
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013 909

Data Center Network Virtualization: A Survey
Md. Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zambenedetti Granville, Maxim Podlesny,

Md Golam Rabbani, Qi Zhang, and Mohamed Faten Zhani

Abstract—With the growth of data volumes and variety of
Internet applications, data centers (DCs) have become an effi-
cient and promising infrastructure for supporting data storage,
and providing the platform for the deployment of diversified
network services and applications (e.g., video streaming, cloud
computing). These applications and services often impose multi-
farious resource demands (storage, compute power, bandwidth,
latency) on the underlying infrastructure. Existing data center
architectures lack the flexibility to effectively support these
applications, which results in poor support of QoS, deployability,
manageability, and defence against security attacks. Data center
network virtualization is a promising solution to address these
problems. Virtualized data centers are envisioned to provide bet-
ter management flexibility, lower cost, scalability, better resources
utilization, and energy efficiency. In this paper, we present a
survey of the current state-of-the-art in data center networks
virtualization, and provide a detailed comparison of the surveyed
proposals. We discuss the key research challenges for future
research and point out some potential directions for tackling
the problems related to data center design.

Index Terms—Data Center Architecture, Virtualization, Vir-
tualized Data Center

I. INTRODUCTION

DATA centers have recently received significant atten-
tion as a cost-effective infrastructure for storing large

volumes of data and hosting large-scale service applications.
Today, large companies like Amazon, Google, Facebook, and
Yahoo! routinely use data centers for storage, Web search,
and large-scale computations [1]–[3]. With the rise of cloud
computing, service hosting in data centers has become a multi-
billion dollar business that plays a crucial role in the future
Information Technology (IT) industry.
Despite their importance, the architectures of todays data

centers are still far from being ideal. Traditionally, data centers
use dedicated servers to run applications, resulting in poor

Manuscript received 7 March 2012; revised 2 August 2012. This work
was supported in part by the Natural Science and Engineering Council of
Canada (NSERC) under the Smart Applications on Virtual Infrastructure
(SAVI) Research Network, and in part by the World Class University (WCU)
Program under the Korea Science and Engineering Foundation funded by the
Ministry of Education, Science and Technology (Project No. R31-2008-000-
10100-0).
Md. F. Bari, M. Podlesny, Md. Golam Rabbani, Q. Zhang, and M. F.

Zhani are with the D.R. Cheriton School of Computer Science, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L
3G1 (e-mail: faizulbari@gmail.com).
R. Boutaba is with the David R. Cheriton School of Computer Sci-

ence, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-
mail:rboutaba@cs.uwaterloo.ca). He is also with the Division of IT Con-
vergence Engineering, Pohang University of Science and Technology
(POSTECH), Pohang 790-784, Korea.
R. Esteves and L. Z. Granville are with the Institute of Informatics —

Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500 —
Porto Alegre, Brazil.
Digital Object Identifier 10.1109/SURV.2012.090512.00043

server utilization and high operational cost. The situation
improved with the emergence of server virtualization technolo-
gies (e.g., VMware [4], Xen [5]), which allow multiple virtual
machines (VMs) to be co-located on a single physical ma-
chine. These technologies can provide performance isolation
between collocated VMs to improve application performance
and prevent interference attacks. However, server virtualiza-
tion alone is insufficient to address all limitations of todays
data center architectures. In particular, data center networks
are still largely relying on traditional TCP/IP protocol stack,
resulting in a number of limitations:

• No performance isolation: Many of todays cloud ap-
plications, like search engines and web services have
strict requirements on network performance in terms of
latency and throughput. However, traditional networking
technologies only provide best-effort delivery service
with no performance isolation. Thus, it is difficult to
provide predictable quality of service (QoS) for these
applications.

• Increased security risks: Traditional data center networks
do not restrict the communication pattern and bandwidth
usage of each application. As a result, the network is
vulnerable to insider attacks such as performance inter-
ference and Denial of Service (DoS) attacks [6].

• Poor application deployability: Today many enterprise
applications use application-specific protocols and ad-
dress spaces [7]. Migrating these applications to data
center environments is a major hurdle because it often
requires cumbersome modifications to these protocols
and the application source code.

• Limited management flexibility: In a data center environ-
ment where both servers and networks are shared among
multiple applications, application owners often wish to
control and manage the network fabric for a variety
of purposes such as load balancing, fault diagnosis,
and security protection. However, traditional data center
network architectures do not provide the flexibility for
tenants to manage their communication fabric in a data
center.

• No support for network innovation: Inflexibility of the
traditional data center architecture prohibits network in-
novation. As a result, it is difficult to introduce changes
in traditional data center networks such as upgrading
network protocols or introducing new network services.
In the long run, it will reduce the effectiveness of the
initial capital investment in data center networks.

Motivated by these limitations, there is an emerging trend
towards virtualizing data center networks in addition to server
virtualization. Similar to server virtualization, network virtual-

1553-877X/13/$31.00 c© 2013 IEEE

910 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

Fig. 1. Conventional data center network topology

ization aims at creating multiple virtual networks (VNs) on top
of a shared physical network substrate [8] allowing each VN
to be implemented and managed independently. By separating
logical networks from the underlying physical network, it
is possible to introduce customized network protocols and
management policies. Also, since VNs are logically separated
from one another, implementing performance isolation and
application QoS is facilitated. Management procedures of VNs
will be more flexible because every VN has its own control and
management system. Furthermore, isolation offered in network
virtualization environments can also minimize the impact of
security threats. Finally, the deployment of new applications
and services in virtualized data center environments is fa-
cilitated by customized protocols and address spaces, which
expedites network innovation. So far, most of the existing
work on network virtualization has been focused on virtualiz-
ing traditional Internet Service Provider (ISP) networks. Thus,
virtualizing data center networks is a relatively new research
direction, and a key step towards fully virtualized data center
architectures.

While virtualizing data center networks addresses all of
the aforementioned issues, it also opens a variety of new
research challenges including virtualization techniques, ad-
dressing schemes, performance isolation, scalability, failure
tolerance, monitoring, interfacing, security, pricing, and re-
source management. In this paper, we present a survey of
recent research on virtualizing data center networks. Our
contributions are three-fold: first, we provide a summary of the
recent work on data center network virtualization. Second, we
compare these architectures and highlight their design trade-
offs. Finally, we point out the key future research directions
for data center network virtualization. To the best of our
knowledge, this work is the first to survey the literature on
virtualizing data center networks.

The remainder of the survey is organized as follows. After
introducing the terminology and definitions pertaining to data
center virtualization (Section II), we summarize the proposals
(Section III) related to data center network virtualization and
compare them from different perspectives (Section IV). We
then discuss the key research challenges for future explorations
(Section V) and, finally, conclude our paper (Section VI).

Fig. 2. Clos topology

II. BACKGROUND

In this section, we present the terminology relevant to data
center network virtualization that we will be using in this
paper. Table I provides a list of abbreviations used throughout
the paper.

A. Data Center

A data center (DC) is a facility consisting of servers (phys-
ical machines), storage and network devices (e.g., switches,
routers, and cables), power distribution systems, cooling sys-
tems.
A data center network is the communication infrastructure

used in a data center, and is described by the network topology,
routing/switching equipment, and the used protocols (e.g.,
Ethernet and IP). In what follows, we present the conventional
topology used in data centers and some other topologies that
have been recently proposed.
Figure 1 shows a conventional data center network topol-

ogy [9]. In this topology, the Top-of-Rack (ToR) switch in the
access layer provides connectivity to the servers mounted on
every rack. Each aggregation switch (AS) in the aggregation
layer (sometimes referred to as distribution layer) forwards
traffic from multiple access layer (ToR) switches to the core
layer. Every ToR switch is connected to multiple aggregation
switches for redundancy. The core layer provides secure con-
nectivity between aggregation switches and core routers (CR)
connected to the Internet. A particular case of the conventional
topology is the flat layer 2 topology, which uses only layer 2
switches.
Clos topology is a topology built up from multiple stages

of switches [10]. Each switch in a stage is connected to all
switches in the next stage, which provides extensive path
diversity. Figure 2 shows an example of a three-stage Clos
topology.
Fat-tree topology [11] is a special type of Clos topology

that is organized in a tree-like structure, as shown in Figure 3.
The topology built of k-port switches contains k pods; each of
them has two layers (aggregation and edge) of k/2 switches.
Each of (k/2)2 core switches has one port connected to each
of k pods. The i-th port of any core switch is connected to
pod i so that consecutive ports in the aggregation layer of each
pod switch are connected to core switches on k/2 strides. Each
edge switch is directly connected to k/2 end-hosts; each of

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 911

Fig. 3. Fat-tree topology (k = 4)

the remaining k/2 ports of an edge switch is connected to k/2
ports of an aggregation switch [12].
The above topologies have the properties that make them

suitable for data center networks. However, data center topolo-
gies are not limited to the topologies presented in this Section.
For example, BCube [13] is a data center network architecture
based on hyper-cube topology. The interested reader can find
a comparison of recent data center network topologies in [14].

B. Data Center Virtualization

A Virtualized Data Center is a data center where some
or all of the hardware (e.g., servers, routers, switches, and
links) are virtualized. Typically, a physical hardware is vir-
tualized using software or firmware called hypervisor that
divides the equipment into multiple isolated and independent
virtual instances. For example, a physical machine (server)
is virtualized via a hypervisor that creates virtual machines
(VMs) having different capacities (CPU, memory, disk space)
and running different operating systems and applications.
A Virtual Data Center (VDC) is a collection of virtual

resources (VMs, virtual switches, and virtual routers) con-
nected via virtual links. While a Virtualized Data Center is
a physical data center with deployed resource virtualization
techniques, a Virtual Data Center is a logical instance of a
Virtualized Data Center consisting of a subset of the physical
data center resources. A Virtual Network (VN) is a set of vir-
tual networking resources: virtual nodes (end-hosts, switches,
routers) and virtual links; thus, a VN is a part of a VDC. A
network virtualization level is one of the layers of the network
stack (application to physical) in which the virtualization is
introduced. In Figure 4, we show how several VDCs can be
deployed over a virtualized data center.
Both network virtualization and data center virtualization

rely on virtualization techniques to partition available re-
sources and share them among different users, however they
differ in various aspects. While virtualized ISP (VNs) net-
works mostly consist of packet forwarding elements (e.g.,
routers), virtualized data center networks involve different
types of nodes including servers, routers, switches, and storage
nodes. Hence, unlike a VN, a VDC is composed of different
types of virtual nodes (e.g., VMs, virtual switches and vir-
tual routers) with diverse resources (e.g., CPU, memory and
disk). In addition, in the context of network virtualization,

Fig. 4. Virtualization of a data center.

