sensitive information may have
catastrophic consequences for users and busi-
nesses, SmarterContext must implement ef-
fective data security mechanisms to protect the
information stored in PCSs, while still leverag-
ing its value to provide users with more pleasant
on-line shopping experiences.

3 SmarterContext
Overview

SmarterContext is a dynamic context man-
agement infrastructure that monitors the inter-
actions of users with web entities, such as prod-
ucts offered in an on-line catalog, to gather rel-
evant context information [14]. The informa-
tion gathered by the SmarterContext engine
about a particular user is stored in a persistent
repository called personal context sphere or PCS
for short. SmarterContext reasons about
this information to provide context-aware appli-
cations, such as daily-deal applications, with up-
to-date information useful to understand users’
situations and preferences.

The main components of SmarterContext
are (i) its ontology, (ii) the service-oriented soft-
ware infrastructure, and (iii) the users’ PCSs.
The SmarterContext ontology, which in-
cludes several vocabularies, supports context
representation and reasoning [13]. The service-
oriented infrastructure provides the software
components required to manage the context in-
formation life-cycle: context gathering, process-
ing, provisioning, and disposal [14]. PCSs are
repositories that store the personal context data
of SmarterContext users.

3.1 Personal Context Spheres

A personal context sphere (PCS) is a distributed
repository provided by a third party that stores
the context information of a user gathered by
the SmarterContext engine [14]. These
repositories use RDF [9] represent and manage
personal context data. Most importantly, the
access to RDF data is controlled by the user.
Context facts are represented as sets of RDF

triples. Figure 1 depicts the graph representa-
tion of a simple RDF triple with correspond-
ing subject, predicate and object. This triple
provides context information about Anne’s pre-
ferred location. Subject, predicate and object
are identified by a URI. For convenience, RDF
specifications use a shorthand for referring to
URI references (QName). In this way, the full
URI is defined by appending the local identifier
to the abbreviation (QName prefix). Figure 2
depicts a partial view of Anne’s PCS. In par-
ticular, it presents context facts related to her
preferred payment method.

geo:Victoria

pwc:preferredLoca on

QName Prefixes

pwc: h"p://smartercontext.org/vocabularies/pwc/v6.0/pwc.owl#

geo: h"p://smartercontext.org/vocabularies/rdf/geo.rdf#

Subject

Predicate

Object

pwc

QN P fi

Subject

anne.rdf#anne

Figure 1: An RDF triple representing context

SmarterContext realizes the vision of ex-
ploiting information about users, gathered from
their past and present interactions with web ap-
plications, to deliver more pleasant and effec-
tive shopping experiences. For this, Smarter-
Context keeps track of simple interactions
such as “likes”, “wishes”, “purchases” and
“rankings” to gather meaningful information
about the user’s preferences, and share this in-
formation with on-line stores that offer related
products or services. An important difference
of e-commerce models envisioned in Smarter-
Context with respect to traditional ones, is
that in existing on-line shopping applications
the knowledge gained about the buyer’s behav-
ior is exploited by individual web sites only,
which own and have full control of the users’
data.
The integration of new context is performed

133

anne.rdf#anne

anne.rdf#prefPM

shopping:preferredPaymentMethod

shopping:verifica!onNumber

shopping:Payment

Method
rdfs:type

854

shopping:paymentMethodType

“VISA”

shopping:nameOnCard

“Anne

Muller”

shopping:expira!onYears10

Google:Necklacespwc:likes

Figure 2: A partial view of Anne’s PCS. Oval nodes correspond to RDF resources identified by URIs
that represent either context types in the SmarterContext ontology [13], or instances of these types
(e.g., anne.rdf#anne represents an instance of type pwc:user). Arcs represent the predicates defined in our
ontology as context relationships and context properties. Rectangular nodes correspond to literals (values).
Predicate pwc:likes and object Google:Necklaces correspond to non-sensitive context data.

by the user either through the PCS user inter-
face directly, or assisted by SmarterContext
when new data is gathered from web entities.
PCSs also enable users to integrate web enti-
ties exposed through web services such as per-
sonal agendas, shopping lists, and social net-
works. These web entities constitute the con-
sumers and providers of the user’s personal con-
text information gathered and provisioned by
SmarterContext. Therefore, for a particular
person, SmarterContext only shares context
information with the applications and services
integrated into that user’s PCS. For example,
when Anne created her PCS, she provided her
preferred shipping and billing addresses using
the SmarterContext user interface.

Users can configure privacy and security lev-
els selectively. For example, Anne approved
the disclosure of her credit card information
with one of the PWE-sites in her PCS only.
Thus, SmarterContext must guarantee that
Anne’s credit card information will not be
shared with any other PWE-site. Moreover,
given the sensitive nature of this information,
Anne’s credit card data must be protected
against unauthorized access by third parties ei-
ther during their provision to the PWE-site, or
while stored in Anne’s PCS. Similarly, her hus-
band could enable his PCS’s application to pro-

vide information for improving Anne shopping
for her anniversary gift to him.
SmarterContext has the potential to trig-

ger radical changes in existing e-commerce mod-
els. For example, information about users
stored in PCSs can be exploited also to im-
prove the accuracy of results in business analyt-
ics. Of course, without compromising the pri-
vacy and security of sensitive personal data. As
long as user privacy is guaranteed, an important
part of this information could be shared with
third parties to enable new business opportu-
nities based on information services. For exam-
ple, information about Anne’s preferred product
categories, such as the fact that she likes neck-
laces (cf. Fig.2), could be shared with related
retailers in an anonymous way (without disclos-
ing her identity).

