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ABSTRACT
Dynamic base station activation (DBA) has recently emerged
as a viable solution for reducing energy consumption in cellular
networks. While most of the works on this topic focused on
centralized decision making algorithms, in this paper we in-
vestigate distributive solutions. These solutions are partic-
ularly desirable due to importance of self-organization and
self-optimization in future cellular networks. The goal of
DBA is to achieve an optimal trade-off between network
operator’s revenue and operational cost while guaranteeing
coverage for network users. The problem is posed as a net-
work utility maximization aiming to find the optimal ac-
tivation schedule of each base station. Using Lagrangian
duality, the problem is decomposed into smaller subprob-
lems, where each subproblem is solved locally at its associ-
ated base station. Controlled message passing among base
stations ensures convergence to the global optimal solution.
Moreover, this general solution is further extended to cap-
ture the combinatorial nature of DBA. Finally, numerical
results are provided to demonstrate the behavior of our so-
lution in terms of utility and cost trade-off and convergence
in some example network scenarios.
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1. INTRODUCTION
With the proliferation of smartphones, cellular service

providers have witnessed massive increase of data traffic in
their networks. For example, one cellular operator in the US
reported 8000% growth in data traffic from 2007 to 2010 [3].
It is expected that the cellular data traffic will continue to
grow and will increase 13-fold over the next 5 years [4]. The
increase in data traffic has put high pressure over cellular op-
erators to enhance their network capacity by adopting new
solutions and technologies [2]. Most notably, operators are
moving towards denser deployment of base stations (BSs).
In dense deployments, each base station covers a small ge-
ographical area and serves a small number of users which
allows it to provide them with higher data rates.

While with the dense deployment of base stations, bet-
ter data service is provided to users, more energy is also
consumed to activate different parts of the radio access net-
work. As a result, in addition to initial investment to expand
the network capacity, higher operational expenditure, e.g.,
electricity bill, is also a challenge that need to be consid-
ered by network operators. The issue is more highlighted
to note that among various elements of a cellular network,
base stations account for 60-80% of the total network energy
consumption. With current base stations, 80-90% of peak
energy1 is consumed even in idle or low traffic state [17].
This energy is spent in cooling system and idle-mode signal-
ing and processing as soon as the base station is powered
on. In other words, current base stations are not energy-

proportional2. However as we discuss later, by taking the
characteristics of cellular traffic into consideration, energy-
proportional base station operation can be emulated in the
network, albeit at a coarser granularity.

Measurement studies have shown that cellular traffic ex-
hibits periodic fluctuations both in time and space [20]. This
behavior can be attributed to different usage patterns dur-
ing days and nights, weekdays and weekends, and across res-
idential and business areas. Nevertheless, cellular operators
often deploy as many base stations as necessary to satisfy
the peak traffic demand, while keeping them active (i.e., in
the On state) all the time. While it might seem that energy
consumption issue could be addressed via dynamic trans-
mission power control in base stations, the benefits of such
mechanisms are marginal due to the mentioned sources of
energy consumption in BS equipment (e.g., cooling system).

1Energy consumed during the peak traffic load.
2Base stations in which energy consumption is proportional
to the amount of traffic passing through.



Recent analysis of cellular traffic [19,22] has demonstrated
that by dynamically activating base stations in a network,
significant energy savings can be achieved. The idea is to
completely power off underutilized base stations when their
traffic load could be handled by nearby base stations. In
turn, when the load in some parts of the network exceeds
the capacity of the current active base stations, power on
some inactive base stations so as to satisfy the demand.
In this paper, we consider distributed base station activa-
tion problem in the context of a densely-deployed network.
Specifically, we develop distributed mechanisms that explore
the high coverage overlap in the network [11] to select an ac-
tive set of base stations that results in the optimal matching
between the provisioned network capacity and traffic load.

