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Abstract. This chapter introduces a framework and a methodology to
manage a SaaS application on top of a PaaS infrastructure. This frame-
work utilizes PaaS policy sets to implement the SaaS provider’s elasticity
policy for its application server tier. Adaptation is based on strategy-
trees, which allow for systematic capture, representation and reasoning
about adaptation variability, based on hierarchically organizing di↵erent
levels of temporal granularity. Thus, a strategy-tree is utilized at the
SaaS layer to actively guide policy set selection at runtime in order to
maintain alignment with the SaaS provider’s business objectives. This
way, the SaaS provider’s attitudes and preferences reflecting their gen-
eral business needs are incorporated into the adaptation mechanism in an
organized and accessible manner. Results from an experiment conducted
on a real cloud are presented in support of this approach.

1 Introduction

Cloud computing [2,8,15,23] represents an approach to IT which has emerged
in large part due to improvements in virtualization technologies3 [5] and the con-
struction and commoditization of large data centers from which infrastructure
(IaaS), platform (PaaS) and software (SaaS) are provided on-demand to end
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users over the Internet. In fact, this three-layered cloud computing architec-
ture [20] has assumed the role of a de-facto standard.

A PaaS provider is an enterprise that is responsible for leasing application
environment topologies to SaaS provider clients for various durations of time.
A topology is built upon infrastructure that is purchased from various IaaS
providers upon which the middleware container instances are run. An appli-
cation environment topology is composed of a set of system service instances
S (e.g., load balancers, LDAP servers, . . . ), platform service instances P (e.g.,
web server, application server, database server, . . . ) and the set of licenses L to
support all instances in P (should they be required). Additional platform ser-
vice instances may be purchased from and/or released to the PaaS provider at
runtime as needed.

A SaaS provider is an enterprise that provides a software o↵ering that is run
from within a PaaS topology. There are many possible economic models which
can be utilized by a SaaS provider (e.g., free with advertisements, membership
cost per period of time, . . . ).

Regardless of the layer, a service provider has long term business objectives
to achieve. Further, as its service is providing some form of IT resources to a
dynamic set of clients, how e↵ectively it manages these resources is key to how
successful it is in meeting its business objectives. In general, an enterprise will
attempt to maximize profit where profit can be understood to represent the
di↵erence between revenue and cost.

Consider a SaaS provider running on a cloud. This SaaS provider leases a
platform topology from a single PaaS provider and o↵ers one application to a
dynamic set of clients. Several aspects of a platform topology (as o↵ered by
the PaaS provider) may be configured dynamically via policy. A policy can be
understood to represent “. . . any type of formal behavioural guide” that is input
to the system [16]. An elasticity policy governs how and when resources (e.g.,
application server instances at the PaaS layer) are added to and/or removed from
a cloud environment [13]. One way of specifying an elasticity policy is through
a set of policy rules. It has been described previously [30] that a set of policies
may be thought of as a strategy. Multiple strategies may be defined to achieve
the same set of objectives [31].

It is assumed that the SaaS provider’s business objective is to maximize
profit. This can involve both the maximization of revenue generation and the
minimization of cost. For example, maximization of revenue generation varies
directly with the number of clients serviced. Similarly, minimization of cost varies
directly with the number of platform service instances that are purchased over
time. Di↵erent strategies which are defined to achieve the same set of objectives
might result in very di↵erent outcomes.

Thus, constructing models that allow continuous adaptation of the strategy
based on the contextual circumstances (load quantity and quality, prices, service
level agreement violation costs) is a challenging problem. One of the problems
is the design, comprehension and communication of the adaptation approach



which is overly di�cult with continuous mathematical models or parametrized
policies and without a more systematic modeling approach.

To address this problem of systematically designing the adaptability as-
pect of software infrastructures, we have introduced the concept of strategy-
trees [29]. Strategy-trees constitute hierarchical organizations of adaptation de-
cisions, structured in a way that allows stratification of decisions based on the
time horizon in which they apply. Thus, long term decisions/options are re-
fined into shorter term ones until they reach rapid low level alternations of fixed
configuration strategies. Strategy-trees have the benefit of o↵ering a better or-
ganization of adaptation variability, in a way similar to goal models [18, 22]
and feature models [26] used in application software engineering, while allowing
designers to reason about the depth and cost of adaptation actions.

In this chapter, we present one step toward the realization of our earlier
conceptual work with regards to applying strategy trees to a SaaS layer man-
ager in the context of a business driven cloud optimization architecture [19,29].
The contributions are as follows. We introduce a framework and a methodology
to manage a SaaS application on top of a PaaS provider’s infrastructure. This
framework utilizes PaaS policy sets to implement the SaaS provider’s elastic-
ity policy for its application server tier. A strategy-tree is utilized at the SaaS
layer to actively guide policy set selection at runtime in order to maintain align-
ment with the SaaS provider’s business objective, specifically to maximize profit.
Experimental results are presented that reflect positively on this approach.

The remainder of the chapter is structured as follows. Section 2 introduces
a scenario involving a SaaS provider running on a PaaS topology which is used
throughout the remainder of the chapter. Section 3 provides a brief overview
of the concept of strategy-trees and describes the design of a simple strategy-
tree for the scenario introduced in the previous section. Section 4 introduces
the management architecture for managing SaaS applications on top of a PaaS
provider’s infrastructure. Section 5 presents an experiment demonstrating the
e↵ectiveness of this approach in the context of the introduced scenario. Section 6
o↵ers a discussion of the experimental results. Section 7 provides an overview of
some related work. Section 8 presents our conclusions and thoughts on future
work.