3.2 Privacy and Data Security
Requirements

Important factors of the security quality at-
tribute are privacy, integrity, and availabil-
ity [1]. These quality factors concern the pro-
tection of data against unauthorized disclosure,
modification, and destruction, respectively.
Using this characterization, we defined the

privacy and data security requirements for

134

SmarterContext as follows:

RQ-1. Dynamic Selectivity : Smarter-
Context must exchange only selected
personal context information with
PWE-sites integrated into PCS, taking
into account that the list of PWE-sites
with which the user shares context
information changes over time. To ex-
change non-sensitive information with
third parties not included in the user’s
PCS, the SmarterContext engine
must disassociate the user identity
from this information to guarantee its
anonymity.

RQ-2. Dynamic Granularity: Since the user
may decide to share her context infor-
mation partially, SmarterContext
must allow the user to configure dif-
ferent levels of granularity (e.g., in the
form of policies) for the access to her
personal context information. More-
over, granularity levels may vary over
time.

RQ-3. Partial Encryption: Sensitive personal
information must be encrypted when
stored, gathered, and provisioned.
However, for SmarterContext to be
able to reason about context informa-
tion stored in PCSs, only sensitive data
must be encrypted according to the
specified policies.

Concerning requirement RQ-1 (dynamic se-
lectivity), when the user integrates PWE-sites
into her PCS, she specifies whether Smarter-
Context is allowed to either gather and send,
only send, or only gather context information
from and to the corresponding third party. In
this sense, data security in SmarterContext
guarantees that sensitive personal data (i.e., any
datum associated with the identity of the user)
is available only to PWE-sites or other PCSs
that have been allowed by the user. Regard-
ing requirement RQ-2 (dynamic granularity),
in SmarterContext the user may decide to
share some types of information only. More-
over, these types can vary from one third party
to another. Finally, concerning requirement
RQ-3 (partial encryption), since the Smarter-
Context infrastructure (including PCS repos-
itories) is maintained by cloud providers (also

third parties), data protection must be guar-
anteed even in cases where this information is
accessed by not explicitly authorized parties.
In such cases, the information will remain in-
accessible because it is encrypted. However, if
PCSs are encrypted fully, SmarterContext
will not be able to reason about context infor-
mation thus compromising the usefulness and
value of these data. Operations performed by
the SmarterContext engine such as union of
RDF graphs, inferences, and filtering cannot be
executed on encrypted triples.

4 Partial RDF Encryption

Some approaches, based on partial RDF encryp-
tion, have been proposed to address the afore-
mentioned problems on RDF data security. One
of the most representative is the proposed by
Giereth [7, 8]. This approach presents a method
called Partial RDF Encryption (PRE), which of-
fers a Java API (PRE4J), to generate encrypted
containers for sensitive data. This method uses
synchronous and asynchronous keys to encrypt
single subjects, predicates, objects, triples and
triple sets with different encryption keys, algo-
rithms and security features defined in policy
files.

The two main components of PRE are (i) en-
cryption containers (EC), and (ii) encryption
(PREPolicy) policies, whose structure and func-
tions are summarized as follows.

4.1 Encrypted Containers

An encrypted container (EC) is a data struc-
ture used to store the encrypted RDF elements
together with the key ciphers and the encryp-
tion metadata [7]. This metadata includes the
encryption algorithms to be used with their pa-
rameters, hash values and the public key iden-
tification information. ECs are included in the
original RDF graph as literals in new triples,
replacing the original RDF segments that were
encrypted. An EC contains an EncryptedData
slot, which is composed of four sub-slots [7]:

i. EncryptionMethod: defines the encryption
algorithm;

ii. EncryptionProperties: contains informa-
tion such as the digest value, digest algo-

135

rithm and data type information;
iii. KeyInfo: stores the public encryption keys

into EncryptedKey slots. The structure
of each EncryptedKey corresponds to the
structure of the EncryptedData slot; and

iv. CipherData: stores the encrypted RDF el-
ements.

The PRE4J API supports multiple encryp-
tion key sets (public keys) for sensitive data
using a session key in the encryption process.
This session key is encrypted with each public
encryption key and stored in the KeyInfo slot.
In the decryption process, a valid private key
is used to decrypt the session key from the re-
spective EncryptedKey slot. Then, the session
key is used to decrypt the data stored in the
CipherData slot. Every time the data must be
encrypted, an EC is generated for each RDF el-
ement. Moreover, every time the data in the EC
must be modified, the whole EC is decrypted.
That is, a decryption is performed whenever it is
required to add, replace or delete keys, or access
the encrypted data.

4.2 Encryption Policies

PREPolicy encryption policies are specified in
the PRE Policy Language (PRE-PL) and define
the RDF elements to be encrypted, the encryp-
tion properties and the encryption keys used
[7].2

The XML structure of the PREPolicy policy
defines three main sections, as illustrated in Fig.
3:

i. KeyInfo: defines child elements for the pub-
lic keys used to store the session’s encrypted
key. This element is currently not supported
by the implementation.

ii. EncryptionScheme: (documented as De-
faultEncryptionScheme) defines the algo-
rithms and digest methods for encryption.

iii. GraphPattern: defines one or more
TriplePattern children elements to iden-
tify the RDF elements to be encrypted.