TABLE I
USED ABBREVIATION

Acronym Description
DC Data Center
VM Virtual Machine
V N Virtual Network
V DC Virtual Data Center
V LAN Virtual Local Area Network
ToR Top-of-Rack
AS Aggregation Switch
CR Core Router
InP Infrastructure Provider
SP Service Provider
IaaS Infrastructure-as-a-Service

virtual links are characterized by their bandwidth. Propagation
delay is an important metric when nodes are geographically
distributed. However, since a data center network covers a
small geographic area, the propagation delay between nodes

912 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

is negligible; hence, it is always ignored when defining VDC
virtual links [15], [16].
Another key difference between data center networks and

ISP networks is the number of nodes. While the number of
nodes in ISP backbones is in order of hundreds (e.g., 471,
487, and 862 nodes in Sprintlink, AT&T, and Verio ISPs,
respectively [17]), it can go up to thousands in today’s data
centers (e.g., around 12000 servers in one Google Compute
cluster [18]). This can potentially raise scalability issues, and
increase management complexity.
Furthermore, different from ISP networks, data center net-

works are built using topologies like the conventional tree, fat-
tree, or Clos topologies with well defined properties, allowing
to develop embedding algorithms optimized for such particular
topologies (e.g., Ballani et al. [16] proposed an embedding
scheme applicable only to tree topology).
In summary, data center network virtualization is different

from ISP network virtualization, because one has to consider
different constraints and resources, specific topologies, and de-
grees of scalability. For a survey of ISP network virtualization
the interested reader is referred to [8].

C. Business Model

In this section, we define main stakeholders in DC virtual-
ization environment.
Specifically, one of the differences between the traditional

networking model and network virtualization model is par-
ticipating players. In particular, whereas the former assumes
that there are two players: ISPs and end-users, the latter
proposes to separate the role of the traditional ISP into two:
an Infrastructure Provider (InP) and a Service Provider (SP).
Decoupling SPs from InPs adds opportunities for network
innovation since it separates the role of deploying networking
mechanisms, i.e., protocols, services (i.e., SP) from the role of
owning and maintaining the physical infrastructure (i.e., InP).
In the context of data center virtualization, an InP is a

company that owns and manages the physical infrastructure of
a data center. An InP leases virtualized resources to multiple
service providers/tenants. Each tenant creates a VDC over the
physical infrastructure owned by the InP for further deploy-
ment of services and applications offered to end-users. Thus,
several SPs can deploy their coexisting heterogeneous network
architectures required for delivering services and applications
over the same physical data center infrastructure.

III. LITERATURE SURVEY

The virtualization of data center networks is still in its
infancy, and recent research has mainly focused on how to
provide basic functionalities and features including the parti-
tioning of data center network resources, packet forwarding
schemes and network performance isolation. Accordingly, we
focus our attention in this survey on:

• Packet forwarding schemes which specify the rules used
to forward packets between virtual nodes.

• Bandwidth guarantees and relative bandwidth sharing
mechanisms that provide network performance isolation
and more efficient network resource sharing, respectively.

• Multipathing techniques used to spread the traffic among
different paths in order to improve load-balancing and
fault-tolerance.

Nevertheless, there are other features worth considering
when virtualizing data centers such as security, programma-
bility, manageability, energy conservation, and fault-tolerance.
So far, however, little attention has been paid to these features
in the context of data center virtualization. We provide more
details about the challenges related to these features in the
future research directions section (Section V). In the following,
we briefly describe the features we focus on in the paper, and
then survey the proposals.
A forwarding scheme specifies rules for sending packets

by switching elements from an incoming port to an outgoing
port. A FIB allows to map MAC address to a switch port when
making a decision about packet forwarding.
To support relative bandwidth sharing, congestion-

controlled tunnels [6] may be used, typically implemented
within a shim layer that intercepts all packets entering and
leaving the server. Each tunnel is associated with an allowed
sending rate on that tunnel implemented as a rate-limiter.
The other alternatives [27] are group allocation for handling
TCP traffic, rate throttling for controlling UDP traffic, and
centralized allocation for supporting more general policies,
e.g., handling specific flows. The first alternative uses fair
queueing; the second one relies on a shim layer below UDP.
One of the techniques to achieve bandwidth guarantee is

the use of rate-limiters [7], [15], [16], [26]. In particular, a
rate-limiter module is incorporated into a hypervisor of each
physical machine; its role is to ensure that every VM does not
exceed the allocated bandwidth. GateKeeper runs as a user
level process in the Linux hypervisor (dom 0). It relies on the
Open vSwitch (also running in the hypervisor) to track rates
of each flow. Bandwidth guarantee in GateKeeper is achieved
through rate limiter implemented using Linux hierarchical
token bucket (HTB) scheduler running in the Xen hypervisor
(dom 0) in the end hosts. CloudNaaS relies on Open vSwitch,
which, although not explicitly stated, can be used for rate
limiting. The deployment of rate limiters located at end-hosts
makes it possible to avoid explicit bandwidth reservation at
switches as long as the VDC management framework ensures
that traffic crossing each switch does not exceed corresponding
link capacity.
The main multipathing mechanisms used in data center

networks are ECMP (Equal Cost Multipathing) [29] and VLB
(Valiant Load Balancing) [30], [31]. To achieve load balanc-
ing, ECMP spreads traffic among multiple paths that have the
same cost calculated by the routing protocol. VLB selects
a random intermediate switch that will be responsible for
forwarding an incoming flow to its corresponding destination.
ECMP and VLB are implemented in L3 switches. On the
other hand, path diversity available in data center networks
can be exploited not only to provide fault tolerance but also to
improve load balancing. In particular one effective technique
to achieve load balancing is to create multiple VLANs that are
mapped to different paths between each source and destination
pair. This allows to distribute the traffic across different
paths [20], [22].

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 913

TABLE II
CLASSIFICATION OF THE PROPOSALS IN LITERATURE

Feature
Proposal References

Forwarding Bandwidth Multipathing Relative
scheme guarantee bandwidth sharing

Traditional DC [4], [5], [19]
√ √

SPAIN [20]
√

Diverter [21]
√

NetLord [22]
√ √

V ICTOR [23]
√

V L2 [24]
√ √

PortLand [25]
√ √

Oktopus [16]
√

SecondNet [15]
√ √

Seawall [6]
√

Gatekeeper [26]
√

NetShare [27]
√ √

SEC2 [28]
√

CloudNaaS [7]
√ √

In Table II, we provide the classification of the surveyed
projects according to the features they cover, and emphasize
that a project may address more than one feature. A checkmark
shows the features that are inherent to the surveyed proposals.

A. Traditional data center (DC)

Virtualization in current data center architectures is com-
monly achieved by server virtualization. Each tenant owns
a group of virtual servers (machines), and isolation among
tenants is achieved through VLANs. Data centers relying
on this simple design can be implemented using com-
modity switches and popular hypervisor technologies (e.g.,
VMware [4], Xen [5]). Besides, tenants can define their own
layer 2 and layer 3 address spaces.
The main limitation of current data center architectures is

scalability since commodity switches were not designed to
handle a large number of VMs and the resulting amount of
traffic. In particular, switches have to maintain an entry in their
FIBs (Forwarding Information Base) for every VM, which can
dramatically increase the size of forwarding tables. In addition,
since VLANs are used to achieve isolation among tenants, the
number of tenants is limited to 4096 (the number of VLANs
allowed by the 802.1q standard [19]).

B. Diverter

Supporting logical partitioning of IP networks is essential
for better accommodation of applications and services needs
in large-scale multi-tenant environments like data centers.
Diverter [21] is a software-only approach to network virtu-
alization for a data center network that assumes no need for
configuring switches or routers.

Diverter is implemented in a software module (called
VNET) installed on every physical machine. When a VM
sends an Ethernet frame, VNET replaces the source and
the destination MAC addresses by the ones of the physical
machines that host the source and the destination VMs,
respectively. Then switches perform packet forwarding using
the MAC addresses of the physical machines. VNET uses
a modified version of the ARP protocol to discover any
physical machine hosting a particular VM. Diverter requires
that every VM have an IP address format encoding the tenant
identity, the subnet, and the virtual machine address (currently
use 10.tenant.subnet.vm); thus, no address clashes occur
between tenants. VNET performs routing between subnets
using MAC address rewriting, which gives the illusion of
traversing a gateway. Summarizing, Diverter provides layer
3 network virtualization that allows every tenant to control
his own IP subnets and VMs addresses.
The main limitation of the proposal is that it does not

provide any QoS guarantee, the support of which the authors
consider as future work.

C. NetLord

To maximize revenue, providers of Infrastructure-as-a-
Service (IaaS) [32] are interested in a full utilization of their
resources. One of the most effective ways to achieve that
is by maximizing the number of tenants using the shared
infrastructure. NetLord [22] is a network architecture that
strives at scalability of tenant population in data centers. The
architecture virtualizes L2 and L3 tenant address spaces, which
allows tenants to design and deploy their own address spaces
according to their needs and deployed applications.

914 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

Fig. 5. NetLord architecture

The key idea of NetLord presented in Figure 5 is to
encapsulate tenant L2 packets and transmit them over L2
fabric employing L2+L3 encapsulation. A L2 packet header
specifies MAC addresses of a source VM and a destination
VM. A source NetLord Agent (NLA) deployed on each
physical server controls all VMs on the server. Specifically,
it encapsulates an L2 packet by adding an extra L2 header
and L3 header as follows. The extra source and destination
L2 addresses determine the MAC addresses of the ingress and
egress switches of a server hosting a source VM respectively.
The extra source IP address reveals the ID of a tenant MAC
address space, which enables the tenant to use multiple L2
spaces. The extra destination IP address specifies the port of
an egress switch for forwarding packets to a destination server,
and the ID of a tenant hosting a source and a destination VMs.

A packet is transferred over a data center network to an
egress switch through the underlying L2 fabric over the path
chosen by VLAN selection algorithm of SPAIN [20] (scheme
relying on the VLAN support in existing commodity Ethernet
switches to provide multipathing)1. Packet forwarding from an
egress switch to a destination server is based on an L3 lookup
of an egress port. An NLA forwards packets on a destination
server to a destination VM using the IDs of a tenant and its
MAC address space, and the destination L2 address of a VM
in the encapsulated tenant packet. To support virtual routing,
NetLord uses the same routing mechanism as Diverter [21]. To
support SPAIN multipathing and keep per-tenant configuration
information, NetLord uses several databases (referred to as
Configuration Repository in Figure 5).

NetLord assumes that the edge switches support basic
IP forwarding, however, not every Commercial Off-the-Shelf
(COTS) switch [33] does that. The proposed encapsulation im-
plies a higher packet size, which increases drops and fragmen-
tation. Besides, NetLord uses SPAIN for multipath forwarding
operating on a per-flow basis, which is not scalable. Finally,
although the architecture provides isolation among tenants, it
does not support any bandwidth guarantee.

1The description of SPAIN is provided later in the paper

Fig. 6. VICTOR architecture.