2 Scenario

Consider a SaaS provider o↵ering a standard multi-tiered application to a dy-
namically growing and shrinking set of clients. Revenue is proportional to the
number of users (sessions) that utilize the service (as each user is statistically
linked to some amount of advertising dollars). Cost is impacted by the (i) cost of
purchasing the topology and (ii) additional platform service instances purchase
over time. There is also a (subjective) cost associated with the loss of future
business which is a more speculative (and varies with client response time).

The objective of this SaaS provider is to maximize profit by both maximiz-
ing revenue and by minimizing cost. It should be noted that maximizing revenue



can have an adverse e↵ect on minimizing cost and vice versa. This interrelated-
ness greatly complicates the achievement of the main objective. Trade-o↵s must
be made in the pursuit of the overall objective. The next section will consider
the design of three, alternative elasticity policies (policy sets), to achieve the
objectives under di↵erent sets of expectations and assumptions.

2.1 Elasticity Policy

An elasticity policy governs how and when resources are added to and/or re-
moved from a cloud environment. In a production setting, the elasticity policy
might be highly complex in order to handle the numerous eventualities and sit-
uations that are likely to arise. However, in this illustrative scenario, several
simplifying assumptions have been made in order to streamline and focus the
discussion.

It is assumed that the SaaS o↵ering (i.e., application) is tightly cpu-bound.
This assumption allows us to focus on the single metric, cpu idle, which is
considered exclusively in the design of the policy set for this scenario. Further,
the policy sets defining the elasticity policy focus only on the application server
tier of the SaaS o↵ering. In reality, an elasticity policy is meant to govern changes
in resource allocation to all tiers of an application and this may (and would likely)
involve the consideration of various application specific QoS metrics as well.

A brief overview of the hierarchical4, heuristic elasticity policy, utilized in
this work, will now be presented (for a more complete overview please refer
to [13]). As mentioned already, the policy rules utilized in this work focus on
the value of a single performance metric (i.e., cpu idle). When this value is
high the implication is that an instance is not being heavily loaded5. From a
high-level perspective, decisions to grow or shrink the application server tier are
made based on a critical number of local observations triggering a global action
(i.e., add/remove instances to the application tier). This will now be considered
in more detail.

Rules for Platform Service Instances The policy rules defined for each
platform service instance member node of the application server tier of the SaaS
provider, introduced for the scenario above, are based on the definition of an
acceptable range for the cpu idle metric and an acceptable duration beyond
which a violation should be indicated to the management framework. For the
remainder of this chapter, we will refer to the upper threshold as cpu idle st

(i.e., the threshold indicating a need to shrink the tier) and cpu idle gt (i.e., the

4 It is hierarchical in the sense that there are rules that are specified for individual
platform service instance nodes in the application server tier and then there are rules
that are specified to govern the application server tier that use the results of these
lower level rules in aggregate to guide the addition and/or removal of additional
platform service instances.

5 Alternatively, when this value is low the implication is that an instance is being
heavily loaded.



threshold indicating a need to grow the tier) and the durations will be referred to
as shrink duration and grow duration respectively. Some details to consider in
relation to the action (i.e., add/remove instances to the application server tier)
are as follows. The selection of the range (i.e., cput idle gt - cpu idle st)
will directly impact the addition and removal of server instances to the tier.
Consider if the operating range of the system is well outside of this defined range
then violations will consistently occur. In contrast, assuming a more accurate
prediction of workload and hence a well defined range (i.e., typical operating
range is within the threshold values) it will then be the size of the range that will
have an impact. Specifically, the size of the range will define how sensitive it is to
variation in the workload. Further, the choice of durations will also impact this
sensitivity. Specifically, shorter durations will result in more frequent notification
to the management system while longer durations will have the opposite e↵ect.

Rules for the Application Server Tier The policy rules defined for the
application server tier of the SaaS provider, introduced in the scenario above,
involve several configurable parameters as well. First is the definition of the
value of a quorum. A quorum denotes the percentage of instances that must all
be indicating that they are in violation of their local policy rule (all members of
the quorum must indicate the same violation e.g., above cpu idle st or below
cpu idle gt) in order to trigger an auto-scaling action (i.e., grow or shrink
the tier). The amount by which the tier is meant to be grown is indicated by
the parameter incr val. The amount by which the tier is meant to be shrunk
is indicated by the parameter decr val. Whether an auto-scaling action even
occurs is controlled by the parameter refractory period which indicates the
amount of time that must have elapsed since the last auto-scaling action took
place. The way these parameters impact the auto-scaling behaviour of the tier
is as follows.

The values incr val (or decr val) a↵ect how aggressively the grow/shrink
action will be. Specifically, a larger number indicates a more aggressive action.
The value of quorum impacts the sensitivity of individual indications of a viola-
tion. A larger quorum (i.e. closer to 100%) implies more sensitivity to individual
notifications while a smaller quorum implies the opposite. Finally, the larger
values of refractory period will result in a more gradual change in tier size
while a smaller value will have the opposite a↵ect.