To this end, a measure is needed for evaluating the qual-
ity of a particular active set of base stations with respect to
network users’ satisfaction. A common approach to achieve
such a measure, is to model user’s satisfaction via the well-
established notion of utilities. In this framework, a utility
function is associated to each user, where the user utility
is an increasing function of the amount of resources allo-
cated to the user. Then, base station activation problem is
modeled following the framework of Network Utility Maxi-

mization (NUM) [21]. There are however some subtle dif-
ferences between our problem and classic NUM problems as
follows. First, traffic requirements of cellular users are dif-
ferent from typical Internet users. Consequently the types
of utility functions considered in our work are different from
those considered in classic NUM problems. Second, due to
the On/Off operation of base stations, this problem has a
combinatorial nature, which adds to the complexity of the
problem.

There are only a few recent works on this subject. In [20]
a location-dependent traffic profiling study is conducted on
real 3G network traces showing that 23-53% energy saving
is possible via dynamic base station activation. Operators
cooperation is investigated in [16], where optimal switch-off
frequencies of base stations are computed in order to achieve
balanced energy savings and roaming costs. Assuming a si-
nusoidal traffic profile, and following a threshold-based ac-
tivation rule by each base station, an analysis of achievable
energy savings is provided in [19]. The closest works to
ours are presented in [25] and [22]. In [25], centralized and
heuristic methods are presented for finding and deactivating
the base station with the lowest load. The joint problem of
base station activation and user association is studied in [22],
where the objective is to minimize a joint energy and delay
cost function. What distinguishes our work from the afore-
mentioned works is that unlike them, we develop distributed

algorithms that do not rely on a centralized controller.
Having a centralized decision maker, each base station is

required to report its local state including load distribution
in its coverage area and average channel gains to the cen-
tral controller. These local states, collectively, define the
state of the network. As network state changes over time,
regular feedback is required to keep the controller informed
about it. Thus, exchanging the state information between
base stations and the controller imposes a high communi-
cation and computation overhead on the backhaul links,
which is highly undesired in cellular networks [6]. A sim-
pler scheme (in terms of the communication overhead) can
be designed by delegating the role of the centralized con-
troller to the base stations, as described in this paper. The

distributed algorithm lets each base station decide on its ac-
tivation/deactivation schedule by communicating only with
its neighboring base stations without the need to communi-
cate with a single centralized controller.

Our contributions in this paper can be summarized as
follows:

• The DBA problem is formulated as a NUM problem
with the objective of finding an optimal trade-off be-
tween operator revenue and network operational cost.
Characteristics of cellular data traffic are considered
in the formulation.

• The formulated problem features many local optima
thus does not adhere to a distributed solution easily.
Accordingly, an appropriate transformation is intro-
duced in the objective function to make it strictly con-
cave.

• A distributed algorithm is devised based on the La-
grangian dual decomposition, in which each base sta-
tion computes its optimal activation probability through
message exchange with its neighbors. In addition, each
base station independently decides to activate or de-
activate itself based on a locally computed activation
probability.

• The DBA problem formulation is extended to more
appropriately reflect the On/Off feature of the problem
by considering general BS activation cost functions.
The solution to the extended problem is obtained via
difference of convex functions programming [24].

The rest of the paper is organized as follows. Section 2
describes the system model considered in the paper. The
problem is formulated in section 3. Our distributed algo-
rithm is presented in section 4. Sample numerical results
are provided in section 6. Finally, section 7 concludes this
paper.

2. SYSTEM MODEL AND ASSUMPTIONS

2.1 Network Model
The system considered in this paper includes the radio

access part of a cellular network which consists of a number
of base stations that collectively provide coverage for the
network. The area under the coverage of the base stations
is discretized to a set of locations. Let B = {b1, . . . , bn}
and L = {l1, . . . , lm} denote the set of base stations and the
set of locations respectively. Activating each base station bi
incurs a cost of ci (ci ≥ 0) which is determined based on the
total energy consumed at the base station while it is powered
on. It is assumed that ci is constant as the total power
consumed at a base station is relatively constant (recall that
base stations are not energy-proportional). Let Li denote
the subset of locations that can be covered by base station bi
(The notion of coverage will be clarified in the next section).
Let Bj denote the set of all base stations that cover location
lj . Furthermore, let Si denote the set of locations that are
associated to bi. By association of lj to bi, we mean that
bi is responsible for determining the amount of resources
allocated to lj from every BS in Bj . We assume that a
location might receive service from multiple BSs but it is
associated to only one of them based on e.g., proximity. The



set of neighbors of base station bi, denoted by Ni, is defined
as the set of all base stations that cover at least one common
location with bi, i.e., Ni = {bj |Li ∩ Lj 6= ∅}.