A TriplePattern specifies a pattern in the
form of an RDF triple (subject, predicate, ob-

2The complete specification of PRE-PL is not pub-
licly available. It was published partially in [7]. More-
over, after analyzing the available implementation care-
fully, we concluded that it does not support the available
part of the specification completely.

Figure 3: The main elements of the PREPolicy
specification.

ject), having the structure specified in Listing
1.

Listing 1: TriplePattern specification

TriplePattern ::= ’(’ subject -p

predicate -p object -p ’)’

where

subject -p ::= variable|URI

predicate -p ::= variable|URI

object -p ::= variable|URI|literal

Informally, the TriplePattern structure
semantically represents a pattern to se-
lect RDF triples to either (i) query, or
(ii) update (possibly encrypting) elements
in the RDF data graph. In case (i),
the TriplePattern selects triples whose sub-
ject, predicate or object matches subject-p,
predicate-p, and object-p correspondingly.
As usual, variables are bound to values
in match operations, and their values are
used in other TriplePatterns of the same
GraphPattern. In this case, each of the
RDF triples filtered must match all of the
TriplePatterns consistently, that is, with cor-
responding matches with the shared variables.
In the case of URIs and literals, the RDF item
is bound to the respective value. When several
TriplePatterns are specified, all of them are
used in the same RDQL query to retrieve the
triples of interest.
In case (ii), for the update operation,

the Encryption optional element of the
TriplePatternmust be specified for the filtered
triples to be encrypted, including the Target

sub-element. This sub-element is currently sup-
ported with the options ‘s’ (to encrypt the sub-
ject),‘p’ (predicate),‘o’ (object), or ‘t’ (the

136

whole triple). If these child elements are omit-
ted, the TriplePattern is useful only to restrict
other TriplePatterns with shared variables. In
other words, the set of selected triples that re-
sult from the whole set of TriplePatterns are
used to bound the free variables and update the
RDF data, encrypting only the corresponding
triple elements according to the policy specifi-
cation, as explained above.

5 Our Approach: Surprise

This section presents Surprise, our solution to
realize user-controlled privacy and data security
for RDF data in SmarterContext. Surprise
is based on Partial RDF Encryption (PRE), the
baseline approach proposed by Giereth [7, 8] as
explained in Sect. 4 above.

5.1 Overview

Even though PRE supports requirement RQ-3
(cf. partial encryption in Sect. 3.2), its PRE-
Policy encryption policy is insufficient to ad-
dress requirements RQ-1 (dynamic selectivity)
and RQ-2 (dynamic granularity) as defined for
SmarterContext. This means that with
PRE only, we can reason on Anne’s non-
sensitive context data because it supports par-
tial encryption, but Anne neither can grant dif-
ferent privilege levels to different PWE-sites nor
select particular context types to be shared with
a particular PWE-site. To address these re-
quirements, we extended PRE in three ways.
First, we modified the PREPolicy structure
and semantics to enable the definition of poli-
cies that support requirements RQ-1 and RQ-2
for SmarterContext (hence called PREPol-
icySC). Second, we modified the PRE encryp-
tion containers (ECs) to support requirement
RQ-1 more efficiently. Finally, we extended
the PRE4J API to provide the functionality re-
quired to support the redefined encryption poli-
cies and ECs.
Table 1 summarizes the modifications imple-

mented in Surprise with respect to four fea-
tures directly related to the requirements in
SmarterContext (cf. Column 1 in Table 1).
The new capabilities implemented in Surprise,
the ones independent of PRE, are explained in
Sect. 5.4.

5.1.1 Public Keys

To support requirement RQ-1 (dynamic selec-
tivity), Surprise manages public keys at the
user level. Thus, users can grant access to dif-
ferent sensitive context types of their personal
context to particular PWE-sites. For this, our
approach supports the user in linking a public
key for each third party authorized to receive
context information from her PCS. In our case
study, this modification enables Anne to ap-
prove the disclosure of her credit card informa-
tion with only one of the PWE-sites in her PCS.
Public keys in Surprise, managed according to
the Internet public key infrastructure [2], are
stored in a repository of the SmarterContext
infrastructure and associated to users’ PCSs,
whereas in PRE are stored in the PREPolicy
encryption policies. Finally, even though PRE-
PL allows the specification of many public keys,
we found no implementation evidence for this
feature in the PRE4J API.

5.1.2 Policies

In contrast to the PREPolicy, PREPolicySC
encryption policies support the specification
of multiple sensitive context types to be en-
crypted. This first modification in the manage-
ment of policies targets efficiency because only
one query and iteration are required when en-
crypting and decrypting more than one sensi-
tive context type. For example, to access the
user’s location only it is not required to decrypt
other sensitive context such as her credit card
information. The second change in this category
is the association of triple patterns to sensitive
context types rather than to public keys. This
feature addresses requirements RQ-1 (dynamic
selectivity) and RQ-2 (dynamic granularity) be-
cause multiple triple patterns for the identifica-
tion of sensitive context types can be applied
to a particular user. Moreover, these patterns
can be combined in different ways depending on
the information the user wants to share with the
corresponding PWE-sites. With this, the user
can decide to share her credit card and location
information with some of the PWE-sites, but
only her location with others.