An example of the policy rules defining the auto-scale grow action are pro-
vided in Listing 1.1. For the remainder of this document, an elasticity policy
is defined by a set of four policy rules (two for growing and two for shrink-
ing). Three di↵erent elasticity policies were designed to drive the auto-scaling
actions of the application server tier under di↵erent circumstances. These policy
sets utilized di↵erent settings of some of the configurable parameters mentioned
above and are presented in Table 1. The first elasticity policy, P

Sensitive

, was
designed to be gentle in how it grew/shrunk the tier (i.e., adding/removing only
one platform service instance at a time). Similarly, the second elasticity pol-
icy, P

Tolerant

, increased and decreased the topology in a gentle fashion as well;



however, the range separating its two thresholds (upper and lower) was three
times as large as for P

Sensitive

making it much less likely to be triggered as often
(assuming violations occur inside the defined range). The third elasticity policy,
P
Aggressive

, was designed to be much more aggressive in how it grew/shrunk the
tier as evidenced by both a small range between its upper and lower thresholds
and an increment value (up and down) of two.

(a) inst oblig cpu_idle_breach_low {

subject s = inst_mgr;

target t = platform_tier_mgr;

on {e1 ; e2} ! e3

do emit(t, request_increase)

when e2.time - e1.time == grow_duration and

e1.cpu_idle < cpu_idle_gt and

e2.cpu_idle < cpu_idle_gt and

}// cpu_idle_breach_low

(b) inst oblig perform_autoscale_grow {

subject s = paas_mgr;

target t = platform_tier_mgr;

on quorum(platform_tid , action)

do t.elastic_grow_action(incr_val)

when action.equals("grow") and

!t.refractory_period and

t.id == platform_tid

}// perform_autoscale_grow

Listing 1.1: Sample policies to auto-scale grow the platform tier specified in a
Ponder-like [11] notation. In (a) it is assumed that e3 denotes an event indicating
e3.cpu idle � cpu idle gt.

Table 1: Parameter settings defining the three elasticity policies as used in the
experiments (i.e., values related to time are scaled by one quarter).

Parameter P
Sensitive

P
Tolerant

P
Aggressive

incr val 1 1 2
decr val 1 1 2
quorum 51% 51% 51%

cpu idle gt 45 40 50
grow duration 7 min 7 min 8 min
cpu idle st 50 55 55

shrink duration 7 min 7 min 8 min
refractory period 8 min 8 min 6 min



3 Strategy-Trees

A strategy can be defined as ”...a plan of action designed to achieve a long-term
or overall aim”6. In the context of policy-based management, a set of policies
can be understood to implement a strategy. The strategy-tree was introduced to
address a deficiency in current approaches to distributed system’s management.
Simply put, there can exist multiple strategies to achieve a directive (i.e., a set of
objectives7). These alternative strategies often incorporate assumptions, biases
and expectations within a given policy set (i.e., the management logic which
governs the system’s behaviour attempting to achieve the set of objectives).
Under di↵erent scenarios various assumptions can be more/less correct than
others resulting in di↵erent degrees of e↵ectiveness for the various strategies.
Through monitoring of the progression toward the system’s objectives and by
utilizing feedback about the e↵ectiveness of the deployed strategy (with regards
to achieving the defined objectives) informed decisions can be made allowing an
ine↵ective strategy to be changed to an alternative, to better meet the long term
objectives.

The concept of a strategy-tree was introduced to facilitate intelligent switch-
ing among defined policy sets (i.e. strategies) at runtime in response to moni-
tored data and in the pursuit of a a directive defined over a long-term horizon
of time. In essence, a strategy-tree represents a framework for reasoning about
the e↵ectiveness of an active strategy. In this sense it is a tool for meta-policy
management [11]. While everything it accomplishes, might possibly be done us-
ing a set of highly complex and convoluted policies, this abstraction simplifies
and organizes the process of evaluating the e↵ectiveness of a deployed policy
set and orchestrates the switching among alternative strategies over time in a
defined, systematic and hierarchical manner. Further, this approach provides
an architecture to facilitate this process of strategic management8. For a more
comprehensive and formal consideration of strategy-trees and their use in pol-
icy management please refer to [28–31]; however, a brief description of the key
points follows.

A strategy-tree, Fig. 1, is composed of three types of nodes: Directive (i.e.,
circle), AND (i.e., triangle) and OR (i.e., inverted triangle). Associated with
each node in the tree is a quantum attribute value which denotes when9 a node’s

6 http://oxforddictionaries.com/definition/strategy
7 An objective represents a constraint on a metric. A metric might be a low level
technical metric (e.g. throughput) or a business metric (e.g., profit).

8 Strategy-trees are not meant to handle asynchronous problems. Changes in strategy
are gradual and occur on scales of hours, days, weeks, months, years, etc. (not
milliseconds). It is assumed that for gross, pathological errors there are policies
defined to handle these situations. There is also overhead associated with deploying
policy sets and this should not be ignored.

9 A quantum attribute value represents a coe�cient on some management time unit
(MTU).



(that is a member of the active strategy) SAT-element 10 should be executed
and in the case of an OR type node its DEC-element as well. There is also a list,
results, that is associated with each node which enables a child node to pass up
the result of its evaluation (i.e., execution of its associated SAT-element) to its
parent node (for use in later evaluations). Each leaf node of a strategy-tree is
bound to a single policy set11.

Policy'
Set'Zero'

Policy'
Set'One'

Policy'
Set'Two'

Policy'
Set'One'

Index& Quantum&
A-ribute&Value&

(hours)&

0' 168'

1' 24'

2' 1'

3' 1'

4' 6'

5' 1'

6' 1'

7' 1'

8' 1'

9' 1'

10' 1'

Fig. 1: An example strategy-tree with 11 nodes. There are four strategies
S0 = (0, 1, 2, 5, 6), S1 = (0, 1, 3, 7, 8), S2 = (0, 1, 4, 9) and S3 = (0, 1, 4, 10).
Currently, S0 is active as denoted by its yellow coloring (red indicates inactive).
The quantum attribute values presented in the table are determined through
experimentation, simulation or may even be selected arbitrarily.