Time is divided into scheduling epochs. At the end of
each epoch, a subset A of base stations is selected for ac-
tivation in the next scheduling epoch. Decisions are made
only based on downlink traffic which is readily available to
BSs3. Expectedly, A should match the traffic load of L,
while incurring the minimal total cost. The cost of activat-
ing the base station set A is given by C(A) =

∑

bi∈A ci.
Frequently switching base stations between On and Off

states consumes energy, takes time, and generates huge amount
of signalling traffic to re-associate users. To avoid unneces-
sary overhead due to transient network states, user associ-
ation and resource allocation are carried out on a different

timescale than the base station activation. The former is
done at a fast timescale (e.g., every few milli-seconds) based
on current users’ channel states, while the latter is done at
a much slower timescale (e.g., every few minutes) based on
average network information, i.e., capacity and demand, in
the next scheduling epoch.

2.2 Resource Allocation
As implemented in the current 3GPP LTE systems [1], the

radio access interface is assumed to be based on OFDMA.
In OFDMA systems, available frequency bandwidth is par-
titioned into orthogonal subchannels which are the allocable
resources to users. The total base station power P is divided
between these subchannels. In our model, instead of dealing
with individual users, we consider locations, where multiple
users can be present in a single location. We further as-
sume that channel variations across the channels allocated
to a location are negligible as our model only considers long-
term average rates that can be achieved over subchannels, as
opposed to instantaneous rates that depend on short-term
channel fluctuations.

Assume that base station bi uses a subchannel to com-
municate with a user at location lj . Let pij and gij denote
the transmission power and long-term average power gain of
the subchannel. Then, the average 4 received signal power
at location lj is given by gij · pij . A location is considered
covered by a base station if the received power of the pilot
signal at that location is higher than a prespecified thresh-
old. Let rij denote the received rate at location lj . Using the
Shannon capacity formula, we have rij = log(1 + β

gijpij
nj+Ij

),

where β is the SINR gap due to limited modulation. Also,
nj and Ij denote background noise power and interference
power at location lj respectively. Similar to [18], to make
the formulation tractable, we use an upper bound I on the
interference power instead of using the exact Ij . I is the
maximum multi-cell interference temperature or (maximum
tolerable interference level) as mentioned in [9]. Doing so,
we achieve a conservative rate function that does not need
substantial amount of signaling to compute the actual value
of interference at each location. We further borrow some
simplifying assumptions from the literature [13,15] given as
follows:

• We assume that each subchannel can be fractionally
shared among users [13]. This is indeed the case in

3The model can be extended to take into consideration the
uplink traffic as well.
4The term ‘average’ is omitted hereafter without ambiguity.

OFDMA systems such asWiMax and LTE as each sub-
channel is shared among multiple users using TDMA,
i.e., resources are shared in frequency and time. The
assumption is particularly true for our model as we
consider the long-term system averages.

• We assume the total transmission power P is divided
equally among all subchannels. Therefore, if there
exists R subchannels then the allocated subchannel
power is p = P/R. As shown in [13], this scheme
is nearly-optimal.

• As provisioned in LTE networks [15], we assume that
neighboring cells are able to coordinate allocation of
resources to users in overlapping regions such that or-
thogonal resources are allocated from neighboring BSs
to locations in overlapping regions.