137

Table 1: Modified features of PRE in Surprise

Feature PRE Surprise Surprise additions to PRE

Public Keys

Integrated in the PRE-
Policy definition (speci-
fied in PRE-PL but not
implemented in PRE4J).

Defined at the user
level. Stored in
SmarterContext
and associated to users’
PCSs.

User encryption keys deleted from
the PREPolicySC file and stored in
user’s PCS to allow indirect associ-
ation between encryption keys and
sensitive context types. This is to
address RQ-1 (dynamic selectivity).

Policies

One PREPolicy for each
sensitive context type.
Multiple queries and it-
erations required when
encrypting multiple con-
text types.

One PREPolicySC sup-
ports the specification of
multiple sensitive con-
text types to be en-
crypted. Only one query
and iteration required to
encrypt multiple context
types.

Sensitive context types defined as
a KeyRefType child element in the
TriplePattern elements of the pol-
icy to support the encryption of
multiple sensitive context types.
This is to address RQ-2 (dynamic
granularity).

Triple patterns associ-
ated to public keys.

Triple patterns associ-
ated to sensitive context
types.

Encryption
Containers

One EC required for
each triple. Single EC
unsupported for encrypt-
ing triple sets obtained
from the application of
policies.

One EC for all the triples
in the same sensitive
context type. Single EC
supported for encrypting
triple sets obtained from
the application of triple
patterns defined in poli-
cies.

Sensitive context triples grouped
according to their context type de-
fined in the SmarterContext on-
tology. This is to address efficiency.

Support for
Changes at
Runtime

Public keys cannot
added to or deleted
from an existing EC at
runtime.

The Encryptedkey slot is
modified without affect-
ing other slots in the EC,
when adding or remov-
ing keys at runtime.

The encryption process was sim-
plified to modify only the KeyInfo

slots to add or remove public keys
dynamically. This is to address RQ-
1 (dynamic selectivity).

The addition of new en-
crypted triples into an
existing EC at runtime is
unsupported.

New encrypted triples
can be added into an
existing EC without de-
crypting the stored data.

The EC meta-data was modified
to add the context type of the en-
crypted data into the clear section
of the EC to allow the addition of
new encrypted triples without de-
crypting the existing data. This is
to address RQ-2 (dynamic granu-
larity).

5.1.3 Encryption Containers

To improve efficiency, Surprise redefined ECs
to support the storage of multiple triples belong-
ing to the same sensitive context type. The cur-
rent semantics of PREPolicy compromises the
space and time complexity of queries and up-
dates of RDF triples since it requires one EC
to store each encrypted triple. For example,
to store the information about Anne’s preferred
payment method, that is her credit card and

all of its attributes, one EC data structure is
created for each of these attributes (e.g., one
EC for the triple that represents the credit card
number, or one for the verification number.).

5.1.4 Support for Changes at Runtime

Support for runtime change is a key feature of
SmarterContext given the dynamic nature
of context information. In PRE, the addition

138

of new public keys and the deletion of exist-
ing ones at runtime requires the creation a new
EC. In PRE4J, changes at runtime imply the
decryption of the whole data in the EC (even
when the sensitive context data is not modi-
fied), the definition of a new list of public keys,
and the creation of the new EC. Under these
settings, performance is compromised and users
could not grant access to their context informa-
tion to new PWE-sites, nor deny permissions
granted previously. For example, Anne could
not integrate new PWE-sites to her shopping
experience without compromising the privacy
of her sensitive data. Moreover, once she has
granted a set of privileges to a particular PWE-
site, those privileges would apply forever. To
support requirement RQ-1 (dynamic selectivity)
efficiently, we modified PRE4J to allow the ad-
dition and removal of public keys to the KeyInfo
slot without affecting other slots in the EC.

Another important improvement concerning
changes at runtime is the addition of new en-
crypted triples without decrypting the stored
data. In contrast, PRE does not support
requirement RQ-2 (dynamic granularity) effi-
ciently because existing ECs cannot be used for
the addition of new triples. For example, if
Anne just granted access to her location infor-
mation to a PWE-site, she could not give further
privileges to this web site in the future.

5.2 PRE Policies Redefined

Given the analysis presented in the previous
section, to satisfy the privacy and security re-
quirements established for SmarterContext
the first step in our strategy was to redefine the
PRE policies.

As illustrated in Fig. 4, our encryption policy,
PREPolicySC, is a modification of the PREPol-
icy policy (cf. Sect. 4.2). Structurally, we use
the same policy elements of PREPolicy except
for the KeyInfo, which is omitted to satisfy re-
quirements RQ-1 (dynamic selectivity) and RQ-
2 (dynamic granularity). In contrast, our defi-
nition adds a KeyRefType child element to the
Encryption element of TriplePatterns to sat-
isfy requirement RQ-3 (partial encryption).

Nonetheless, despite this structural similarity,
the most important aspect of our policy redef-
inition is its semantics, that is, what the pol-

Figure 4: The main elements of PREPolicySC
specification

icy represents in terms of RDF encrypted data
when applied to PCSs.