At a high level, the algorithm for evaluating a strategy-tree goes as follows12.
Each time the strategy-tree is evaluated (i.e., each increment) the SAT-elements
in the active strategy are processed from leaf to root. A SAT-element is evaluated
when the increment value modulo the node’s quantum attribute value is equal to
zero. Once all the SAT-elements have been evaluated the DEC-elements of the

10 SAT-elements are used to evaluate whether a set of objectives is satisfied. DEC-
elements are used in decision making to determine whether to maintain the current
strategy or to switch to an alternative.

11 While multiple leaf nodes may be bound to the same policy set, leaf nodes of di↵erent
strategies may only do so under certain constraints. The policy set P

a

and P
b

that
are bound by two leaf nodes that are both direct child nodes of the same OR type
node must not be equivalent. Further, should two leaf nodes have a Lowest Common
Ancestor (LCA) that is an OR type node and should there be no intervening OR
type nodes between either leaf node and this OR type node then the policy sets, P

a

and P
b

, bound by these two leaf nodes must not be equivalent either [28].
12 This assumes that the tree has been fully specified, all elements defined, all leaf

nodes have been bound to policy sets, and the initial strategy set to active.



active strategy are evaluated from root to leaf13. Should any DEC-element decide
to switch strategy, the switch is implemented and the algorithm terminates. So,
if we assume the strategy-tree in Fig. 1, and further that S0 is the active strategy
then every hour the SAT-elements associated with nodes five and six evaluate
and pass up results to node two which aggregates14 this result and passes it
up to node one. At iteration 24, after the twenty-fourth evaluation of these
SAT-elements, the SAT-element associated with node one evaluates and passes
its result up to node zero. Next, the DEC-element associated with node one
is evaluated and a decision, based on the most recent epoch (i.e., 24 hours) of
collected data, is used to decide whether to continue using strategy S0 or whether
to switch to one of the three alternatives (i.e., S1, S2 or S3).

A strategy-tree that has multiple OR type nodes, as in Fig. 1, can be un-
derstood to have multiple MAPE loops [17] defined. For example, node four,
implements a loop that uses the six most recent results for the evaluation of
SAT-elements associated with node nine or ten (depending on whether strategy
S2 or S3 is active) as well as all monitored data for this six hour period in its
decision making process. In contrast, node one, implements a loop which uti-
lizes the previous 24 results for the evaluations of SAT elements associated with
nodes five, six and two (when strategy S0 is active) or for the evaluations of
SAT-elements associated with nodes seven, eight and three (when strategy S1 is
active) or the four most recent evaluations of the SAT-element associated with
node four (when strategy S2 or S3 is active) as well as all monitored data for
this 24 hour period in its decision making process. It should be pointed out that
in all but the simplest cases, more data than just the previous epoch’s15 will be
used in the decision making at a DEC-element.

3.1 Scenario: Designing a Strategy-Tree for the SaaS Provider

This section considers the development of a strategy-tree, Fig. 2, to help guide
the system to achieve the objective of the SaaS provider (i.e., maximize profit)
introduced in Section 2. Recall from Section 2.1 that three elasticity policies
have been defined: P

Sensitive

, P
Tolerant

and P
Aggressive

. Each of these elasticity
policies (policy sets) can be viewed as a particular strategy to achieve the SaaS
provider’s objectives under a particular set of expectations and assumptions.

The strategy-tree that we will consider consists of only five elements: four
directive type nodes and one OR type node. This simple structure was inten-
tionally selected in order to focus on the development of the single DEC-element
for the OR type node. To achieve the objective, heuristic trade-o↵s between
maximizing revenue and minimizing costs are utilized. A bias which favours ser-
vicing the maximum number of clients while attempting to limit the number of
additional platform service instances purchased is applied.

13 This is a small, yet valuable (in terms of complexity) alteration to the algorithm.
14 Applies a boolean AND to the results.
15 An epoch is equivalent to the quantum attribute value of the node in question so if

a node has a quantum attribute value of 24 hours then the epoch is 24 hours as well.



Fig. 2: Strategy-tree used for the experiment.

Characterizing the Elasticity Policies The various strategies need to be
understood in order to evaluate their e↵ectiveness and reason about switching
among possible alternatives. The SaaS provider was able to characterize each
of the three (see Section 2.1 and Table 1) elasticity policies against a standard
workload (i.e., trace data that they had access to). For each policy set, the
mean hourly number of additional platform service instances purchased was
computed. They were also able to monitor the current number of sessions at four
minute intervals. On this data, they performed hourly regressions and partitioned
the slopes of these regressions into four distinct categories (indicating di↵erent
degrees of increase/decrease in numbers of sessions).

Design of SAT-Elements The three leaf nodes (e.g., nodes two, three and
four) each have quantum attribute values of one hour. This implies that each
hour, they evaluate their SAT-element and pass the result up to node one. Node
one evaluates its SAT-element every four hours and passes its result up to node
zero. Each of these elements is evaluating the following objective:

– The number of additional platform service instances purchased, divided by
the epoch, should not exceed the hourly mean for that particular strategy.

Design of the DEC-Element The design of the DEC-element for node one
was much more involved than for the SAT-elements in the tree. This is normal
as deciding among alternative approaches can be di�cult at the best of times.