D. VICTOR

Cloud tenants have a need to migrate services across data
centers, to balance load within and across data centers, or
to optimize performance of their services. On the other hand,
cloud users want to have fast and efficient delivery of services
and data. One approach that allows to achieve the above
objectives of tenants and users is migration of VMs. To avoid
service interruption, a VM should keep the same IP address
during migration. Although that is not a challenge for migra-
tion within the same IP network, providing migration over
different networks is not straightforward. VICTOR (Virtually
Clustered Open Router) [23] is a network architecture for
supporting migration of VMs across multiple networks that
enables migrating VMs to keep their original IP addresses.
The main idea of VICTOR shown in Figure 6 is to create a

cluster of Forwarding Elements (FE) (L3 devices) that serve
as virtual line cards with multiple virtual ports of a single
virtualized router. Thus, the aggregation of FEs performs
data forwarding for traffic in a network. FEs are distributed
over several networks, which helps to support migration of
VMs across multiple networks. The control plane is supported
by one or several Centralized Controllers (CC). A VM is
deployed on a server connected to only one edge FE. A
CC maintains a topology table that specifies the connectivity

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 915

between FEs, and an address table that determines the connec-
tivity between each VM and a FE, to which a server hosting
the VM is connected. CC calculates the routing path from each
FE to VMs and spreads that information among FEs, which
rely on these routing tables for forwarding packets.
The main limitation of VICTOR is that it requires support-

ing FIBs of large sizes leading to scalability issues concerning
FEs.

E. VL2

VL2 [24] is a data center network architecture that aims at
achieving flexibility in resource allocation. In VL2, all servers
belonging to a tenant (termed “service” in the paper) share a
single addressing space regardless of their physical location
meaning that any server can be assigned to any tenant.
VL2 is based on a non-oversubscribed Clos topology (see

Figure 2) that provides easiness of routing and resilience.
Packets are forwarded using two types of IP addresses:
location-specific addresses (LAs) and application-specific ad-
dresses (AAs) used by switches and servers, respectively. VL2
relies on a directory system for AA-to-LA mappings. Before
sending a packet, a VL2 server encapsulates the packet with
the LA address of the destination ToR switch. Switches are not
aware of AA addressing since they forward packets using LAs
only. At the destination ToR switch, the packet is decapsulated
and delivered to the destination AA server. To exploit path
diversity, VL2 design relies on VLB and ECMP to spread
traffic among multiple paths.
The separation between the addressing spaces of switches

and servers improves the scalability of VL2 since ToR
switches do not have to store forwarding information for
a large number of servers. Furthermore, the VL2 directory
system eliminates the need for ARP and DHCP requests,
which are common sources of broadcast traffic in data centers.
In addition, VLB and ECMP allow for a graceful degradation
of the network after failures.
One limitation of VL2 is the lack of absolute bandwidth

guarantees between servers, which is required by many appli-
cations (e.g., multimedia services). The proposal is also highly
coupled to the underlying (Clos) topology, and requires that
switches implement OSPF, ECMP, and IP-in-IP encapsulation,
which can limit its deployment.

F. PortLand

VM population scalability, efficient VM migration, and easy
management are important characteristics of current and next-
generation data centers. PortLand [25] addresses all these
issues for a multi-rooted fat-tree topology (see Figure 3). In
particular, the architecture proposes an L2 routing mechanism
employing the properties of that topology. It supports plug-
and-pay functionality for L2, which significantly simplifies
administration of a data center network.
The main idea of PortLand is to use a hierarchical Pseudo

MAC (PMAC) addressing of VMs for L2 routing. In particu-
lar, a PMAC has a format of pod.position.port.vmid, where
pod is the pod number of an edge switch, position is its
position in the pod, port is the port number of the switch
the end-host is connected to, and vmid is the ID of a VM

Fig. 7. SEC2 architecture.

deployed on the end host. The fabric manager (a process
running on a dedicated machine) is responsible for helping
with ARP resolution, multicast, and fault tolerance. Using k-
port switches, forwarding table at each switch is limited to
O(k) records due to the properties of a multi-rooted fat-tree
topology. An edge switch, to which a server hosting a VM
is connected, maps an actual MAC (AMAC) of the VM to
PMAC. The position of a switch in the topology may be
set manually by an administrator, or, automatically through
Location Discovery Protocol (LDP) proposed by the authors
that relies on the properties of the underlying topology.
Despite PortLand benefits, there are several issues limiting

the architecture. First, it requires multi-rooted fat-tree topol-
ogy making PortLand inapplicable to other used data center
network topologies. Second, resolving ARP requests by a
single server (i.e., the fabric manager) makes the architecture
vulnerable to malicious attacks on the fabric manager, which
lead to service unavailability if the fabric manager fails to
perform address resolution. Third, each edge switch should
have at least half of its ports connected to servers.

G. SEC2

To ensure wide adoption of cloud computing over data
centers, it is important to provide all tenants with security
guarantees. In particular, one of the important security issues
is isolation of virtual networks dedicated to different tenants.
Although using VLANs may be a potential solution for
supporting isolated networks in a data center, there are several
limitations of VLANs. First, the maximum number of VLANs
is 4K because of the size of the VLAN ID space. Second,
per-user control of security policy is a challenge. Third,
having a large number of VLANs in the same data center
network may induce complexity in network management and
increased control overhead. Secure Elastic Cloud Computing
(SEC2) [28] aims to resolve these drawbacks by separating
packet forwarding and access control.
SEC2 is a data center network architecture that uses network

virtualization techniques to provide secured elastic cloud com-
puting service as shown in Figure 7. Network virtualization is
supported through Forwarding Elements (FEs) and a Central
Controller (CC). FEs are essentially Ethernet switches with the
ability to be controlled from a remote CC that stores address

916 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

mapping and policy databases. FEs perform address mapping,
policy checking and enforcement, and packet forwarding. The
network architecture has two levels: one core domain and
multiple edge domains incorporating physical hosts. An edge
domain is assigned a unique eid, and is connected to the
core domain by one or more FEs. Each customer subnet
has a unique cnet id so that a VM can be identified by
(cnet id, IP). To isolate different customers within each edge
domain, SEC2 uses VLAN with the scope limited within the
same edge domain, thus, eliminating the limitation of the
number of customers that can be supported due to VLAN
ID size. If a customer offers public access to a VM, an FE
forces all external packets to traverse through firewall and
NAT middleboxes before reaching the private network. The
advantage of SEC2 is that it does not require specialized
routers or switches across the entire data center network. In
addition, SEC2 supports VM migration [23] and VPC (Virtual
Private Cloud) service, in which each user private network in
a cloud is connected to its on-site network via Virtual Private
Network (VPN) [34].
One of the limitations of SEC2 is that one edge domain

cannot support VLANs of more than 4K different tenants. In
addition, since FEs add outer MAC header when destination
VM is not within the edge domain, SEC2 requires switches
that support jumbo frames.

H. SPAIN

The current spanning tree protocol (STP) used for large
Ethernet LANs is inefficient for supporting modern data center
networks, since it does not exploit path diversity offered by
data center networks, resulting in limited bi-section bandwidth
and poor reliability [35]. Smart Path Assignment In Networks
(SPAIN) [20] uses the VLAN support in existing commod-
ity Ethernet switches to provide multipathing over arbitrary
topologies.
SPAIN computes disjoint paths between pairs of edge

switches, and pre-configures VLANs to identify these paths.
An end-host agent installed on every host spreads flows across
different paths/VLANs. To improve load balancing and avoid
failures, the agent can change paths for some flows. For
instance, if the traffic is not evenly spread across the paths,
the agent can change the VLANs used by some flows. The
agent also detects failed paths and re-routes packets around
the failures by using a different path.
Whereas SPAIN provides multipathing, and improves load

balancing and fault-tolerance, the proposal has some scalabil-
ity issues. In particular, although path computation algorithm
proposed by SPAIN is executed only when the network
topology is designed or significantly changed, the scheme
is computationally expensive for complicated topologies. In
addition, SPAIN requires that switches store multiple entries
for every destination and VLAN; it creates more pressure
on switch forwarding tables than the standard Ethernet does.
Furthermore, the number of paths is limited to the number of
VLANs allowed by the 802.1q standard (4096) [19]. Finally,
maintaining a mapping table between flows and VLANs leads
to an additional overhead in each end-host.

(a)

(b)
Fig. 8. Abstractions in Oktopus: (a) virtual cluster; (b) virtual oversubscribed
cluster.

I. Oktopus

Although infrastructure providers offer to tenants on-
demand computing resources through allocating VMs in
data centers, they do not support performance guarantees
on network resources to tenants. The mismatch between
the desired and achieved performance by tenants leads to
the following problems. First, variability of network per-
formance induces unpredictable application performance in
data centers making application performance management a
challenge. Second, unpredictable network performance can
decrease application productivity and customer satisfaction,
leading to revenue losses. Oktopus [16] is the implementation
of two virtual network abstractions (virtual cluster and
virtual oversubscribed cluster) for controlling the trade-
off between the performance guarantees offered to tenants,
their costs, and the provider revenue. Oktopus not only in-
creases application performance, but offers better flexibility to
infrastructure providers, and allows tenants to find a balance
between higher application performance and lower cost.
A virtual cluster shown in Figure 8a provides the illusion

of having all VMs connected to a single non-oversubscribed
virtual switch. This is geared towards data-intensive appli-
cations like MapReduce that are characterized by all-to-all
traffic patterns. A virtual oversubscribed cluster illustrated in
Figure 8b emulates an oversubscribed two-tier cluster that
is a set of virtual clusters interconnected via a virtual root
switch-that suits applications featuring local communication
patterns. A tenant can choose the abstraction and the degree
of the oversubscription of the virtual network based on the
communication pattern of the application the tenant plans to
deploy in the VDC (e.g., user-facing web-applications, data
intensive applications). Oktopus uses a greedy algorithm for
the resource allocation to the VDC.
The main limitation of Oktopus is that it works only for

tree-like physical network topologies. Thus, an open question

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 917

Fig. 9. SecondNet architecture.

is how to implement the abstractions of Oktopus for other
topologies.

J. SecondNet

SecondNet [15] focuses on providing bandwidth guarantees
among multiple VMs in a multi-tenant virtualized data center.
In addition to computation and storage, the architecture also
accounts for bandwidth requirements when deploying a VDC.
The main component of the SecondNet architecture shown

in Figure 9 is the VDC manager that creates VDCs based
on a requirement matrix that defines the requested bandwidth
between VM pairs. SecondNet defines three basic service
types: a high priority end-to-end guaranteed service (type 0),
a better than best-effort service (type 1) that offers bandwidth
guarantees for the first/last hops of a path, and a best-
effort service (type 2). SecondNet uses a modified forward-
ing scheme called port-switching source routing (PSSR) that
forwards packets using predefined port numbers instead of
MAC addresses. PSSR improves the scalability of the data
plane as paths are calculated at the source node. In this way,
intermediate switches do not have to make any forwarding
decision.
SecondNet achieves high scalability by moving informa-

tion about bandwidth reservations from switches to server
hypervisors. Besides, SecondNet allows resources (VM and
bandwidth) to be dynamically added to or removed from
VDCs (i.e., elasticity). Using migration, SecondNet is also
able to handle failures and reduce resource fragmentation. In
addition, PSSR can be implemented with Multiprotocol Label
Switching (MPLS) [36], which makes it easily deployable.
The main limitation of SecondNet is that its performance

may depend on the physical topology of a network. For
example, while the BCube [13] network achieves high net-
work utilization, VL2 and fat-tree networks cannot. Further,
SecondNet does not consider other performance characteristics
that can be important to tenants such as latency.