In the rest of the paper, we use the term resource to refer
to the subchannels at a base station. Let γij denote the frac-
tion of resources allocated to location lj from base station
bi. Following the third assumption, the total received rate
at location lj is given by:

rj =
∑

bi∈Bj

γij · Rij , (1)

where, Rij is the rate received from base station bi if all of
its resources were to be allocated to location lj , i.e.,

Rij = R · log(1 + β
pgij

nj + I
) . (2)

Consider a set A of active base stations. Let r = [rj ]lj∈L

denote a vector of rates achievable at location set L. Define
the set of all rate vectors achievable at location set L by the
active base station set A as the rate region of A, which is
denoted by RA. We then have

RA =
{

r = [rj ] :
∑

bi∈A

γijRij = rj ,
∑

lj∈Li:bi∈A

γij ≤ 1
}

. (3)

2.3 User Traffic and Utility
Cellular data traffic is a mix of elastic and inelastic traffic.

Cellular networks support real-time audio and video stream-
ing applications that require certain minimum rate guaran-
tees to function properly. There are also applications such
as file transfer that do not have this constraint. This mix
of elastic and inelastic applications can be modeled as rate-
adaptive applications with a minimum rate requirement. In
this work, we consider α-critical functions to model utility
of this type of applications. In α-critical functions [8], the
function value is 0 before a certain threshold. Once the
threshold is met, the increase of the utility value is based on
a concave function. Moreover, we combine user utilities at
each location and represent the aggregate utility as a single
function. Specifically, at each location lj , the utility function
Uj(·) is defined as follows:

Uj(xj) = uj([xj − dj ]
+), (4)

where uj(·) is an increasing concave function, xj is the rate
received at location lj , dj is the base demand at lj , and
[x]+ = max (0, x). For an active base station set A, the sys-

tem utility of A is defined as follows:

U(A) = max
x∈RA

∑

lj∈L

Uj(xj) . (5)



For an active set A, the net utility N(A) is defined as the
difference between its system utility and cost, i.e.,

N(A) = U(A)− C(A) . (6)

3. PROBLEM FORMULATION
To be able to make optimal activation decisions, each base

station needs to know the state of its neighbors a priori.
Due to inter-dependence of all BS decisions, this informa-
tion cannot be made available to all BSs at the same time.
Therefore, in our formulation, the next likely configuration
of each base station is computed and propagated to its neigh-
bors. To this end, an activation probability is assigned to
each base station. The probabilities are assigned so that
the expected net utility is maximized. To find the optimal
activation probabilities without the need for a centralized
controller, we design a distributed iterative message passing
algorithm among base stations. Overall, the base station
activation works as follows:

1. In each scheduling epoch, every base station iteratively
solves a local problem to find its activation probability
and exchanges its results with its neighbors until a
stable solution is found.

2. At the end of a scheduling epoch, each base station
decides to become active or inactive based on the opti-
mal activation probabilities computed via the iterative
algorithm of step (1).

Let αi denote the activation probability associated with base
station bi. Accordingly, the net utility (6) maximization
problem is given by

max
α

∑

bi

Ui(αi, {αi′}i′∈Ni
)− αici, (7)

where Ui(·, ·) is the utility of base station bi, which depends
on its activation probability as well as the activation proba-
bilities of its neighbors, i.e., {αi′}i′∈Ni

. In (7), both system
utility and system cost are expressed as functions of activa-
tion probabilities. We intend to express both system utility
and cost as functions of allocated resources. Let yij denote
the fraction of bi resources allocated to lj conditioned on the
activation of bi. Then, the expected fraction of resources al-
located to lj from bi is given by xij = αiyij . It follows that

∑

lj∈Li

αiyij =
∑

lj∈Li

xij . (8)

When a base station is activated, all its available resources
are allocated to users, i.e.,

∑

j yij = 1. Thus, the relation
between αi and xij ’s is given by

αi =
∑

j

xij . (9)

Utility of base station bi is defined as the sum of location
utilities for all locations under its coverage assuming fixed
rate contribution from its neighbors to each location. In
other words, Ui(., .) is defined as follows

Ui(αi, {αi′}i′∈Ni
) =

∑

lj∈Li

uj(xij , {xi′j}bi′∈Bj\bi)

=
∑

lj∈Li

uj(xijrij +
∑

b
i′
∈Bj\bi

xi′jri′j)

(10)

Accordingly, we can express (7) as follows

max
x

∑

lj∈L

uj

(

∑

bi∈Bj

xijrij − dj
)

−
∑

bi∈B

(

∑

lj∈Li

xij

)

ci . (11)

In addition to maximizing the net utility, the minimum rate
demand should be satisfied at each location as well. Thus,
the optimization problem (11) has the following set of con-
straints