To illustrate this aspect better, consider the
application of encryption policies in our case
study. Recall from Fig. 2 Anne’s preferred pay-
ment method, represented in her PCS as an
RDF sub-graph composed of six triples. Anne’s
PCS, depicted partially in Fig. 2, has an ex-
tra triple that represents non-sensitive data, in
particular the fact that she likes necklaces. In
addition, assume the policy GraphPattern spec-
ification illustrated in Fig. 5. This pattern can
be used to encrypt preferred payment methods
in SmarterContext, such as Anne’s method.
It is worth noting that we can still omit the
KeyRefType elements to be able to include the
GraphPattern as a valid one in a PREPolicy
encryption policy. Thus, informally, the seman-
tics of such a PREPolicy applied to Anne’s PCS
yields the RDF graph presented in Fig. 6. No-
tice that the triple related to her product pref-
erences remains unencrypted.

That is, the triples that match the triple
patterns corresponding to expirationYear,

nameOnCard, verificationNumber and
paymentMethodType are bound to 10, “Anne
Muller”, 854, and “VISA”, respectively. These
triples are then encoded as triples (BNi,

renc:encTriples, ECi)1≤i≤4, respectively,
where:

� BNi is a blank node;

� renc:encTriples is the predicate that
identifies encrypted triples; and

139

Figure 5: Example of a PREPol-
icySC GraphPattern for encrypting
preferredPaymentMethod triples.

� ECi is the encryption container that encap-
sulates the encrypted RDF elements (e.g.,
the encryption of (anne.rdf#prefPM,

shopping:expirationYear, 10) for the
first triple), and the corresponding key ci-
phers and encryption metadata.

If we define a PREPolicySC policy with the
GraphPattern specified previously, and apply
it to encrypt the preferred payment method
in Anne’s PCS, the semantics yields the RDF
graph presented in Fig. 7.

In this case, the four triples that match the
specified triple patterns are encoded as the

anne.rdf#anne

anne.rdf#prefPM

shopping:preferredPaymentMethod

EC1

BN1

EC3

BN3

EC2

BN2

shopping:Payment

Method
rdfs:type

renc:encTriples renc:encTriples renc:encTriples

EC4

BN4

renc:encTriples

Google:Necklacespwc:likes

Figure 6: Semantic interpretation of the PREPol-
icy encryption policy of Fig. 5 applied to Anne’s
PCS.

anne.rdf#anne

anne.rdf#prefPM

shopping:preferredPaymentMethod

renc:encTriples

EC

BN

shopping:Payment

Method
rdfs:type

Google:Necklacespwc:likes

Figure 7: Semantic interpretation of the PREPoli-
cySC policy of Fig. 5 applied to Anne’s PCS.

triple (BN, renc:encTriples, EC), where BN

is a blank node; renc:encTriples is the pred-
icate that identifies encrypted triples; and EC is
the encryption container that encapsulates the
four RDF elements encrypted, with the corre-
sponding key ciphers and encryption metadata.

It is worth noting that the presented struc-
tural modifications to the encryption policy and
its associated semantics constitute a sound ba-
sis to realize the features presented in Sections
5.1.3 and 5.1.4, specially allowing to address the
efficiency concerns. In the following sections we
present the details of how our proof-of-concept
implementation realizes these modifications.

140

5.3 Modified Features

This sub-section presents details about the fea-
tures of PRE that we modified in Surprise.
To support policies in context management, we
defined PREPolicySC files based on the PRE-
Policy files defined in PRE.

5.3.1 Public Keys

Deletion of user encryption keys from the PRE-
PolicySC file. We redefined PRE-PL to delete
public keys from the policy file in Surprise
(cf. Fig. 4) and include them in the user’s PCS.
With this, Surprise supports queries of en-
crypted triple sets without referencing the user’s
encryption keys. Having no association between
public keys and the PREPolicySC file enables
the definition of different sets of keys for differ-
ent types of context data, at several granularity
levels that can be modified at runtime. This
feature addresses requirement RQ-2 (dynamic
granularity). For instance, to support our user
in giving access to her location information to
a PWE-site that had access to her credit card
information only.

5.3.2 Policies

Specification of multiple sensitive context types
on a single PREPolicySC file. We defined the
sensitive context type as a KeyRefType child ele-
ment in the TriplePattern elements of the pol-
icy (cf. Fig. 5). With this, Surprise matches
triple patterns with key sets using the sensitive
context types defined in the SmarterContext
ontology. This level of indirection based on the
types of context information to be encrypted
allows Surprise to support the definition of
one policy file for multiple context types. This
feature addresses requirement RQ-2 (dynamic
granularity).

5.3.3 Encryption Containers

Storage of multiple triples of the same context
type in one EC. Aiming at improving perfor-
mance, Surprise minimizes the number of ECs
required to encrypt the sensitive context data of
each user, thus avoiding unnecessary key gener-
ation processes and optimizing spacial complex-
ity. For this, Surprise groups sensitive context

triples according to their context type defined in
the SmarterContext ontology. For example,
to encrypt all the triples related to the user’s
credit card in one EC only. This optimization
mechanism applies for the encryption of triples
only, that is, it is unsupported for the encryp-
tion of RDF subjects, objects and predicates in-
dependently. This feature addresses efficiency.

5.3.4 Support for Changes at Runtime

Modification of encrypted public key sets. The
integration of new PWE-sites into the user’s
PCS implies the addition of new keys into the
corresponding ECs. Similarly, the deletion of
PWE-sites implies the deletion of the corre-
sponding keys from their ECs. To avoid the full
decryption and encryption of ECs when modify-
ing key sets, Surprise implements a simplified
process where only the KeyInfo slots are mod-
ified. This feature addresses requirement RQ-1
(dynamic selectivity).