K. Gatekeeper

Rodrigues et al. [26] look at the problem of network
performance isolation formulating the associated requirements

and devising a new scheme meeting those requirements named
Gatekeeper. In particular, the authors argue that a solution for
network performance isolation should be scalable in terms of
the number of VMs, predictable in terms of the network per-
formance, robust against malicious behaviour of tenants, and
flexible concerning the minimum and maximum performance
guarantees.
Gatekeeper focuses on providing guaranteed bandwidth

among VMs in a multiple-tenant data center, and achieving
a high bandwidth utilization. In general, achieving a strict
bandwidth guarantee often implies non effective utilization
of a link bandwidth when free capacity becomes available.
Gatekeeper addresses this issue by defining both the minimum
guaranteed rate and maximum allowed rate for each VM
pair. These parameters can be configured to achieve minimum
bandwidth guarantee, while ensuring that link capacities are
effectively utilized by tenants. Gatekeeper creates one or more
logical switches that interconnect VMs belonging to the same
tenant. The virtual NIC (vNIC) of each receiving VM monitors
the incoming traffic rate using a set of counters, and reports
congestion to the vNIC of the sender that is exceeding its
minimum guarantee by the largest amount. The rate limiter
at the sender uses this information to control its traffic rate
to reduce the level of congestion. Although fault-tolerance
is not discussed in the paper, we believe that fault-tolerance
is easily implementable by Gatekeeper since each vNIC can
simply recalculate the fair share of each flow upon detecting
a failure.
Like many existing schemes, Gatekeeper does not con-

sider other performance metrics such as latency. Besides,
Gatekeeper is still under development: the key features like
dynamic creation and deletion of rate limiters are yet to
be implemented. Furthermore, the scale of the experimental
evaluation is small (with only two tenants and six physical
machines). We believe that a complete implementation and
more realistic experimental evaluation are necessary to truly
evaluate the effectiveness of Gatekeeper in real cloud environ-
ments.

L. CloudNaaS

CloudNaaS [7] is a virtual network architecture that offers
efficient support for deploying and managing enterprise ap-
plications in clouds. In particular, the architecture provides
a set of primitives that suit the requirements of typical
enterprise applications including application-specific address
spaces, middlebox traversal, network broadcasting, VM group-
ing, and bandwidth reservation. Although many other datacen-
ter network virtualization proposals have already addressed
some of these issues (application specific address spaces and
bandwidth reservation), they do not fully address all of the
above issues. Motivated by this observation, CloudNaaS aims
at providing a unified, comprehensive framework for running
enterprise applications in clouds.
CloudNaaS relies on OpenFlow forwarding to achieve the

objectives (e.g., middlebox traversal) mentioned above. An
application deployment in CloudNaaS includes several steps.
First, an end-user specifies the network requirements to the
cloud controller using the primitives defined by a network

918 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

policy language. After the network requirements are translated
into a communication matrix, the cloud controller determines
the placement of VMs and generates network-level rules that
can be installed on switches. Currently, CloudNaaS use a
modified greedy bin-packing heuristic for placing VMs that
takes into consideration communication locality. In addition,
CloudNaaS provides several techniques to reduce the number
of entries required in each switch, which include: (1) using a
single path for best-effort traffic; (2) using limited paths for
QoS traffic based on the number of traffic classes specified
by type-of-service (ToS) bits; and, (3) assigning contiguous
addresses to VMs placed behind the same edge switch, and use
wildcard bits for aggregating IP forwarding entries. Besides,
CloudNaaS also supports online mechanisms for handling
failures and changes in the network policy specification by re-
provisioning the VDCs. Currently, CloudNaaS is implemented
using OpenFlow-enabled switch for forwarding; the end hosts
use Open vSwitch based network stack for forwarding and
compliance with OpenFlow.
One limitation of CloudNaaS is that limiting the traffic to a

few paths may lead to congestion and/or poor network utiliza-
tion. Finding a better trade-off between scalability and network
utilization is still a challenging problem for CloudNaaS.

M. Seawall

Seawall [6] is a bandwidth allocation scheme that allows
infrastructure providers to define how the bandwidth will be
shared in a data center network with multiple tenants. The
idea of Seawall is to assign weights to network entities gen-
erating traffic (e.g., VMs, process), and to allocate bandwidth
according to these weights in a proportional way. Seawall
uses congestion-controlled tunnels between pairs of network
entities to enforce bandwidth sharing policies. A shim layer
implemented as a NDIS (Network Driver Interface Specifica-
tion) packet filter is responsible for intercepting packets and
adapting the rate the sender transmits packets at.
Seawall enforces bandwidth isolation among different ten-

ants, and prevents malicious tenants from consuming all
network resources. Besides, Seawall requires that a physical
machine maintains state information only for its own entities,
which improves scalability. Further, Seawall is agnostic to
the transport protocol used by tenants, the number of flows
used by an entity, and the number of destinations an entity
sends traffic to. In all cases, Seawall shares the bandwidth
proportionally and enforces isolation. Moreover, Seawall al-
lows weights to be dynamically modified to accommodate
changes in tenants requirements. Although Seawall does not
address failures explicitly, it is adaptive to dynamic network
conditions, making it fault-tolerant.
The first Seawall prototype was implemented only on Win-

dows 7 and Hyper-V. Moreover, without admission control,
it is unlikely that Seawall will be able to achieve absolute
bandwidth guarantees for an increasing number of entities.

N. NetShare

NetShare [27] tackles the problem of bandwidth allocation
in virtualized data center networks proposing a statistical
multiplexing mechanism that does not require any changes in

switches or routers. NetShare allocates bandwidth for tenants
in a proportional way and achieves high link utilization for
infrastructure providers. In NetShare, data center network links
are shared among services, applications, or corporate groups,
rather than among individual connections. In this way, one
service/application/group cannot hog the available bandwidth
by opening more connections.
NetShare can be implemented in three possible ways: group

allocation, rate throttling, and centralized allocation. NetShare
uses group allocation to handle TCP flows. Group allocation
uses fair queueing to provide fair bandwidth allocation among
different services and is implemented through Deficit Round
Robin (DDR) [37]. Rate throttling is used to control the traffic
generated by UDP sources and avoid excessive bandwidth
consumption, and is implemented through a shim layer placed
below UDP at each host. The shim layer controls the sending
rate by analyzing the traffic measured at the receiver side and
adjusting the sending rate accordingly. To implement more
general policies, e.g., to allocate unused bandwidth to specific
flows, the scheme uses the centralized bandwidth allocation.
NetShare relies on the routing protocol to handle failures, and
multipath is possible with the use of ECMP.
Scalability of NetShare can be an issue because queues

have to be configured at each switch port for each ser-
vice/application. Moreover, NetShare relies on the specific
features of Fulcrum switches to implement its mechanisms,
which reduces its deployability. In addition, NetShare aims to
achieve fairness in bandwidth allocation, and, thus, does not
provide any absolute bandwidth guarantees to services.

IV. COMPARISON

Whereas the previous section surveys prominent research
proposals and their salient features, this section compares
these proposals using a set of qualitative metrics. In particular,
we evaluate each proposal using the following five criteria:
scalability, fault-tolerance, deployability, QoS support, and
load-balancing. Scalability and fault-tolerance are important
design concerns for data centers comprising large numbers of
servers and network resources, and expected to support a large
number of tenant applications. As data centers typically use
commodity servers and network hardware today, deployability
is a key issue that concerns how much change to the infrastruc-
ture is necessary for implementing a particular architecture.
QoS is an increasing concern of tenants and is important to the
success of virtualized data center architectures. Finally, load-
balancing is an important objective of network operators for
traffic engineering and minimizing congestion in data center
networks. We summarize the results of our comparison in
Tables III-VI. Each table compares the proposals using specific
criteria of a particular feature. In the following subsections,
we will provide detailed discussion of our evaluation of each
performance metric.

A. Scalability

Achieving high scalability in virtualized data centers re-
quires address spaces that support large number of tenants
and their VMs. Furthermore, since todays commodity switches
often have limited memory size, it is necessary to keep the

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 919

TABLE III
QUALITATIVE COMPARISON OF THE FORWARDING SCHEMES

Proposal Scalability Fault-tolerance Deployability QoS Load balancing

Traditional DC Low No High No No

Diverter High Yes High No No

NetLord High No Low No Yes

V ICTOR Low Yes Low No No

V L2 High Yes Low No Yes

PortLand High Yes Low No Yes

SecondNet High Yes High Yes No

SEC2 Low No Low No No

CloudNaaS Low Yes Low Yes No

TABLE IV
QUALITATIVE COMPARISON OF THE PROPOSALS REGARDING MULTIPATHING

Proposal Scalability Fault-tolerance Deployability QoS Load balancing

Traditional DC Low No High No No

SPAIN Low Yes High No Yes

NetLord High No Low No Yes

V L2 High Yes Low No Yes

PortLand High Yes Low No Yes

TABLE V
QUALITATIVE COMPARISON OF THE PROPOSALS REGARDING BANDWIDTH GUARANTEE

Proposal Scalability Fault-tolerance Deployability QoS Load balancing

Oktopus High Yes High Yes No

SecondNet High Yes High Yes No

Gatekeeper High Yes High Yes No

CloudNaaS Low Yes Low Yes No

TABLE VI
QUALITATIVE COMPARISON OF THE PROPOSALS REGARDING RELATIVE BANDWIDTH SHARING

Proposal Scalability Fault-tolerance Deployability QoS Load balancing

Seawall High Yes High No No

NetShare Low Yes Low No Yes

number of forwarding states in each switch at minimum for
achieving high scalability.
Table VII shows the maximum number of tenants, VMs per

tenant, and the size of the forwarding table. The maximum
numbers of tenants and VMs depend mainly on the number
of bits used to identify tenants and VMs. The number of VMs
per tenant depends on the address space supported by IPv4,
which can be extended when using IPv6. Depending on the
forwarding scheme, the size of the forwarding table depends
on the number of VMs, physical machines, switches or pods.
In practise, the number of VMs is higher than the number of

physical machines, which is in turn higher than the number
of switches. We also notice that VICTOR and Portland do not
support multi-tenancy.
Among the architectures surveyed in the paper, Second-

Net, Seawall, and Gatekeeper achieve high scalability by
keeping states at end-hosts (e.g., hypervisors) rather than in
switches. NetLord and VL2 achieve high scalability through
packet encapsulation maintaining the forwarding state only for
switches in the network. Diverter is also scalable, because
its switch forwarding table contains only MAC addresses of
the physical nodes (not those of VMs). On the other hand,