In order to guide performance toward achieving the objective (i.e., maximize
profit) it was decided that a two step approach would be utilized when decid-
ing whether to continue using a particular strategy or whether to switch to an
alternative. This decision would be based first upon the detection (or lack of de-
tection) of a trend in the number of current sessions observed over the previous
epoch. Specifically, the slope of the hourly regressions (for the previous four hour
epoch) constructed from the readings (i.e., current number of sessions) taken ev-
ery four minutes would provide a simple heuristic for detecting a rapid increase



or decrease in the client demand on the system (and hence guide the decision
making process to use the more aggressive strategy). Should no strong trend
be detected, data from the MDB as indicated by the values from the results list
(about the additional purchased platform service instances) for the previous four
hour epoch would then be utilized.

The logic underpinning the DEC-element works as follows. Every increment
of the MTU16, prior to evaluation of the strategy-tree, data about the applica-
tion is collected and stored in the MDB. Specifically, it includes the previous
15 current session readings and the 15 additional purchased platform service
instance readings as well. A regression is performed on the set of current session
readings and this is then stored for later use.

When the DEC-element at node one is executed and the method decider

17

is invoked, the following steps occur. First, the four most recent regressions
are collected from the MDB. Next, the previous 60 additional platform service
instance purchases are collected and summed. This data in combination with
the current active strategy denotes the context. Regardless of whether the active
strategy is S0 = (0, 1, 2), S1 = (0, 1, 3) or S2 = (0, 1, 4), Fig. 2, a call is made to
the method, map degrees to range. This method accepts an array of the four
most recent hourly regressions R = [r1, r2, r3, r4]. From each regression r

i

the
slope m

i

is extracted and an integer value returned denoting membership in one
of the four defined categories:

(i.) 0� < m  85� 7! 1
(ii.) m > 85� 7! 3
(iii.) 0� > m � �85� 7! �1
(iv.) m < �85� 7! �3

This resultant array of integer values I = [i1, i2, i3, i4] is multiplied by an array
of weights W = [w1, w2, w3, w4] where w1 = 1, w2 = 2, w3 = 4 and w4 = 8.
Notice that the weight values in this array are increasing which ensures that
emphasis is placed on the more recent regression’s slope. The summation of the
multiplication of W ⇤ I is returned: ⌃n

i=0W [i]I[i].
Two trends were identified as being of interest: steeply increasing (SI) and

steeply decreasing (SD). Specifically, any sum � 27 is considered to be SI while
any sum  -27 is considered to be SD. All other values are considered to be less
indicative of a trend (either increasing or decreasing) and this is when questions
about the number of purchased platform service instances are considered.

If the current active strategy is S0 the following reasoning is used. If the
value of sum as returned by the call to map degrees to range indicates SD or
SI then the variable next strategy is set to two. The rationale for this choice
is that if a steep increase or decrease in the number of sessions is observed, it
is important (according to the preferences of the SaaS provider) to respond to
this by using the aggressive policy set P

Aggressive

(i.e., S2) in order to ensure

16 MTU refers to the management time unit which in the case of this scenario is 60
minutes.

17 This is the name of the method which evaluates the DEC-element’s decision problem.



that available resources are allocated/de-allocated to handle the sharp change
in demand. Otherwise (i.e., it is not SD or SI), if the mean number of platform
service instances purchased (over the previous four hours) is greater than the
mean for S0 (recall that this is equivalent to P

Sensitive

) then set next strategy to
two (indicating S2) otherwise, set it to one (indicating S1).

If the current active strategy is S1 the following reasoning is used. For the
cases where sum indicates either SD or SI the identical reasoning as for S0 is used.
However, as it is now P

Tolerant

being employed if no apparent trend is perceived
and if the mean number of platform service instances purchased (for the four
hour epoch) is greater than the mean for this strategy then next strategy is set to
zero otherwise it is set to one. A simple rationale is used in deciding the switch
to S0. It had been determined during characterization of the three elasticity
policies (see Section 2.1) that the hourly mean number of additional platform
service instances purchased is lower under S0 than S1. Since no trend has been
observed (i.e., not SD or SI), and the mean number of platform service instances
purchased over the previous epoch has exceeded the mean for S1 by switching
to S0 there will be fewer additional platform service instances purchased in the
next epoch. It is hoped that this will apply a downward pressure on the overall
number of additional platform service instances purchased (i.e., decrease the
cost). Similarly, if the current active strategy is S2 the same reasoning as for S1

is used, except, the threshold for S2 is substituted in place of the threshold for
S1.

4 Architecture

The following section will provide an overview of our proposed management ar-
chitecture, Fig. 3. Since the scenario we are considering involves a SaaS provider
running an application on top of a PaaS topology we focus only on these two
layers.

4.1 PaaS Layer

At the PaaS layer, we assume the traditional policy-based management architec-
ture (PBM) consisting of Policy Repository, Policy Decision Points (PDP) and
Policy Enforcement Points (PEP) [21]. While the SaaS provider may also utilize
PBM internally, we leave this undefined for now as we are only considering PaaS
layer policy sets in this work and their management by a strategy-tree in order
to achieve its root directive.

The PaaS provider has access, via a monitoring subsystem, to numerous
performance metrics (e.g., cpu utilization, throughput, etc). It also has access to
various OS (e.g., ps count, ps cputime, ...) and middleware level metrics (e.g.,
request queue length, transmitted bytes, session count, ...) as well. We assume
that the PaaS provider exposes these metrics to its SaaS clients so that they
may define policy rules with which to implement their elasticity policies. Policy
rules are specified in the traditional On-event-If-condition-Then-action syntax.