Suppose the user wants to integrate a new
PWE-site with which she wants to exchange
context information. For each context type to
be shared with this third party, the key addi-
tion process has four steps: (i) identification of
the EC that corresponds to the context type she
wants to share; (ii) testing for decryption of the
encrypted keys in the KeyInfo slot with private
keys provided by users or PWE-sites, to obtain
the appropriate session key; (iii) generation of a
new encrypted key for the session key obtained
in (ii), using the new public key; (iv) genera-
tion of the hash code and storage of the new
encrypted key together with the hash value in
the KeyInfo slot.

The key deletion process has three steps: (i)
identification of the EC; (ii) identification of the
EncryptedKey in the KeyInfo slot using its hash
value; (iii) deletion of the identified encrypted
key from the KeyInfo slot.

Modification of ECs to support the addition
of triple sets dynamically. Surprise supports
the addition of new triples into existing ECs
without decrypting and encrypting all the in-
formation stored in the container, and without
creating new ECs. To implement this feature,
we modified the definition of the EC meta-data
to add the context type of the encrypted data
into the clear section of the EC. With this mod-

141

ification, it is possible to identify the container
without accessing the encrypted data.

5.4 New Features

5.4.1 Graph Patterns for Smarter-
Context sensitive data

For this case study, we identified six sensitive
context types from the categories defined in the
SmarterContext ontology. These types are
related to the user’s locations, payment meth-
ods, personal identification and other personal
data such age, gender and marital status [13].
Triple patterns allow the identification of con-

text data to be encrypted in users’ PCSs. In
Sect. 5.2 we explained the redefinition of the pol-
icy semantics for PREPolicySC, which includes
the identification of sensitive context types from
the triple patterns defined in the GraphPattern
specification (cf. Fig. 5).
Consider the partial view of Anne’s PCS pre-

sented in Fig. 2 and the GraphPattern spec-
ification in Fig. 5. This RDF graph presents
a partial description of Anne’s preferred
payment method (node anne.rdf#prefPM).
The GraphPattern specification defines one
TriplePattern element for each of the triples
with subject anne.rdf#prefPM in Anne’s graph.
The last three triple patterns, neither detailed
in the GraphPattern of Fig. 5 nor in the graph
of Fig. 2 for simplicity, correspond to the expi-
ration month, the card number and the billing
address associated with the preferred payment
method.
According to this GraphPattern speci-

fication, the first triple pattern allows the
identification of all the triples that match (?x,

shopping:preferredPaymentMethod, ?pmx)

from Anne’s graph. In this case, the triple
matching this pattern is (anne.rdf#anne,

shopping:preferredPaymentMethod,

anne.rdf#prefPM). The remaining triple
patterns with subject ?pmx, excepting the sec-
ond TriplePattern element that is intended
for triples with rdfs:type as the predicate,
indicate that all the triples in the graph with
subject anne.rdf#prefPM (but with predicate
different than rdfs:type) must be encrypted.
Thus, the two first triple patterns are intended
only for the discovery of the data sensitive
context information in the PCS, and their

corresponding triples in the graph remain clear
to identify the existence of a preferred payment
method but without any further details.

These triple patterns define also the
Encrytion and KeyRefType elements that
define the triple marker for encryption and
the corresponding sensitive context type. In
the example of the preferred payment method,
these elements are bounded to ‘t’ (triple) and
preferredPayment, respectively. The triple
patterns for the remaining sensitive context
types are defined in the same way with the
appropriate values for subjects, predicates,
objects and markers for encryption.

5.4.2 Storage of Encryption Keys in the
PCS

In SmarterContext is the user who controls
the sharing of the context data stored in her
PCS. This implies the granting of context ex-
change privileges to PWE-sites and the encryp-
tion policies for sensitive context types. For
this, we implemented the mechanisms to store in
the SmarterContext infrastructure the pub-
lic keys of all the PWE-sites registered by the
user. Then, these public keys are linked in the
user’s PCS to the sensitive context types that
the corresponding PWE-site can access. Pub-
lic keys are also added to ECs as explained
in Sect. 5.3.4. Whenever the user decides to
stop sharing a particular sensitive context type
with a PWE-site, the corresponding key refer-
ences are deleted from the PCS, and the en-
cryption key from its KeyInfo slot as detailed
in Sect. 5.3.4.

The semantics of privileges granted to
PWE-sites in user PCSs is supported by the
SmarterContext ontology and its new
Surprise module as follows. For each PWE-
site integrated by the user, SmarterContext
creates a new triple in the PCSs with subject
the user, predicate pwc:hasIntegrated, and
object the URI that identifies the PWE-site.
Then, each PWE-site is described by a set
of triples using the following data prop-
erty predicates: sprise:receiveSCData,

sprise:sentSCData, sprise:hasPublicKey,

and sprise:hasAccess. The domain of
all these properties correspond to the
pwc:PWESite type. sprise:receiveSCData

142

and sprise:sentSCData have range boolean
and define whether PWE-sites can send
and receive, only send, or only receive
context data to and from the user’s PCS.
sprise:hasPublicKey defines a string value
with the identifier of the PWE-site’s pub-
lic key stored in the SmarterContext
infrastructure’s key repository. Finally,
sprise:hasAccess, which range includes any
context type defined in the SmarterContext
ontology, defines the set of context categories
that the PWE-site can access.