∑

bi∈Bj

xijrij ≥ dj , ∀lj ∈ L . (12)

There is also another set of constraints on the resources
available to BSs as

∑

lj∈Li

xij ≤ 1, ∀bi ∈ B . (13)

Problem (11) is a convex optimization problem that can be
solved efficiently using interior-point methods, however, ap-
plying dual decomposition techniques on (11) is not straight-
forward since these methods need the objective to be strictly
concave. Although the objective function of (11) is strictly
concave w.r.t resources allocated from a specific BS, e.g., bi
to lj , it is not w.r.t the total received rate (when

∑

bi∈Bj
xijrij

is fixed the function is constant). This may result in indiffer-
entiability of the dual of (11) at some points. To circumvent
the issue, we apply the proximal point technique in which a
quadratic term is added to the objective function for every
variable xij . Doing so, the objective function is modified as
follows

∑

lj∈L

uj(
∑

bi∈Bj

xijrij − dj)−
∑

lj∈L

∑

bi∈B

ej
2
(xij − yij)

2

+
∑

bi∈B

ci(
∑

lj∈Li

xij)
(14)

where ej > 0. The optimal value of (14) coincides with
the one from (11); that is if x∗ is an optimal solution of
(11), then x = x∗,y = x∗ is the optimal solution of (14).
Problem (14) can be solved by Gauss-Seidel method in which
the following steps are performed alternately. First, while
keeping y fixed and considering constraints (12) and (13), x
is found as follows

x(t+ 1) =max
x

∑

lj∈L

uj(
∑

bi∈Bj

xijrij − dj)

−
∑

lj∈L

∑

bi∈B

ej
2
(xij − yij)

2 +
∑

bi∈B

ci(
∑

lj∈Li

xij) .

(15)

Then y is updated according to

y(t+ 1) = x(t+ 1) .

It is easy to show that x(t) = x∗ as t → ∞. Also, (15) can
be solved using dual methods. Lagrangian of (15) is given
by

L(x,λ,ν) =
∑

bi∈B

(

∑

lj∈Si

(

uj(
∑

bk∈Bj

xkjrkj − dj)

−
ej
2
(xij − yij)

2)− ci(
∑

lj∈Li

xij)
)

+
∑

lj∈L

λj(
∑

bi∈Bj

xijrij − dj) +
∑

bi∈B

νi(1−
∑

lj∈Li

xij)

(16)



where λ = [λ]|L| and ν = [ν]|B| are Lagrange multipliers for
the sets of constraints (12) and (13) respectively. The as-
sociated Lagrange dual function for Lagrangian (16) is then
expressed as

max
x

L(x,λ,ν) =
∑

bi∈B

max
x

Di(x,λ, νi)−
∑

lj∈L

λjdj +
∑

bi∈B

νi

(17)
where Di is given as follows

Di(x,λ, νi) =
∑

lj∈Si

(

uj(
∑

bk∈Bj

xkjrkj − dj)

−
∑

bk∈Bj

ej
2
(xkj − ykj)

2

∑

bk∈Bj

λjxkjrkj −
∑

bk∈Bj

xkj(ck + νk)
)

(18)

and represents the local subproblem that is solved at BS bi.
Then the dual of (15) is represented as

min
λ≥0,ν

g(λ,ν) . (19)

Since the objective function of (19) is differentiable at all
locations based on Danskin’s theorem [5], we have

∂g

∂λj

=
∑

bi∈Bj

xijrij − dj ,

∂g

∂νi
= 1−

∑

lj∈Li

xij .

(20)

Therefore, problem (15) can be solved by a gradient projec-
tion algorithm in which the dual variables are updated as
follows

λj(t+ 1) =
[

λj(t)− ξ
(

∑

bi∈Bj

xijrij − dj
)

]+

,

νi(t+ 1) = νi(t)− ξ
(

1−
∑

lj∈Li

xij

)

(21)

where ξ is a sufficiently small step-size. In the next subsec-
tion, the message passing algorithm among base stations to
implement the above solution is presented.