4.2 SaaS Layer

A strategy-tree is used at the SaaS layer18 to dynamically alter policy set deploy-
ment at runtime. We assume that it has access to various performance metrics
that allow it to determine whether the currently deployed strategy is e↵ective or
not. For example, it is aware of how many platform service instances it has pur-
chased over time and also how many sessions it has serviced. The management
database (MDB) is where this data is stored. All elements of the strategy-tree
have access to it.

Fig. 3: Proposed management architecture

5 Experiment

The following experiment is based on the scenario of the SaaS provider intro-
duced in Section 2 and is composed of two parts. First, the three elasticity
policies (i.e., Table 1) are characterized against a workload as described in Sec-
tion 3.1. Then the strategy-tree (i.e., Fig. 2) is deployed and each policy set
and the strategy-tree are run against a novel workload and compared in terms
of total sessions, number of additional platform service instances purchased and
mean response time as measured at the client.

5.1 Experimental Setup

For this experiment, Amazon (i.e., EC2, EBS) was used as the IaaS provider.
All topology instances were built atop virtual machine instances (VMI)s running

18 It is the SaaS layer manager at this point.



either CentOS 5.4 i386 (i.e., front end servers and application server instances) or
Ubuntu 8.04 i386 (i.e., database) and configured as m1.small instances (i.e., 1.7
GB memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit),
160 GB instance storage, 32-bit platform and I/O Performance: Moderate).

RightScale was used as a PaaS management framework. A standard, multi-
tiered application topology was selected from their catalog (with various mod-
ifications to suit our needs). This platform topology consisted of two front-end
servers running Apache and HAProxy an array of Tomcat instances and a back
end database running MySQL 5.0. The concepts of elastic scaling of a server
array using alerts (based on voting tags) employed by Rightscale allowed us to
specify our elasticity policies. We wrote lightweight Policy and PolicySet classes
that were implemented in Ruby. Once fully specified, a PolicySet could be de-
ployed (utilizing Rightscale’s restful API) at which point it would result in the
configuration of the platform topology with the correct elasticity policy as pre-
viously described. The strategy-tree was implemented in Ruby and the initial
encoding is from within an XML file19

The client is run on a separate EC2 instance and simulates the correct number
of clients as defined by the workload for the duration of the experiment. The
workloads used both to characterize the three elasticity policies and for the actual
experiment were excerpts from the FIFA ’98 workload [1] (Figs.4a and 5a).

Experiment time was scaled by four The monitoring system at the SaaS
provider takes a reading every minute (i.e., four minutes of experiment time).
At the SaaS provider layer, a simple Java-based web application was deployed
on the described PaaS topology. A client connects to the front-end, is directed to
an application server, a loop executes some pre-defined number of times (i.e., for
this work we focused on the CPU) communication with the database tier occurs
and a response is issued. For the remainder of the chapter, this will represent a
session.

5.2 Characterizing the Elasticity Policies

The first step when using a strategy-tree requires that a characterization of the
various strategies be performed. The results of running a single workload (FIFA
’98, Day 41, partial excerpt) against the SaaS application utilizing each of the
three elasticity policies is presented in Fig. 4. Notice that the di↵erences in both
current sessions (Fig. 4b) and additional platform service instances utilized over
time (Fig. 4c) varies substantially among the three alternative strategies.

Following each run, the hourly mean number of platform service instances
purchased by the SaaS provider when operating under that elasticity policy was
computed. Also, hourly regressions were computed on the number of sessions 20

serviced by the SaaS o↵ering for each complete run under each elasticity policy.
The slopes of these regressions were then partitioned into four categories (i.e.,

19 This is an updated version from previous work where it was implemented in Java.
20 There were 15 readings per experiment hour.
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Fig. 4: (a) FIFA ’98, Day 41, partial excerpt. (b) Number of sessions processed
by the application in response to the workload using three alternative elastic-
ity policies (EP)s. (c) Additional platform service instances being added and
released in response to the workload under the three alternative EPs during
characterization phase.

ranges) of roughly equal occurrence as described in Section 3.1. These character-
izations were used in the design of elements for the strategy-tree as previously
described.

5.3 Experimental Results

An alternative workload (Fig. 5a) was selected (FIFA ’98, Day 43, partial ex-
cerpt). The workload was pre-processed so as to stretch the y-coordinates by a
factor of 1.4 (to increase the number of clients)21. We ran three repetitions for
each strategy, Table 1, and for the strategy-tree, Fig. 2. Plots from one of the

21 This stretch was applied as the workload did not look very interesting initially (i.e.,
its maxima were much less than the day 41 partial excerpt data we had initially
worked with)
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Fig. 5: (a) FIFA ’98, Day 43, partial excerpt (stretched by 1.40). (b) Total number
of sessions processed versus time: strategy-tree. (c) Platform service instance
usage versus time: strategy-tree.

three runs using a strategy-tree are presented in Figs. 5b and 5c. In this run, all
three strategies were used at various points in time as indicated by the alterna-
tive background colourings. An overview of the results for the individual trials
is presented in Table 2. This table assigns an integer ranking (i.e., one denotes
best while 12 denotes worst) as follows: a strategy is more successful when it
services a greater number of total sessions, purchases fewer additional platform
service instances and provides a lower mean response time to its clients.

Figure 6a presents the mean total number of sessions serviced for each set
of three runs for each approach (i.e., P

Sensitive

, P
Tolerant

, P
Aggressive

and the
strategy-tree). Figure 6b presents the mean number of platform service instances
purchased for each set of three runs for each approach. Figure 6c presents the
mean of the mean response time at the client for each set of three runs for each
approach.