6 Related Work

A partial encryption solution for RDF data in
SmarterContext must support the encryp-
tion of elements of the RDF graph with different
sets of keys to address requirement RQ-2 (dy-
namic granularity). Moreover, for a particular
RDF element or triple set the solution must sup-
port multiple encryption keys, to allow multiple
third parties to decrypt the data without en-
crypting the information once for each different
key in a PCS.

The XML Encryption Syntax and Process-
ing solution, proposed by Esatlake [5], supports
partial encryption of XML elements and has
several similarities with PRE, our baseline ap-
proach. However, its main problem with re-
spect to SmarterContext is that the struc-
ture of encrypted XML files is not compliant
with RDF, the context representation language
used in SmarterContext. That is, valid RDF
graphs cannot be recovered from the encrypted
XML files. Moreover, given the complexity of
RDF graphs in SmarterContext, it would be
impractical to transform from encrypted XML
files to RDF files, to access encrypted informa-
tion.

Full storage encryption solutions [10] such as
the one used by Dropbox guarantees that the
information stored in repositories provided by
third parties, Amazon EC3 in this case, is only
available for the Dropbox infrastructure. This
is user transparent, which means that Dropbox
has full access to and control of the user’s data.
This is completely contrary to the Smarter-
Context vision where users are empowered to
control the access to their personal data. This

type of solutions can be used in Surprise in
addition to partial encryption to guaranty that
all the information stored in a third party is
only readable by the SmarterContext infras-
tructure according to the policies defined by the
users.

In file encryption solutions the complete de-
cryption of the file is required to access the
encrypted information [10]. Even tough this
schema allows the management of keys by either
the infrastructure providers or the user, the ap-
plication needs to have full access to the unen-
crypted file when accessing the user data. Thus,
the whole data is exposed even when accessing
to selected context types only.

RDFCrypto, proposed by Gerbracht [6], is an-
other approach similar to PRE [7]. It also allows
the encryption of elements in an RDF graph.
Instead of containers, it defines new RDF state-
ments to specify the information required to en-
crypt user data. This approach does not con-
sider the use of multiple keys for the same data
and provides no mechanism to identify the ele-
ments to be encrypted dynamically. Therefore,
it does not address any of the three security
and data privacy requirements in Smarter-
Context. Moreover, it has no available im-
plementation.

7 Conclusions

This paper presented Surprise, our policy-
based mechanism that provides private and se-
cure access to PCSs maintained by Smarter-
Context, our dynamic context management
framework for improving the quality of the user
experience in Web interactions.

Even though SmarterContext enriches the
quality of user experience by exploiting previous
interactions of the user with Web applications
and sites, the cost of realizing this is the ex-
posure of user’s sensitive information in subse-
quent Web interactions. To avoid compromis-
ing the user’s privacy and security, we identi-
fied three requirements in SmarterContext:
(i) dynamic selectivity, (ii) dynamic granularity,
and (iii) partial encryption.

With respect to these requirements, the con-
tribution of this paper is twofold. First, we
extended the Partial RDF Encryption (PRE)

143

approach, based on a set of modifications of
the structure and semantics of its encryption
policies. Second, we implemented the changes
implied by these structural and semantic mod-
ifications in the PRE source code, and inte-
grated them into a proof-of-concept version of
Surprise. In light of these modifications, we
analyzed the way our approach satisfies the
SmarterContext’s privacy and security re-
quirements by (i) allowing users to control the
access to their sensitive information by third
parties in encryption policies, selectively and
by means of different levels of granularity; (ii)
supporting changes in these policies at runtime;
and (iii) enabling partial encryption on specific
elements of data, also allowing not explicitly
authorized third parties to exploit users’ non-
sensitive data. Thus, Surprise solves the pri-
vacy and security requirements of Smarter-
Context, and allows its users to be confident
that their data remain safe while exploiting per-
sonal context information to improve the quality
of user experience in their Web interactions.
Our plans for future work include to (i) fully

integrate Surprise into SmarterContext
and evaluate it by analyzing different quality
attributes; (ii) improve the granularity of poli-
cies to allow the partial sharing of sensitive
data belonging to the same sensitive context
type—for example, in case Anne wants to share
only some of her payment methods; (iii) im-
prove selectivity by allowing users to decide
about the sensitivity of context data. Currently,
sensitive context types are defined statically in
the SmarterContext ontology. Finally, we
plan to investigate the application of Smarter-
Context and Surprise to other problem do-
mains such as health care.

Acknowledgments

This work was funded in part by the Na-
tional Sciences and Engineering Research Coun-
cil (NSERC) of Canada under the NSERC
Strategic Research Network for Smart Ap-
plications on Virtual Infrastructure3 (SAVI -
NETGP 397724-10) and Collaborative Research
and Development program (CRDPJ 320529-04

3http://www.nsercpartnerships.ca/How-
Comment/Networks-Reseaux/SAVI AIIV-eng.asp

and CRDPJ 356154-07), IBM Corporation, Uni-
versity of Victoria (Canada), and Icesi Univer-
sity (Colombia).