4. ALGORITHM DESIGN
The solution method presented in the previous section

consists of an outer Gauss-Seidel loop and an inner gradient
projection loop. In each iteration of the outer loop, be-
fore updating y, it is assumed that the gradient projection
algorithm has converged to its optimal solution. However,
ensuring convergence of the inner loop in a distributed man-
ner is cumbersome, so another algorithm is presented here
in which the number of iterations of the inner loop is con-
stant (in our case, it is limited to 1). The new algorithm is
as follows

I. Fix y = y(t). Assume x(t) is the primal variable that
maximizes (17) given y, λ(t), and ν(t). Update dual
variables λ(t+ 1) and ν(t+ 1) according to (21).

II. Let z(t) be the point that maximizes (17) given the
new dual variables λ(t+1) and ν(t+1). Update y as
follows

y(t+ 1) = y(t) + τ (z(t)− y(t)) (22)

where τ ∈ (0, 1]. The algorithm is guaranteed to converge
to the optimal solution. For details of the convergence,
see [14]. Following the algorithm, each BS bi operates as
follows. Knowing rkj for each neighboring BS bk to all the
locations lj ∈ Si, it solves (18) and then sends the obtained
primal variable x∗

kj to the corresponding BS bk. Each BS
bk, updates νk according to (21) based on the received and
locally-computed x∗

kj ’s. Then it updates all its neighbors
with the new νk. This allows bi to compute z(t) and up-
date y. Following this procedure, the algorithm can be im-
plemented in a completely distributed manner by message
passing between neighboring base stations.

Now we would like to show how to find the optimal value of
local optimization problem from the current set of Lagrange
multipliers λ,ν. According to Karush-Kuhn-Tucker (KKT)
theorem, the stationary point of the Lagrangian, i.e., the
solution to ∇xL(x,λ,ν) = 0, gives the unique solution to
problem (17). Based on (18), we have

∂Di

∂xkj

= rkju
′(

∑

bk∈Bj

xkjrkj − dj)− ej(xkj − ykj) + λjrkj

− (ck + νk)

(23)

then by setting ∂Di

∂xkj
= 0, for every xkj , we obtain x∗

kj . Mo-

tivated by the definition of weighted proportional fairness,
let us assume that the utility of each lj is defined as

uj(
∑

bk∈Bj

xkjrkj − dj) = wj ln(
∑

bk∈Bj

xkjrkj − dj) .

Then we have

∂Di

∂xkj

=
wjrkj

∑

bk∈Bj
xkjrkj − dj

− ej(xkj − ykj)

+ λjrkj − (ck + νk) = 0

. (24)

Note that all the BSs that could provide service to lj are
related according to (24). Therefore, to compute the corre-
sponding x∗

kj ’s, both sides of (24) are multiplied by rkj then
summed over all bk ∈ Bj . This gives the following relation

wj

∑

bk∈Bj
r2kj

∑

bk∈Bj
xkjrkj − dj

− ej
∑

bk∈Bj

xkjrkj

+
∑

bk∈Bj

(

ejykjrkj + λjr
2
kj − (ck + νk)rkj

)

= 0 .

(25)

Define sj , θj and µj as follows:

sj =
∑

bk∈Bj

xkjrkj

θj =
∑

bk∈Bj

(

ejykjrkj + λjr
2
kj − (ck + νk)rkj

)

µj = wj

∑

bk∈Bj

r2kj

Then, (25) is simplified as follows

µj

sj − dj
− ejsj + θj = 0

which results in the following quadratic equation

−ejs
2
j + (ejdj + θj)sj + (µj − θjdj) = 0
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Figure 1: Comparison of different cost functions.

Solving the above equation, sj is given by

sj =
(ejdj + θj) +

√

(ejdj + θj)2 + 4ej(µj − θjdj)

2ej
. (26)

After finding sj , every x∗
kj can be computed by replacing

the corresponding value of sj in (25) as follows

x∗
kj =

[ 1

ej

(wjrkj
sj

+ ejykj + λjrkj − (ck + νk)
)

]

[0,1]
,

where [x]S is the projection of x onto the set S .