Table 2: Placement for various approaches. Total Sessions (Tot. Ses.), Additional
Instances (Add. Inst.), Mean Response Time at the client (MRT), and Strategy-
Tree (ST). There are twelve trials. For each row, 1 denotes the best result for
that metric and 12 denotes the worst.

Metric P
Sensitive

P
Tolerant

P
Aggressive

ST
Tot. Ses. 8,11,12 3,4,6 5,9,10 1,2,7
Add. Inst. 4,5,6 1,3,7 9,11,12 2,8,10

MRT 2,10,11 6,8,12 4,5,9 1,3,7

6 Discussion

The experiment presented in Section 5 was preliminary in both its scope and
complexity; however, it demonstrates that a strategy-tree can achieve its root’s
directive (i.e., maximize profit). Recall from Section 2 that the objective of the
SaaS provider is to maximize profit by both maximizing revenue and by mini-
mizing cost. It attempts to achieve this through the strategy-tree which employs
a bias (at its DEC-element) that favours servicing the maximum number of
clients while attempting to limit the number of additional platform service in-
stances purchased. Finally, recall that their is also an additional speculative cost
associated with loss of future business due to sub-par response time.

In terms of best individual results (see Table 2) the strategy-tree approach
finished first both in total number of sessions serviced and mean response time
at the client. It also finished second for additional platform service instances
purchased. The best individual results for P

Sensitive

were eighth for total number
of sessions, fourth for additional platform service instances purchased and second
for mean response time at the client. The best individual results for P

Tolerant

were third for total number of sessions, first for additional number of platform
service instances purchased and sixth for mean response time at the client. The
best individual results for P

Aggressive

were fifth for total number of sessions,
ninth for additional number of platform service instances purchased and fourth
for mean response time at the client. Further, it should be pointed out that the
strategy-tree approach never obtained the worst result for any of the metrics
while all individual strategies did. Also, its two worst individual results were in
terms of the number of additional platform service instances purchased and this
can be understood due to the bias in favour of servicing client sessions. These
results argue in favour of the e↵ectiveness of the strategy-tree at facilitating
trade-o↵s while maintaining alignment with the root directive.

In terms of aggregate results, the mean value over three trials for the to-
tal number of sessions (see Fig. 6a) and the mean value over three trials for
mean response time at the client (see Fig. 6c) were better for the approach
utilizing a strategy-tree than for any of the individual strategies. Further, the
mean value over three trials for number of platform service instances purchased
(see Fig. 6b) was much less for the approach utilizing a strategy-tree than for
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Fig. 6: Mean of three trials for each elasticity policy and for the strategy-tree
(plus and minus one standard error) for (a) Total sessions. (b) Total number of
platform service instances. (c) Mean response time as measured at the client.

P
Aggressive

. More precisely, the strategy-tree approach serviced approximately
26% more sessions, while using approximately 16% more platform service in-
stances and achieving an improvement in mean response time at the client of
approximately 10% when compared to P

Sensitive

. The strategy-tree serviced ap-
proximately 8% more sessions22, while using approximately 20% more platform
service instances and achieving an improvement in mean response time at the
client of approximately 14% when compared to P

Tolerant

. The strategy-tree ser-
viced approximately 13% more client sessions, while using approximately 19%
fewer platform service instances and achieving an improvement in mean response
time at the client of approximately 6% when compared to P

Aggressive

.
Various factors may have adversely impacted the results presented here. For

example, the set of experiments (both characterizations of the three elasticity
policies and the actual experimental runs) were performed on the Internet and
not on a private test-bed; further, the experiments were run without regard for
time of day and this might have had an impact.

The policy sets that were used were heuristic in nature with no formal
methodology utilized in their design. We intend to investigate designing tech-
niques to better determine thresholds for our policy rules, using formal modelling

22 This is actually quite substantial (i.e., approximately 10,000 sessions).



techniques and building on work done in [6]. It should be emphasized that the
intent of this chapter was to explore reasoning about the performance of the
policy sets via a strategy-tree rather than focusing on the optimal design of a
specific elasticity policy. In fact, the elasticity policies used in this chapter were
developed in an ad-hoc fashion in contrast to the formal refinement approaches
such as [4, 10, 25].

One limitation of the strategy-tree presented here is that it is only reactive
in nature. Specifically, it only considers the previous epoch’s history. This falls
into the problem of local minima/maxima (i.e., hill climbing problem) . One
possible approach to improve this limitation would be to utilize the growing
history over time. However, to truly implement good decision making in DEC-
elements prediction is required. Work by [14] utilized signal processing techniques
to detect patterns in workloads to assist in prediction. These forms of techniques
would be interesting to apply inside DEC-elements of a strategy-tree.

7 Related Work

The strategy-tree was introduced to allow for changes in strategy (i.e., policy set)
to be made in response to changes in experienced workloads and/or failures of
the implicit assumptions underpinning policy set construction. Regardless, it is
predicated on achieving a long-term directive over some horizon of time based on
a pre-defined set of policy sets. The work presented by [3] describes a mechanism
for applying reinforcement learning in the context of policy management. In this
work, the active (i.e., deployed) policy set is utilized to dynamically construct a
model of the system which guides the autonomic manager resulting in improved
performance. As changes in the deployed policy set occur Bahati et al. are able
to demonstrate that in a majority of cases transformations can be performed on
the state-transition graph thus retaining much of the previously learned infor-
mation; however, they also demonstrate that in certain circumstance (i.e. model
transformation  5[GP

n

]), the initial model must be discarded and a new one ini-
tialized. We see a DEC-element as potentially representing a transformation of
this type. Further, the idea of dynamically evolving a policy set is one that we
have currently left unexplored but see value in. Presently, a change in policy set
implies a change in strategy (at any particular DEC-element). However, allowing
for policy sets to be learned may result in a less constrained approach.