920 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

TABLE VII
SCALABILITY OF THE FORWARDING SCHEMES

Criteria
Proposal

Number of tenants Number of VMs Size of the forwarding
per tenant table per path

Traditional DC 212
(
the number 232 Number of VMs

of VLANs allowed by 802.1q
)

Diverter 2t
(
t is the number of bits 232−t Number of physical machines

used to identify the tenant, t < 32
)

NetLord 224
(
24 bits used for the tenant id

)
232 Number of edge switches

V ICTOR multi-tenancy is not supported 232 Number of VMs

V L2 2t
(
t is the number of bits 232−t Number of edge switches

used to identify the tenant, t < 32
)

PortLand multi-tenancy is not supported 232 Number of pods

SecondNet Unlimited
(
the tenant id is handled 232 Number of neighbours

(
neighbours could be servers or switches

)

by the management server
)

SEC2 212 per edge domain
(
the number 232 Number of VMs

of VLANs allowed by 802.1q
)

CloudNaaS Unlimited
(
the tenant id is handled 232 Number of edge switches

by the management server
)

SPAIN, VICTOR, and CloudNaaS are less scalable because
they require maintaining a per-VM state in each switch-
ing/forwarding element. Although CloudNaaS provides some
optimization for improving scalability, such an optimization
limits path-diversity provided in the network and deteriorates
overall effectiveness of the approach. Further, CloudNaaS is
currently implemented using OpenFlow, and OpenFlow is
known to have scalability issues in large data center due to
use of centralized controllers. SEC2 is not scalable because the
addressing scheme limits the numbers of tenants and subnets
supported in the network. NetShare relies on a centralized
bandwidth allocator, which makes it difficult to scale to large
data centers.

B. Fault-tolerance

In the context of virtualized data centers, fault-tolerance
covers failure handling of components in the data plane (e.g.,
switches and links) and control plane (e.g., lookup systems).
We found that most of the architectures were robust against
failures in data plane components. For instance, SecondNet
uses a spanning tree signalling channel to detect failures, and
its allocation algorithm to handle them. A SPAIN agent can
switch between VLANs in the occurrence of failures, NetLord
relies on SPAIN for fault-tolerance, and VL2 and NetShare
rely on the routing protocols (OSPF). Diverter, VICTOR, and
SEC2 employ the underlying forwarding infrastructure for
failure recovery. Schemes such as Oktopus and CloudNaaS
handle failure by re-computing the bandwidth allocation for
the affected network. Schemes including Seawall and Gate-
keeper can adapt to failures by re-computing the allocated
rates for each flow.
Control plane components in data center network archi-

tectures include centralized lookup systems for resolving
address queries (NetLord, VICTOR, VL2, Portland, SEC2),

centralized flow management technologies (CloudNaaS uses
OpenFlow), spanning tree signalling (SecondNet), and routing
protocols (NetShare and VL2). Failures of these control plane
components can lead to malfunctioning of part or the whole
data center and result in inability to detect failures in the data
plane.

The impact of failures in architectures with control plane
based on spanning tree protocols depends on the time that the
protocol takes to converge after topology changes. Adaptations
in the basic spanning tree protocol such as Rapid Spanning
Tree Protocol (RSTP) [38] can reduce the convergence time.
Similar to STP, failures in instances of routing protocols
such as OSPF require routes recalculation, which may take
a variable time depending on the size of the network and on
the current protocol configuration. However, as shown in [24],
the convergence time of OSPF (less than one second) is not
a prohibitive factor in real data center networks.

OpenFlow, used by CloudNaas, is based on a central-
ized controller that defines the behaviour of OpenFlow-based
switches through a set of rules and associated actions. The
centralized design of the OpenFlow controller makes it prone
to failures and performance bottlenecks. HyperFlow [39] is a
proposal aiming at providing logically centralized but physi-
cally distributed OpenFlow controllers. In HyperFlow, when a
failure occurs in one controller, the switches associated with
the failed controller are reconfigured to communicate with
another available controller.

Distributed lookup systems can be used to minimize the
negative impact of failures in address lookup systems. For
example, VL2 architecture proposes the use of replicated state
machine (RSM) servers to implement a replicated directory
system, which enables reliability without affecting perfor-
mance.

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 921

TABLE VIII
DEPLOYABILITY OF THE FORWARDING SCHEMES

Used features

Proposal
Physical Edge switches Core switches Centralized
machines management

Server

Traditional DC Commodity Commodity Commodity No

Diverter MAC address rewriting Commodity Commodity No

NetLord MACin-IP encapsulation; IP forwarding Commodity Yes
SPAIN

V ICTOR Commodity IP routing IP routing Yes

V L2 Commodity IP-in-IP encapsulation; IP routing; IP routing; Yes
VLB; ECMP VLB; ECMP

MAC address rewriting; forwarding
PortLand Commodity based on MAC address prefixes; ECMP Location Discovery Protocol; Yes

ARP management; Location Discovery Protocol ECMP

SecondNet Commodity MPLS MPLS Yes

SEC2 Commodity MAC-In-MAC encapsulation Commodity Yes

CloudNaaS Commodity IP routing; QoS; forwarding IP routing; QoS; forwarding Yes
based on IP address prefixes based on IP address prefixes

C. Deployability

As mentioned previously, deployability is a key aspect of
any data center network virtualization architecture. In our
comparison summarized in Tables III-VI, we evaluate the
deployability of an architecture as high if the architecture
can be deployed over commodity switches with software
modifications. On the other hand, low deployability refers to
architectures requiring devices with the features that are not
available in every switch (e.g., support L3 forwarding, specific
protocols).
We summarize our detailed comparison with respect to de-

ployability in Table VIII, which describes the required features
to be implemented in hypervisors (on physical machines), edge
switches, and core switches. Commodity switches support
mainly L2 forwarding and VLAN technology whereas Com-
modity hypervisors create only isolated VA forwarding scheme
specifies rules for sending packets by switching elements
from an incoming port to an outgoing port. A FIB allows to
map MAC address to a switch port when making a decision
about packet forwarding.Ms. The table also shows, which
scheme requires a centralized management server. Depending
on the scheme, this server can have different functionalities
such as address management (Portland, VL2), tenants man-
agement (NetLord and VL2), routing computation (VICTOR
and SEC2), and resource allocation (SecondNet).
We can observe that while some surveyed architectures

(SPAIN, Diverter, and Seawall) require change only in the
hypervisor, most of the surveyed architectures require extra
hardware features. In particular, these features include MAC-
in-MAC (SEC2) encapsulation, L3 forwarding (VL2, Net-
Lord), DRR (NetShare), network directory service (NetLord,
VL2, Portland, VICTOR, SEC2), and programmable hardware
(CloudNaaS) that may not be easily supported by commodity

switches. Thus, implementing those architectures can increase
the overall cost of the network. Nevertheless, with hardware
evolution and wide adoption of programmable hardware, it is
not excluded that these technologies become common place
in the near future.
Finally, we would like to mention that data centers managers

tend to deploy commodity equipment, which are cheap and
easily replaceable. Using this equipment is not always a
synonym of lack of scalability. For instance, in the case of
traditional data centers, commodity switches have to store
MAC addresses of all hosted VMs. It induces a scalability is-
sue because commodity switches often have a limited amount
of resources (i.e., size of the FIB table) [22]. However, the
forwarding scheme proposed in NetLord requires commodity
switches to store only MAC addresses of edge switches. The
number of switches being much smaller than the number
of VMs in a data center drastically improves scalability.
In both conventional and NetLord architectures, commodity
switches are used, however, the forwarding scheme makes the
difference, hence there is no scalability problem in NetLord.

D. QoS Support

QoS in virtual networks is achieved by allocating guaran-
teed bandwidth for each virtual link. Oktopus, SecondNet,
Gatekeeper, and CloudNaaS provide guaranteed bandwidth
allocation for each virtual network. On the other hand, Seawall
and NetShare provide weighted fair-sharing of bandwidth
among tenants; however, they do not provide guaranteed
bandwidth allocation meaning that there is no predictable
performance. Whereas the remaining architectures do not
discuss QoS issues, we believe that it is possible to support
QoS in these architectures by properly combining them with

922 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

the ones that support bandwidth guarantee (e.g., incorporating
Oktopus into NetLord).

E. Load-balancing

Load-balancing is a desirable feature for reducing network
congestion while improving network resource availability and
application performance. Among the architectures surveyed
in the paper, SPAIN and NetLord (which relies on SPAIN)
achieve load-balancing by distributing traffic among multi-
ple spanning trees. To achieve load balancing and realize
multipathing, Portland and VL2 rely on ECMP and VLB.
Lastly, Diverter, VICTOR, and SEC2 are essentially address-
ing schemes that do not explicitly address load-balancing.

F. Summary

Our comparison of different proposed architectures reveal
several observations. First, there is no ideal solution for all
the issues that should be addressed in the context of data
center network virtualization. This is mainly because each
architecture tries to focus on a particular aspect of data center
virtualization. On the other hand, we believe that it is possible
to combine the key features of some of the architectures to
take advantage of their respective benefits. For example, it is
possible to combine VICTOR and Oktopus to deploy virtu-
alized data center with bandwidth guarantees while providing
efficient support for VM migration. Second, finding the best
architecture (or combination) requires a careful understanding
of the performance requirements of the applications residing
in the data centers. Thus, the issues discussed in this section
require further research efforts in the context of different cloud
environments.

V. FUTURE RESEARCH DIRECTIONS

In this section, we discuss some of the key directions for
future explorations regarding data center network virtualiza-
tion.

A. Virtualized Edge Data Centers

Most of the existing studies so far on data center network
virtualization have been focusing on large data centers con-
taining several thousands of machines. Although large data
centers enjoy economy-of-scale and high manageability due
to their centralized nature, they have their inherent limitations
when it comes to service hosting. In particular, economics
factors dictate that there will be only a handful of large data
centers built in locations where construction and operational
(e.g. energy) costs are low [40]. As a result, these data
centers may be located far away from end users, resulting in
higher communication cost and potentially sub-optimal service
quality in terms of delay, jitter and throughput.
Motivated by this observation, recent proposals such as

mist [41], EdgeCloud [42], micro-data centers [43], nano-
data centers [44] have been put forward to advocate building
small-scale data centers for service hosting at the network
edge (e.g. access networks), where services can be hosted
close to the end users. In this paper we adopt the terminology
of edge data centers to refer to small data centers located

at network edge. While not as cost-efficient as large data
centers, edge data centers offer several key benefits compared
to large remote data centers [43]: (1) They can offer better
QoS for delay-sensitive applications such as video streaming,
online gaming, web telephony and conferencing. (2) They can
reduce network communication cost by reducing the traffic
routed across network providers. (3) The construction cost
of edge data centers is lower compared to large remote data
centers. In fact, many existing telecommunication and Internet
Service Providers (ISP) are willing to leverage their existing
infrastructure to provide value-added services using edge data
centers [45]. Therefore, it is envisioned that future cloud
infrastructures will be multi-tiered, where edge data centers
will complement remote data centers in providing high quality
online services at low cost.
Similar to large data centers, virtualization is required in

edge data centers for supporting VDCs from multiple tenants
with diverse performance objectives and management goals.
However, virtualizing edge data centers also imposes several
new research challenges:

• For a service provider, one fundamental problem is
how to best divide the service infrastructure between
remote and edge centers to achieve the optimal tradeoff
between performance and operational cost? This problem
is commonly known as the service placement problem
[46]. Finding a solution to this problem is essential for
service providers to use edge data center-based service
architectures. This problem shares many similarities with
the traditional replica placement problem [47]. However,
existing solutions have not studied the dynamic case,
where demand and system conditions (e.g. resource price
and network conditions) can change over time. In this
case, if the placement configuration needs to be changed,
it is also necessary to consider the cost of reconfiguration
(such as VM migration) in the optimization model.