5. GENERAL CONCAVE COST
In previous section, activation probability of a base station

is shown to be equal to the fraction of resources allocated
to users from that base station. Also, cost of activating a
BS was considered linearly dependent on its probability of
activation (fraction of allocated resources). However, this
model may not appropriately reflect the energy consump-
tion at base stations which is highly dependent on energy
consumed for cooling, etc. and not the transmission power.
This base energy cost can be included in the model by con-
sidering concave cost functions instead of linear ones. Such
functions feature steep slope at lower activation values and
become less steep as they move toward higher values. This
behavior approximately resembles the zero-one nature of the
cost function. Specifically, sigmoidal cost functions5 are con-
sidered which are defined as follows

C(α) =
c

1 + e−d(α−α0)
(27)

These functions are concave where c, d > 0 and α > α0.
A sigmoidal function along with a linear one are illustrated
in Figure 1. Employing a concave cost function changes the
problem (7) as follows

max
α

∑

bi

Ui(αi, {αi′}i′∈Ni
)− Ci(αi), (28)

where each Ci(.) is an increasing, concave and continuously
differentiable function in [0, 1]. Problem (28) is in fact the
difference of two concave functions, so it is not a convex
optimization problem. However, it can be tackled using
convex-concave procedure (CCCP) [24]. In CCCP, instead

5An increasing function f(x) is called a sigmoidal function,
if it has one inflection point x0, and f ′′(x) > 0 for all x < x0

and f ′′(x) < 0, for all x > x0.

of dealing with (28) directly, a sequence of convex programs
is formulated. At each step the following problem is solved

αl+1
i ∈ argmaxUi(αi, {αi′}i′∈Ni

)− α∇Ci(α
l
i), (29)

The premise behind (29) is to replace the convex part of
the objective, i.e., −Ci(αi), with an affine approximation to
make the problem locally convex. To do so, first-order Tay-
lor approximation of the cost function around the current
solution, i.e., αl, is utilized. Then, the new one, i.e., αl+1,
is obtained by solving (29). Since Ci(.) is concave, we have

Ci(x) ≤ Ci(y) + (y − x)∇Ci(x),

for all x, y ∈ [0, 1]. Therefore, we have

Ui(α
l+1
i )−Ci(α

l+1
i ) ≥ Ui(α

l+1)−Ci(α
l)−(αl+1−αl

i)∇Ci(α
l)

(30)
Since αl+1 ∈ argmaxUi(α)− α∇Ci(α

l), we also have

Ui(α
l+1)− αl+1∇Ci(α

l) ≥ Ui(α
l)− αl∇Ci(α

l)

which results in

Ui(α
l+1
i )−Ci(α

l+1
i ) ≥ Ui(α

l)− Ci(α
l)− (αl − αl

i)∇Ci(α
l)

≥ Ui(α
l)− Ci(α

l)

(31)

The above argument shows that the sequence of α’s is ascent,
therefore, (29) converges to a local maximum. See [23] for
detailed discussion of the convergence of CCCP.

Adapting our previous solution to the new sigmoidal cost
function is straightforward. The only change that is needed
to be made is the value of ck. In this case, ck is not constant
anymore but varies in each iteration. Specifically, the value
of ck(t) depends on the fraction of resources allocated in the
previous iteration as follows

ck(t) = ∇xC(x(t)) .

Assuming sigmoidal cost function (27) with inflection point
of 0, ck is given by

ck(t) =
cdedx(t)

(edx(t) + 1)2
(32)

in problem (18). In this case, each base station bi, in addi-
tion to updating its neighbors with the current value of νi,
needs to update them with the current value of ci(t) in each
iteration.

6. NUMERICAL RESULTS

6.1 Simulation Parameters
We consider a network of size 1200m × 1200m. Base sta-

tions are placed on a regular grid. The distance between
each two neighboring BSs is 200m. There are a total of 25
base stations in the network. A base station is able to cover
users which are up to 150m away from it.

The parameter values are adopted from [7] as the assump-
tions regarding channel gains are consistent with the stan-
dard 3GPP propagation models. The power gain between
the sender and a receiver is g = f(d) where d is the distance
from the sender to the receiver in (km). f(d) = 10h0d−κ

with path loss exponent κ = 3.5 and h0 = −14.4. The back-
ground noise is N0 = −174 dbm (Hz−1). The bandwidth
is 1 MHz and maximum power P varies from P = 4W , to
P = 16W .
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Figure 2: Snapshot of activated base stations (‘∗’)
in a network with non-uniform user distribution .