The work in [7] introduces the SYMIAN decision support tool which is used
to determine e↵ective incident management strategies. Each DEC-element in
a strategy-tree denotes a unique locus of control for selecting among a set of
strategies. However, unlike SYMIAN, there exists a hierarchy of objectives to
achieve in which the e↵ectiveness of employed strategies to achieve lower layer
objective sets directly contributes to the perceived achievement of those objec-
tive sets higher in the tree structure. Further, unlike SYMIAN, which facilitates
strategy design, the decision making at a DEC-element in a strategy-tree is
done automatically at runtime over a pre-determined set of alternative strate-
gies. While the DEC-element described in this chapter was designed based on a



simple heuristic, a need for more involved reasoning among potential strategies
especially as temporal granularities grow and out-degree of DEC-elements (i.e.,
OR type nodes) increases is clear. Each DEC-element represents a multi-criteria
decision problem in which the current context (i.e., monitored data, the current
active strategy and the set of available strategies at the particular node) must
be considered while trying to achieve a local set of objectives. The decision to
maintain or switch current strategies can become a highly complex and chal-
lenging problem requiring well thought out models, and approaches. In e↵ect, a
strategy-tree with multiple DEC-elements (as in Fig. 1) represents a hierarchical
(over time) set of decision problems to be solved.

The work in [24] manages the Quality of Service (QoS) provisioning of Di↵-
Serv over MPLS networks in alignment with business objectives. A model of
business utility is introduced relating business indicators, SLA indicators, ob-
jectives and policies. The business indicators are assigned weights and a set
of mapping functions are derived to facilitate the generation of e↵ective pol-
icy parameters. This approach is an extension to the policy refinement work
in [25]. The policies that are considered are simple rules and the weights (while
justified) appear somewhat arbitrarily selected. Regardless, the method demon-
strated through simulation seems promising. It should be emphasized that once
a strategy is selected, that is it. There is no mechanism to change strategy au-
tomatically. In contrast, a strategy-tree utilizes feedback at (typically) multiple
temporal granularities to allow for changes in strategy to be made over time.
One possible avenue would be to determine various weight settings based on
sets of assumptions (as presented informally in the paper) and then to construct
a strategy-tree to alternate among these alternative strategies over time while
maintaining alignment with the long term business objectives.

The Stitch language [9] was introduced to specify adaptation strategies in
the context of the Rainbow Framework [12]. Stitch is based on three main con-
cepts: operators, tactics and strategies. An operator maps to a system provided
command (i.e., an e↵ector), a tactic represents a conditional evaluation of a set
of actions (i.e., calls to operators) and an expected set of e↵ect(s) and a strategy
which is a tree of conditional tactic delay nodes23. At runtime a strategy is se-
lected from the set of possible strategies based on its overall utility across a set
of quality dimensions, d, in a particular context. The sum of utility values is con-
structed based on weights, w

i

, which are arbitrarily defined (e.g., U =
P

w
d

u
d

)
as are the utility functions for each dimension. Comparatively, a strategy, in
terms of a strategy-tree, denotes the entire set of management policies which are
deployed at any given point in time. With strategy-trees we are not trying to
manage a single adaptation, rather, we are attempting to guide the system, in a
more scalable fashion to achieve the long-term objectives of the administrator.
In fact, Stitch and the strategy-tree approach are complementary, as a module
of Stitch strategies could be viewed as the deployed policy set while alternative

23 Associated with each node in a strategy is a probability that its condition will
evaluate to true and a delay specifying the horizon over which the e↵ect of the
tactic’s execution will be observable.



modules of strategies (i.e., ones with di↵erent probabilities, weights and util-
ity functions) could be thought of as alternative policy sets and a strategy-tree
could then be constructed to switch among these modules at runtime to maintain
alignment with the long term management objectives.

8 Conclusions

The work presented in this chapter is an initial step toward the realization of our
business driven cloud optimization architecture. We introduced an architecture
and methodology for managing a SaaS application on top of a PaaS provider’s
infrastructure. This framework utilizes PaaS policy sets to implement the SaaS
provider’s elasticity policy for its application server tier. A strategy-tree is uti-
lized at the SaaS layer to actively guide policy set selection at runtime in order to
maintain alignment with the SaaS provider’s business objectives. An experiment
on a real cloud was presented that demonstrates the promise of this approach
and the usefulness of dynamically switching among active strategies at runtime.

In future work we would like to use a more realistic application in which
multiple classes of clients are defind and various admission control policies and
tuning policies can be used to augment the complexity of the application’s elas-
ticity policy. We also intend to continue developing the concept of the strategy-
tree. While initially, a strategy-tree was designed to capture implicit objectives
underpinning the various policy sets, we think there may also be an interest-
ing research space connecting it to explicit objectives. Specifically, we feel that
there may exist a link between the concepts of goal-models, awareness require-
ments [27] and strategy-trees that might allow us to automate the generation of
the tree structure as well as the various SAT-elements so that the strategy-tree
is more directly connected to the objectives of the service (e.g., SaaS) provider
and easier to build and use. We are also beginning to suspect that perhaps sim-
ulation is a better avenue for demonstrating longer-term strategic management
than through experimental work.
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