• How to efficiently manage services hosted in multiple
data centers? As there can be a large number of edge
data centers, monitoring and controlling resources in such
a large infrastructure have inherent challenges and can
potentially incur a significant overhead. Minimizing this
management overhead is a major issue worth investiga-
tion.

We believe addressing the above research challenges will be
crucial to the success of multi-tiered cloud infrastructures.

B. Virtual data center embedding

Accommodating a high number of VDCs depends on a
efficient mapping of virtual resources to physical ones. This
problem is commonly referred to as embedding and has been
the subject of extensive research in the context of network
virtualization [48]–[51]. Data center architectures like Second-
Net [15] and Oktopus [16] have proposed heuristics to cope
with the NP-hardness of the embedding problem. However,
there are several other issues concerning the design of virtual
data center embedding algorithms:

• In a virtualized data center, there are other resources
besides physical servers that can be virtualized. They
include routers, switches, storage devices, and security

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 923

systems. Existing embedding solutions for data centers
have only focused on achieving the optimal VM embed-
ding to satisfy bandwidth and processing requirements.
We believe the embedding algorithms for VDCs should
consider requirements for other resources as well.

• Resource demand for data center applications can change
over time, which means that embedding of VDCs is
also subject to change. Designing a VDC re-embedding
algorithm that considers reconfiguration cost of VMs (e.g.
migration cost) and virtual topologies is still an open
research problem.

• Energy consumption is a big concern in data centers since
it accounts for a significant amount of the data center
operational costs. Carey reports [52] that according to
the Environmental Protection Agency (EPA) data centers
consumed about 3% of the US total electricity use in
2001. Moreover, estimated energy consumption of data
center servers was about 2% of the world’s electricity.
According to [53], computing equipment of a typical
5000-square-foot data center, which includes processors,
server power supplies, other server components, storage
and communication equipment, consumes 52% of the
total DC energy usage; supply systems consisting of the
UPS (uninterruptible power supply), power distribution,
cooling, lighting, and building switchgear consume 48%.
Greenberg et al. [54] report that a network of a data center
consumes 10-20% of its total power. Designing “green”
virtual data center embedding algorithms that take into
account energy consumption will help administrators to
reduce costs and comply with the new environmental
concerns. In particular, network virtualization helps in
reducing energy consumption through decreasing the
number of physical routers/switches that need to be active
by consolidating a large number of virtual resources on
a smaller number of physical ones. However, despite
recent effort on designing energy-aware data center net-
works [55], none of the existing embedding algorithms
has considered energy cost. The main challenge in re-
ducing energy consumption is how to jointly optimize
the placement of both VMs and VNs for saving energy.

• Fault-tolerance is another major concern in virtualized
data centers. The failure of a physical link can cause
disruption to multiple VDCs that share the link. In order
to minimize the application performance penalty due to
failures, it is necessary for the tenants to find embeddings
that are fault tolerant. Existing work on survivable virtual
network embedding [56] represents an initial step towards
this direction.

• Finally, some tenants may wish to deploy VDCs across
data centers from multiple geographical regions. This
raises the problem of embedding VDCs across multiple
administrative domains. In this context, devising a frame-
work that finds an efficient embedding without sacrific-
ing the autonomy of individual infrastructure providers
becomes a challenging problem. Recent work such as
Polyvine [57] represents an initial effort for tackling this
problem.

Finally, the problem of VDC embedding also raises the
question of finding ideal data center physical topologies for
VDC embedding. Even though the proposed data center ar-
chitectures have relied on different network topologies such
as Fat-Tree and Clos, it is unclear which topology is best
suited for VDC embedding. For example, it has been reported
that the SecondNet embedding scheme achieves high server
and network utilization for a BCube topology [15] than for a
fat-tree topology. Thus, we believe it is important to analyze
the effect of VDC embedding on the design of physical data
center network topologies.

C. Programmability

Network programming is motivated by the desire to increase
flexibility and innovation by decomposing network functions
to facilitate the introduction of new protocols, services, and
architectures. Simply stated, network programmability can be
defined as the ability to run third party code on a network
device (e.g., a router) in both the control plane and the
data plane. Network programmability has recently received
renewed attention in the research community. In particular,
the concept of software defined networking (SDN) aims at
providing a simple API for programming network control
plane. Network programmability benefits from virtualization
techniques regardless of the context considered (i.e., ISP
network or DC). For example, running a customized code
on a virtual node not only has no effect on other virtual
nodes of the network (thanks to isolation), but also does
not cause disruption in the physical substrate, which was
a major concern for the adoption of network programma-
bility. In the context of virtualized data centers, network
programmability provides a modular interface for separating
physical topologies from virtual topologies, allowing each of
them to be managed and evolved independently. As we have
already seen, many architectural proposals surveyed in the
paper are relying on network programming technologies such
as Openflow. However, in the context of virtualized multi-
tenant data centers, network programmability needs to address
a number of research challenges:

• Current data center network architecture proposals only
allow for controlling layer 2 and layer 3 protocols. This
design mandates the use of the same layer 2 and layer
3 protocols (e.g. IPv4 and Ethernet) by all tenants. Pro-
viding programming APIs for virtualization at different
layers of the network stack will add significant flexibility
to data center networks.

• While programmable networking technologies offer
management flexibilities to tenants and infrastructure
providers, they also open up opportunities for mali-
cious tenants to misuse the infrastructure. Infrastructure
providers need to determine how to provide access and
how much control to delegate to tenants so that, the
tenants get a satisfactory level of flexibility in-terms of
programming the network devices while ensuring safe
and secured co-existence of multiple tenants.

• Network vendors may offer non-standard, proprietary
programming APIs. An interesting research challenge is
to understand the impact of building a data center net-
work infrastructure from heterogeneous equipments with

924 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

different hardware level APIs. Introducing heterogene-
ity has both advantages and disadvantages. The major
disadvantage is the administrative overhead introduced
by the divergent interfaces, while the advantage is that
some vendor-specific features may be desirable in certain
situations.

Currently, OpenFlow [58] and its virtualization layer
FlowVisor [59] are the most prominently proposed tech-
nologies for achieving programmability in data center net-
works. OpenFlow is an abstraction layer that allows users
to define the behaviour of networking switches by using
special components called controllers. FlowVisor [59] is a
network virtualization layer that allows multiple controllers
(one controller per tenant) to share a single OpenFlow switch.
Recent research efforts have been carried to deploy OpenFlow
in data center networks [39], [60], [61]. One of the limitations
of OpenFlow is scalability. Currently, OpenFlow adopts a
centralized architecture where a single controller is responsible
for managing all OpenFlow-enabled switches in the network.
Since a large data center network typically serves million of
flows simultaneously, an OpenFlow switch may become a
performance bottleneck. There are some proposals that aim
to overcome this issue. In particular, DevoFlow [61] controls
only over a subset of the flows (i.e., long lived ”elephant”
flows), and HyperFlow [39] uses distributed controllers with
a unified logical view. Similarly, the scalability of FlowVisor
is also a subject needing further investigation, given the large
number of tenants involved in a virtualized data center. A
possible avenue for improving FlowVisor scalability is to
determine the optimal number and placement of FlowVisor
instances in a programmable data center network. Finally,
other programmable platforms (e.g., active networks, mobile
agents, and Script MIB) could also be evaluated in the context
of virtualized data center networks.

D. Network performance guarantees

Commercial data centers today are home to a vast number
of applications with diverse performance requirements. For
example, user-facing applications, such as web servers and
real-time (e.g. gaming) applications, often require low commu-
nication latency, whereas data-intensive applications, such as
MapReduce jobs, typically desire high network throughput. In
this context, it is a challenging problem to design scalable yet
flexible data center networks for supporting diverse network
performance objectives. Data center network virtualization is
capable of overcoming these challenges by dividing a data
center network into multiple logical networks that can be
provisioned independently to achieve desired performance
objectives. For instance, many proposed architectures, such
as SecondNet and Oktopus, proposed mechanisms to allocate
guaranteed bandwidth to each virtual data center. However,
providing strict bandwidth guarantee can lead to low utiliza-
tion if tenants do not fully utilize the allocated bandwidth.
On the other hand, weighted fair-sharing based solutions,
such as Seawall and Gatekeeper, are capable of achieving
high resource utilization. However, they do not provide hard
resource guarantees to each virtual data center. There is
an inherent conflict between maximizing network utilization

and providing guaranteed network performance. Designing
a bandwidth allocation scheme that finds a good trade-off
between these two objectives is a key research problem in
virtualized data center environments.
On the other hand, existing work on data center network

virtualization has been primarily focusing on bandwidth al-
location for achieving predictable throughputs. The issue of
providing guaranteed delay is still an open problem, as it not
only requires isolated bandwidth allocation, but also effective
rate control mechanisms. For example, S3 [62] is a flow
control mechanism that aims to meet flow deadlines. One
particular challenge in data center environment is the TCP
incast collapse problem [63], where simultaneous arrival of
packets from a large number of short flows can overflow the
buffer in network switches, resulting in significant increase
in network delay. We believe any solution that provides delay
guarantees in data center networks must also have the capabil-
ity of handling TCP incast collapse. We believe the problem
of providing delay guarantee in multi-tenant environments still
needs further investigation.

E. Data center management

In a virtualized data center environment, infrastructure
providers are responsible for managing the physical resources
of the data center while service providers manage the virtual
resources (e.g. computing, storage, network, I/O) allocated to
their virtual data centers. An important advantage of virtual-
ized data centers is that the physical resources are managed by
a single infrastructure provider. This allows the infrastructure
provider to have a full view of the system thus facilitating
efficient resource allocation and handling of failures. However,
there are still several challenges that need to be addressed in
virtualized data centers including:

• Monitoring is a challenging task due to the large num-
ber of resources in production data centers. Centralized
monitoring approaches suffer from low scalability and re-
silience. Cooperative monitoring [64] and gossipping [65]
aim to overcome these limitations by enabling distributed
and robust monitoring solutions for large scale envi-
ronments. A key concern is to minimize the negative
impact of management traffic on the performance of the
network. At the same time, finding a scalable solution
for aggregating relevant monitoring information without
hurting accuracy is a challenge that needs to be tackled
by monitoring tools designed for data centers. Lastly,
providing customized and isolated views for individual
service providers and defining the interplay between the
monitoring systems of the Infrastructure providers and
service providers also require further exploration.