Our goal is to study the behavior of the distributed algo-
rithm. Two scenarios for distribution of users in the network
are considered: uniform and non-uniform. In the uniform
case, location of a user is chosen uniformly at random in the
network. To distribute users non-uniformly, nine crowded
regions are considered in the network. Each crowded re-
gion is a circle of radius 160m. Users are divided equally
among theses crowded regions and distributed uniformly
within each region.

6.2 Convergence of Distributed Algorithm
We have implemented the distributed Algorithm in MATLAB.

In the first set of results, we would like to demonstrate con-
vergence of the algorithm to the optimal solution. Users
are distributed non-uniformly in the network. In Figure 2,
snapshot of base station locations, user distribution and ac-
tivated base stations is demonstrated. As it is apparent
from the figure, activated base stations are located at more
populated areas (higher utilities). All BSs maximum trans-
mission power is P = 4W . Also, cost of BS activation is
assumed to be the 250. Demand at all locations is 0, so
some of them are not covered.

In 3, variation of activation probabilities of five nearby
base stations (BSs in the left vertical line of the network
snapshot) are shown during the course of the algorithm.
Two of the aforementioned base stations are located in crowded
regions, one of them is in a lightly-loaded region, and the
other two in regions with no users. Activation probabilities
of the BSs in crowded regions converge to 1, the base station
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Figure 3: Convergence of BS activation probabilities
with step-size ξ = 0.02.
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Figure 4: Convergence of BS activation probabilities
with step-size ξ = 0.01.

in the lightly loaded region to almost 0, and the other two to
0. As demonstrated, the algorithm converges in about 350
iterations with step-size ξ = 0.02. To demonstrate the sensi-
tivity of the algorithm to step-size selection, the convergence
of probabilities are shown for another step-size ξ = 0.02 in
figure 4. In this case, convergence happens in about iter-
ation 700. This shows that the algorithm can be slow for
lower values of ξ.

6.3 Effect of Utility and Activation Cost
To see the behavior of the distributed algorithm, both

the activation cost and utilities have been varied. To in-
crease the utilities, we increase the BS transmission power
from P = 4W to P = 16W . Figure 5 and 6 shows the
number of activated base stations for different values of P
and activation costs. As can be seen in the figure, increas-
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Figure 5: Number of active BSs versus transmission
power and activation cost in a network with uniform
user distribution.

ing the utilities allows more base stations to be activated
while increasing the activation cost reduces the number of
active base stations. In addition, uniform user distribution
associates approximately the same number of locations to
base stations which results in similar utilities for them. In
comparison to the non-uniform user distribution, this allows
activating more base stations when the cost is low. The op-
posite is true when the cost is high.
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Figure 7: Snapshots of network and activated base stations (‘∗’).
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Figure 6: Number of active BSs versus transmission
power and activation cost in a network with uniform
user distribution.

What is interesting is the matching between base stations
and crowded places which is demonstrated in Figure 7. The
figure demonstrate snapshots of the network and the corre-
sponding active base stations while increasing the activation
cost. The snapshots are taken from the above results where
P = 16W . As the snapshot highlights, although the al-
gorithm is randomized, it results in a good match between
populated areas and activated base stations.

7. CONCLUSION AND FUTURE WORK
Distributed algorithms to the base station activation prob-

lem are investigated in this paper. The presented algorithm
is designed to find the optimal operating point of the net-
work in terms of utility and cost while guaranteeing network
coverage. In the algorithm, finding appropriate step-size to
ensure fast convergence of the distributed algorithm is dif-
ficult. As a future work, we plan to investigate distributed
algorithms based on resorting KKT conditions [12], which
do not use step-size and seem to result in faster convergence.
Also, in this work, a randomized rounding procedure is used
to activate base stations after finding the optimal activa-
tion probabilities. Other rounding methods [10] might be
considered to guarantee coverage of inelastic demands.
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