About the Authors

Juan C. Muñoz is a Master student, Depart-
ment of Information and Communications
Technology, at Icesi University, Cali, Colombia.
His research focuses on context management
and semantic web technologies for the imple-
mentation of user-centric smarter commerce
platforms. He is a lecturer in the Faculty of
Engineering, at Icesi University since 2006,
where he received a Diploma Degree in Systems
Engineering in 2005.

Gabriel Tamura is a Professor of the De-
partment of Information and Communication
Technologies at Icesi University, Cali, Colom-
bia. He is a Visiting Scientist at the INRIA
Lille Nord Europe, ADAM Team/Project,
France. Dr. Tamura’s research interests in-
clude component-based software engineering,
self-(re)configuring and self-managing systems,
and context-aware systems. He received a
Diploma Degree in Systems and Computing
Engineering in 1992 from Javeriana University,
Cali, Colombia, an MSc Degree in 1996 from
University of Los Andes, Bogota, Colombia,
and a co-supervised PhD Degree in Computer
Science in 2012 from University of Los Andes
and University of Lille I, Lille, France.

Norha M. Villegas is a PhD candidate
under the supervision of Dr. Hausi A. Müller,
Department of Computer Science, University
of Victoria, Canada. She is a CAS student
at the Center for Advanced Studies at the
IBM Toronto Laboratory. Her dissertation
focuses on the application of dynamic context
management techniques for the optimization of
self-adaptive software systems. She received a
Diploma Degree in Systems Engineering and a
Graduate Degree in Organizational Informatics
Management in 2002 and 2004, from Icesi
University, Cali, Colombia.

144

Hausi A. Müller is a Professor of the De-
partment of Computer Science and Associate
Dean of Research, Faculty of Engineering at
University of Victoria, Canada. He is a Visiting
Scientist at the Center for Advanced Studies
at the IBM Toronto Laboratory (CAS), CA
Canada Inc., and the Carnegie Mellon Software
Engineering Institute (SEI). Dr. Müller’s
research interests include software engineer-
ing, self-adaptive and self-managing systems,
context-aware systems, and service-oriented
systems. He serves on the Editorial Board
of Software Maintenance and Evolution and
Software Process: Improvement and Practice
(JSME). He is Chair of the IEEE Technical
Council on Software Engineering (TCSE).
Dr. Müller received a Diploma Degree in
Electrical Engineering in 1979 from the Swiss
Federal Institute of Technology (ETH), Zürich,
Switzerland and MSc and PhD Degrees in
Computer Science in 1984 and 1986 from Rice
University in Houston, Texas, USA.

References

[1] M. Barbacci, M. H. Klein, T. A. Longstaff,
and C. B. Weinstock. Quality At-
tributes. Technical report CMU/SEI-95-
TR-021, Software Engineering Institute,
1995.

[2] M. Benantar. The Internet Public Key
Infrastructure. IBM Systems Journal,
40(3):648–665, 2001.

[3] C. Bizer, T. Heath, and T. Berners-Lee.
Linked Data — The Story So Far. Inter-
national Journal on Semantic Web and In-
formation Systems, 5(3):1–22, 2009.

[4] J. J. Carroll, I. Dickinson, C. Dollin,
A. Seaborne, K. Wilkinson, and
D. Reynolds. Jena: Implementing
the Semantic Web Recommendations.
In 13th International World Wide Web
Conference (WWW 2004), pages 74–83,
2004.

[5] D. E. Eastlake, J. M. Reagle, T. Imamura,
B. Dillaway, and E. Simon. Xml encryp-
tion syntax and processing. World Wide

Web Consortium, Recommendation REC-
xmlenc-core-20021210, December 2002.

[6] S. Gerbracht. Untersuchung von
Möglichkeiten zur Datensicherheit in
RDF. Student research project, Dresden
University of Technology, 2005.

[7] M. Giereth. Partial Encryption of RDF
Graphs. In The Semantic Web ISWC2005,
Heidelberg, 2005. Springer-Verlag.

[8] M. Giereth. PRE4J - A Partial RDF En-
cryption API for Jena. Academic Medicine,
70(3):216–223, 2006.

[9] F. Manola and E. Miller. RDF Primer.
World Wide Web Consortium, Recommen-
dation REC-rdf-primer-20040210, Febru-
ary 2004.

[10] K. Scarfone. Guide to Storage Encryption
Technologies for End User Devices. Special
Publication 800-111, November 2007.

[11] The World Wide Web Consortium (W3C).
OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2004.

[12] The World Wide Web Consortium
(W3C). RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/,
2004.

[13] N. M. Villegas and H. A. Müller. The
SmarterContext Ontology and its Ap-
plication to the Smart Internet: A Smarter
Commerce Case Study. In M. Chignell,
J. Cordy, J. Ng, and Y. Yesha, editors,
Second Book on the Personal Web, LNCS.
Springer, 2012 (in evaluation).

[14] N. M. Villegas, H. A. Müller, J. C. Muñoz,
A. Lau, J. Ng, and C. Brealey. A
Dynamic Context Management Infrastruc-
ture for Supporting User-driven Web In-
tegration in the Personal Web. In Pro-
ceedings 2011 Conference of the Center
for Advanced Studies on Collaborative Re-
search (CASCON 2011), pages 200–214,
Markham, ON, Canada, 2011. IBM Corp.

145