• Efficient energy management is crucial for reducing the
operational cost of a data center. One of the main
challenges towards optimal energy consumption is to de-
sign energy-proportional data center architectures, where
energy consumption is determined by server and network
utilization [55], [66]. ElasticTree [55], for example, at-
tempts to achieve energy proportionality by dynamically
powering off switches and links. In this respect, data
center network virtualization can further contribute to

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 925

reducing power consumption though network consolida-
tion (e.g. through virtual network migration [67]). How-
ever, minimizing energy consumption can come at the
price of VDC performance degradation. Thus, designing
energy-proportional data center architectures factoring
in network virtualization, and finding good tradeoffs
between energy consumption and VDC performance are
interesting research questions.

• Detection and handling of failures are fundamental re-
quirements of any data center architecture because fail-
ures of a physical resource can potentially affect multiple
service providers. Most existing architectures rely on
reactive failure handing approaches. Their main draw-
back is the potentially long response time, which can
negatively impact application performance. Ideally, fault
management should be implemented in a proactive man-
ner, where the system predicts the occurrence of failures
and acts before they occur. In practise, proactive fault
management is often ensured by means of redundancy,
e.g., provisioning backup paths. Offering high reliability
without incurring excessive costs is an interesting prob-
lem for future exploration.

F. Security

Security has always been an important issue of any network
architecture. The issue is exacerbated in the context of virtual-
ized data centers due to complex interactions between tenants
and infrastructure providers, and among tenants themselves.
Although the virtualization of both servers and data center
networks can address some of the security challenges such as
limiting information leakage, the existence of side channels
and performance interference attacks, today’s virtualization
technologies are still far from being mature. In particular,
various vulnerabilities in server virtualization technologies
such as VMWare [68], Xen [69], and Microsoft Virtual PC and
Virtual Server [70] have been revealed in the literature. Similar
vulnerabilities are likely to occur in programmable network
components as well. Thus, not only do network virtualization
techniques give no guaranteed protection from existing attacks
and threats to physical and virtual networks, but also lead to
new security vulnerabilities. For example, an attack against a
VM may lead to an attack against a hypervisor of a physical
server hosting the VM, subsequent attacks against other VMs
hosted on that server, and eventually, all virtual networks
sharing that server [71]. This raises the issue of designing
secure virtualization architectures immune to these security
vulnerabilities.
In addition to mitigating security vulnerabilities related to

virtualization technologies, there is a need to provide monitor-
ing and auditing infrastructures, in order to detect malicious
activities from both tenants and infrastructure providers. It
is known that data center network traffic exhibits different
characteristics than the traffic in traditional data networks
[72]. Thus, appropriate mechanisms may be required to detect
network anomalies in virtualized data center networks. On the
other hand, auditability in virtualized data centers should be
mutual between tenants and infrastructure providers to prevent
malicious behaviors from either party. However, there is often

an overhead associated with such infrastructures especially in
large-scale data centers. In [73], the authors showed that it is
a challenge to audit web services in cloud computing envi-
ronments without deteriorating application performance. We
expect the problem to be further exacerbated when extending
to network activities in a VDC. Much work remains to be done
on designing scalable and efficient mechanisms for monitoring
and auditing virtualized data centers.
Finally, in a multi-tenant data center environment, different

tenants may desire different levels of security. This introduces
the additional complexity of managing heterogeneous security
mechanisms and policies. Furthermore, the co-existence and
interaction of multiple security systems expected in a multi-
tenant data center is an issue that has not been addressed
before. For example, potential conflicts between firewalls and
intrusion detection systems policies of infrastructure providers
and service providers, need to be detected and solved [74].

G. Pricing

Pricing is an important issue in multi-tenant data center
environments, not only because it directly affects the income
of the infrastructure provider, but also because it provides
incentives for tenants to behave in ways that lead to desired
outcomes, such as maximum resource utilization and appli-
cation performance [1]. Generally speaking, a well-designed
pricing scheme should be both fair and efficient. Fairness
means that identical good should be sold at identical price.
Efficiency means the price of the good should lead to efficient
outcomes (e.g. matching supply and demand). Today, infras-
tructure providers promise to provide resources to tenants in
an on-demand manner, and charge tenants flat-rates for both
VM and network usage. Despite being fair, this simple pricing
scheme still suffers from several drawbacks. First, the cost of
VMs and network for a single tenant can be dependent on each
other. For example, poor network performance can prolong the
running time of tenant jobs, resulting in increased VM usage
cost [75]. Data center network virtualization can address this
problem by allocating guaranteed bandwidth for each VM
[16]. For virtual data centers with best-effort connectivity,
the recent proposal of dominant resource pricing (DRP) [75]
seems to be a promising solution to eliminate the dependency
between VM and network usage.
The second drawback of current data center pricing schemes

is that they do not provide incentives for tenants to achieve
desired outcomes. In particular, they do not (1) encourage
purchase of resources when demand is low, and (2) suppress
excessive demand (while giving priorities to important ap-
plications) when demand is high. A promising solution to
this problem is to use market-driven pricing schemes, where
resource price fluctuates according to supply and demand. In
this perspective, Amazon EC2 spot instance service represents
the first commercial endeavour towards fully market-driven
pricing schemes. Similar techniques can also be used for
virtualized data center networks, where resources prices for
different service classes (e.g. guaranteed bandwidth, best-
effort) vary according to resource demand. However, designing
a market-driven resource allocation scheme that allocates mul-
tiple resource types (e.g. VMs and bandwidth) with different
service quality guarantees is still a challenging problem.

926 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

While the discussion so far has been focusing on pricing re-
sources inside data centers, the case for pricing cloud resources
outside data centers is also a challenging one. In particular,
when a tenant wishes to deploy a virtual data center across
multiple data centers, it is necessary to develop mechanisms
not only to help tenants decide appropriate embedding of
VDCs across multiple networks, but also to allow both the
tenant and infrastructure providers to negotiate for service
quality and pricing schemes. Existing work such as V-mart
[76] represents initial efforts in this direction.

VI. CONCLUSION

Data centers have become a cost-effective infrastructure
for data storage and hosting large-scale network applications.
However, traditional data center network architectures are
ill-suited for future multi-tenant data center environments.
Virtualization is a promising technology for designing scalable
and easily deployable data centers that flexibly meet the
needs of tenant applications while reducing infrastructure
cost, improving management flexibility, and decreasing energy
consumption.
In this paper, we surveyed the state of the art in data center

network virtualization research. We discussed the proposed
schemes from different perspectives, highlighting the trends
researchers have been following when designing these archi-
tectures. We also identified some of the key research directions
in data center network virtualization and discussed potential
approaches for pursuing them.
Although current proposals improve scalability, provide

mechanisms for load balancing, ensure bandwidth guarantees,
there are challenging and important issues that are yet to
be explored. Designing smart-edge networks, providing strict
performance guarantees, devising effective business and pric-
ing models, ensuring security and programmability, supporting
multi-tiered and multi-sited data center infrastructures, im-
plementing flexible provisioning and management interfaces
between tenants and providers, and developing efficient tools
for managing virtualized data centers are important directions
for future research.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[2] D. Carr, “How Google Works,” July 2006.
[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Proc. USENIX OSDI, December 2004.
[4] WMware. http://www.vmware.com.
[5] Xen. http://xen.org.
[6] A. Shieh, S. Kandulaz, A. Greenberg, C. Kim, and B. Saha, “Sharing

the Data Center Network,” in Proc. USENIX NSDI, March 2011.
[7] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A Cloud

Networking Platform for Enterprise Applications,” in Proc. ACM SOCC,
June 2011.

[8] M. Chowdhury and R. Boutaba, “A Survey of Network Virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[9] “Data Center: Load Balancing Data Center Services SRND,” 2004.
[10] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., 2004.
[11] C. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient

Supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901,
1985.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. ACM SIGCOMM, August
2008.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. ACM SIGCOMM,
August 2009.

[14] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and I. Stoica,
“A Cost Comparison of Datacenter Network Architectures,” in Proc.
ACM CoNext, November 2010.

[15] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: A Data Center Network Virtualization Architec-
ture with Bandwidth Guarantees,” in Proc. ACM CoNEXT, December
2010.

[16] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
Predictable Datacenter Networks,” in Proc. ACM SIGCOMM, August
2011.

[17] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, 2004.

[18] Q. Zhang, M. F. Zhani, Q. Zhu, S. Zhang, R. Boutaba, and J. Hellerstein,
“Dynamic Energy-Aware Capacity Provisioning for Cloud Computing
Environments,” in Proc. IEEE/ACM International Conference on Auto-
nomic Computing (ICAC), September 2012.

[19] “IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks,” IEEE Std 802.1Q-2005, May 2006.

[20] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul,
“SPAIN:COTS Data-Center Ethernet for Multipathing over Arbitrary
Topologies,” in Proc. ACM USENIX NSDI, April 2010.

[21] A. Edwards, F. A, and A. Lain, “Diverter: A New Approach to
Networking Within Virtualized Infrastructures,” in Proc. ACM WREN,
August 2009.

[22] J. Mudigonda, P. Yalagandula, B. Stiekes, and Y. Pouffary, “NetLord:
A Scalable Multi-Tenant Network Architecture for Virtualized Datacen-
ters,” in Proc. ACM SIGCOMM, August 2011.

[23] F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Enhancing Dynamic
Cloud-based Services using Network Virtualization,” in Proc. ACM
VISA, August 2009.

[24] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. ACM SIGCOMM, August 2009.

[25] R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable
Fault-Tolerant Layer 2 Data Center Network Fabric,” in Proc. ACM
SIGCOMM, August 2009.

[26] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter
Networks,” in Proc. WIOV, June 2011.

[27] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, “NetShare:
Virtualizing Data Center Networks across Services,” Technical Report
CS2010-0957, May 2010.

[28] F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Secure Cloud
Computing with a Virtualized Network Infrastructure,” in Proc. USENIX
HotCloud, June 2010.

[29] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” IETF
RFC 2992, November 2000.

[30] R. Zhang-Shen and N. McKeown, “Designing a Predictable Internet
Backbone Network,” in Proc. ACM HotNets, November 2004.

[31] , “Designing a Predictable Internet Backbone with Valiant Load-
Balancing,” in Proc. IWQoS, June 2005.

[32] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”
Computer, vol. 42, no. 1, pp. 15–20, January 2009.

[33] http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps6545/
product data sheet0900aecd80322aeb.html.

[34] E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private Networks
(VPNs),” IETF RFC 4364, February 2006.

[35] R. Perlman, “An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN,” ACM Computer Communication Review,
vol. 15, no. 4, pp. 44–53, September 1985.

[36] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture,” IETF RFC 3031, January 2001.

[37] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit
Round-Robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385,
1996.

[38] “IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan
Area Networks, Media Access Control (MAC) Bridges.” 2004.

[39] A. Tootoonchian and Y. Ganjalir, “HyperFlow: a Distributed Control
Plane for OpenFlow,” in Proc. NSDI INM/WREN, April 2010.

[40] Í. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini, “Intelligent
Placement of Datacenters for Internet Services,” in Proc. IEEE ICDCS,
June 2011.

BARI et al.: DATA CENTER NETWORK VIRTUALIZATION: A SURVEY 927

[41] B. Ahlgren, P. Aranda, P. Chemouil, S. Oueslati, L. Correia, H. Karl,
M. Söllner, and A. Welin, “Content, Connectivity, and Cloud: Ingre-
dients for the Network of the Future,” IEEE Commun. Mag., vol. 49,
no. 7, pp. 62–70, July 2011.

[42] S. Islam and J.-C. Gregoire, “Network Edge Intelligence for the Emerg-
ing Next-Generation Internet,” Future Internet, vol. 2, no. 4, pp. 603–
623, December 2010.

[43] k. Church, A. Greenberg, and J. Hamilton, “On Delivering Embarrass-
ingly Distributed Cloud Services,” in Proc. ACM HotNets, October 2008.

[44] V. Valancius, N. Laoutaris, C. Diot, P. Rodriguez, and L. Massoulié,
“Greening the Internet with Nano Data Centers,” in Proc. ACM
CoNEXT, December 2009.

[45] M. B. Mobley, T. Stuart, and Y. Andrew, “Next-Generation Managed
Services: A Window of Opportunity for Service Providers,” CISCO
Technical Report, 2009.

[46] D. Oppenheimer, B. Chun, D. Patterson, A. Snoeren, and A. Vahdat,
“Service Placement in a Shared Wide-Area Platform,” in Proc. USENIX
ATEC, June 2006.

[47] L. Qiu, V. Padmanabhan, and G. Voelker, “On the Placement of Web
Server Replicas,” in Proc. IEEE INFOCOM, April 2001.

[48] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” ACM
Computer Communication Review, vol. 38, no. 2, pp. 17–29, April 2008.

[49] M. Chowdhury, M. Rahman, and R. Boutaba, “Virtual Network Embed-
ding with Coordinated Node and Link Mapping,” in Proc. INFOCOM,
April 2009.

[50] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable Virtual Network
Embedding,” in Proc. IFIP Networking, May 2010.

[51] N. F. Butt, N. M. M. K. Chowdhury, and R. Boutaba, “Topology-
Awareness and Reoptimization Mechanism for Virtual Network Em-
bedding,” in Proc. IFIP Networking, May 2010.

[52] Energy Efficiency and Sustainability of Data Centers.
http://www.sigmetrics.org/sigmetrics2011/greenmetrics/
Carey GreenMetricsKeynote060711.pdf.

[53] Energy Logic: Reducing Data Center Energy Consumption by Creating
Savings that Cascade Across Systems.
http://www.cisco.com/web/partners/downloads/765/other/
Energy Logic Reducing Data Center Energy Consumption.pdf.

[54] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The Cost of a
Cloud: Research Problems in Data Center Networks,” ACM Computer
Communication Review, vol. 39, no. 1, pp. 68–73, 2009.

[55] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks,” in Proc. USENIX NSDI, April 2010.

[56] M. Rahman, I. Aib, and R. Boutaba, “Survivable Virtual Network
Embedding,” NETWORKING 2010, pp. 40–52, 2010.

[57] M. Chowdhury and R. Boutaba, “PolyViNE,” in Proc. ACM VISA,
August 2010.

[58] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, April 2008.

[59] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the Production Network Be the Test-bed?”
in Proc. USENIX OSDI, October 2010.

[60] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. ACM HotNets, August 2009.

[61] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjeer, “DevoFlow: Scaling Flow Management for High-
Performance Network,” in Proc. ACM SIGCOMM, August 2011.

[62] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than Late: Meeting Deadlines in Datacenter Networks,” in Proc. ACM
SIGCOMM, August 2011.

[63] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Congestion
Control for TCP,” in Proc. ACM CoNEXT, November 2010.

[64] K. Xu and F. Wang, “Cooperative Monitoring for Internet Data Centers,”
in Proc. IEEE IPCCC, December 2008.

[65] F. Wuhib, M. Dam, R. Stadler, and A. Clemm, “Robust Monitoring
of Network-wide Aggregates through Gossiping,” IEEE Trans. Network
Service Management, vol. 6, no. 2, pp. 95–109, 2009.

[66] H. Yuan, C. C. J. Kuo, and I. Ahmad, “Energy Efficiency in Data
Centers and Cloud-based Multimedia Services: An Overview and Future
Directions,” in Proc. IGCC, August 2010.

[67] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford, “Virtual Routers on the Move: Live Router Migration as a
Network-Management Primitive,” ACM Computer Communication Re-
view, vol. 38, pp. 231–242, August 2008.

[68] VMWare vulnerability.
http://securitytracker.com/alerts/2008/Feb/1019493.html.

[69] Xen vulnerability.
http://secunia.com/advisories/26986.

[70] Virtual PC vulnerability.
http://technet.microsoft.com/en-us/security/bulletin/MS07-049.

[71] J. Szefer, E. Keller, R. Lee, and J. Rexford, “Eliminating the Hypervisor
Attack Surface for a More Secure Cloud,” in Proc. ACM CSS, October
2011.

[72] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” ACM SIGCOMM Computer Communi-
cation Review, vol. 40, no. 1, pp. 92–99, 2010.

[73] A. Chukavkin and G. Peterson, “Logging in the Age of Web Services,”
IEEE Security and Privacy, vol. 7, no. 3, pp. 82–85, June 2009.

[74] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict Classifi-
cation and Analysis of Distributed Firewall Policies,” IEEE J. Sel. Areas
Commun., vol. 23, no. 10, pp. 2069–2084, 2005.

[75] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “The Price Is
Right: Towards Location-Independent Costs in Datacenters,” 2011.

[76] F.-E. Zaheer, J. Xiao, and R. Boutaba, “Multi-Provider Service Nego-
tiation and Contracting in Network Virtualization,” in Proc. IEEE/IFIP
NOMS, April 2010.

Md. Faizul Bari is a Ph.D. student at the School
of Computer Science at the University of Waterloo.
He received M.Sc. and B.Sc. degrees in Computer
Science and Engineering from Bangladesh Univer-
sity of Engineering and Technology (BUET) in 2009
and 2007, respectively. He has served as a reviewer
for many international conferences and journals. His
research interests include future Internet architec-
ture, network virtualization, and cloud computing.
He is the recipient of the Ontario Graduate Schol-
arship, Presidents Graduate Scholarship, and David

R. Cheriton Graduate Scholarship at University of Waterloo. He also received
Merit Scholarship and Dean’s award at BUET.

Raouf Boutaba received the M.Sc. and Ph.D.
degrees in computer science from the University
Pierre & Marie Curie, Paris, in 1990 and 1994,
respectively. He is currently a professor of com-
puter science at the University of Waterloo and a
distinguished visiting professor at the division of IT
convergence engineering at POSTECH. His research
interests include network, resource and service man-
agement in wired and wireless networks. He is the
founding editor in chief of the IEEE Trans. Network
and Service Management (2007-2010) and on the

editorial boards of other journals. He has received several best paper awards
and other recognitions such as the Premiers Research Excellence Award, the
IEEE Hal Sobol Award in 2007, the Fred W. Ellersick Prize in 2008, and the
Joe LociCero and the Dan Stokesbury awards in 2009. He is a fellow of the
IEEE.

Rafael Pereira Esteves is a Ph.D. student in com-
puter science at the Institute of Informatics of the
Federal University of Rio Grande do Sul (UFRGS),
Brazil. He received his M.Sc. (2009) and B.Sc.
(2007) degrees from the Department of Informatics
of the Federal University of Pará, Brazil. From May
2011 to April 2012 he was a visiting student at the
David R. Cheriton School of Computer Science of
the University of Waterloo, Canada, with the Net-
work and Distributed Systems Group. His research
interests include network management, network vir-

tualization, cloud computing, and Future Internet.

928 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

Lisandro Zambenedetti Granville received the
MSc and PhD degrees in computer science from
the Institute of Informatics (INF) of the Federal
University of Rio Grande do Sul (UFRGS), Brazil,
in 1998 and 2001, respectively. Currently, he is a
professor at INF-UFRGS. Lisandro is co-chair of the
Network Management Research Group (NMRG) of
the Internet Research Task Force (IRTF) and vice-
chair of the Committee on Network Operations and
Management (CNOM) of the IEEE Communications
Society (COMSOC). He was also technical program

committee co-chair of the 12th IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2010) and 18th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM 2007). His
research interests include network and services management, software defined
network, network virtualization, and information visualization.

Maxim Podlesny received degrees of Bachelor of
Science and Master of Science in Applied Physics
and Mathematics from Moscow Institute of Physics
and Technology, Russia in 2000 and 2002 respec-
tively and the degree of Ph.D. in Computer Science
from Washington University in St. Louis, USA in
2009. Dr. Podlesny currently works as a Postdoctoral
Fellow at the University of Waterloo, Canada. His
work has appeared in top conferences and journals
such as ACM SIGCOMM, IEEE INFOCOM, IEEE
Journal on Selected Areas in Communications, and

ACM Computer Communication Review. His research interests are network
congestion control, service differentiation, Quality-of-Service, transport pro-
tocols, data centers, and network virtualization.

Md Golam Rabbani received the B.Sc. de-
gree in Computer Science and Engineering from
Bangladesh University of Engineering and Technol-
ogy, Dhaka, Bangladesh, in 2007, and the Master
of Information Technology degree from Monash
University, Australia, in 2011. He worked as a
system engineer in a telecommunication company
from 2007 to 2009. He is currently pursuing his
M.Math. degree in Computer Science at University
of Waterloo, under the supervision of Prof. Raouf
Boutaba. His research interests include data center,

cloud computing, future Internet architecture, and wireless communication.

Qi Zhang received his B. A. Sc. and M. Sc.
from University of Ottawa (Canada) and Queen’s
University (Canada), respectively. He is currently
pursuing a Ph. D. degree in Computer Science from
University of Waterloo. His current research focuses
on resource management for cloud computing sys-
tems. He is also interested in related areas including
network virtualization and management.

Mohamed Faten Zhani received Engineering and
M.S. degrees from the National school of computer
science, Tunisia in 2003 and 2005, respectively.
Then he received his PhD from the University of
Quebec In Montreal, Canada in 2011. Since then, he
has been a postdoctoral research fellow at the Uni-
versity of Waterloo (Ontario, Canada). His research
interests are in the areas of network performance
evaluation, resource management in virtualization-
based environments and Cloud Computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

