
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013 1

Dynamic Service Placement in
Geographically Distributed Clouds

Qi Zhang, Quanyan Zhu, Mahamed Faten Zhani, Raouf Boutaba, and Joseph L. Hellerstein

Abstract—Large-scale online service providers have been in-
creasingly relying on geographically distributed cloud infrastruc-
tures for service hosting and delivery. In this context, a key
challenge faced by service providers is to determine the locations
where service applications should be placed such that the hosting
cost is minimized while key performance requirements (e.g.,
response time) are ensured. Furthermore, the dynamic nature of
both demand pattern and infrastructure cost favors a dynamic
solution to this problem. Currently most of the existing solutions
for service placement have either ignored dynamics, or provided
solutions inadequate to achieve this objective. In this paper, we
present a framework for dynamic service placement problems
based on control- and game-theoretic models. In particular, we
present a solution that optimizes the hosting cost dynamically
over time according to both demand and resource price fluc-
tuations. We further consider the case where multiple service
providers compete for resources in a dynamic manner. This
paper extends our previous work [1] by analyzing the outcome
of the competition in terms of both price of stability and price of
anarchy. Our analysis suggests that in an uncoordinated scenario
where service providers behave in a selfish manner, the resulting
Nash equilibrium can be arbitrarily worse than the optimal
centralized solution in terms of social welfare. Based on this
observation, we present a coordination mechanism that can be
employed by the infrastructure provider to maximize the social
welfare of the system. Finally, we demonstrate the effectiveness
of our solutions using realistic simulations.

Index Terms—Cloud computing, resource management, model
predictive control.

I. INTRODUCTION

CLOUD computing has become a cost-effective model for
delivering large-scale services over the Internet in recent

years [2]. In a Cloud computing environment, Infrastructure
Providers (InPs, also known as cloud providers), build large
data centers in geographically distributed locations to achieve
reliability while minimizing operational cost. The Service
Providers (SPs), on the other hand, leverage geo-diversity of
data centers to serve customers from multiple geographical
regions. Today, large companies like Google, Yahoo and
Microsoft have already adopted this model in their private
clouds, offering a broad range of services to millions of

Manuscript received DATE; revised DATE.
Q. Zhang and M. F. Zhani are with the David R. Cheriton School

of Computer Science, University of Waterloo, Canada (e-mail: {q8zhang,
mfzhani}@uwaterloo.ca).

R. Boutaba is with the Division of IT Convergence Engineering,
Pohang University of Science and Technology, Pohang, Korea (e-mail:
rboutaba@uwaterloo.ca).

Q. Zhu is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA (e-
mail: zhu31@illinois.edu).

J. L. Hellerstein is with Google Inc., Seattle, WA, 98144, USA (e-mail:
jlh@google.com).

Digital Object Identifier 10.1109/JSAC.2013.1308.XX

users world-wide. As Cloud computing technologies become
mature, more companies are expected to adopt this model by
moving into clouds.

A key technique adopted by SPs in cloud service manage-
ment is to distribute servers in multiple data centers in order
to meet the performance requirements specified in Service
Level Agreements (SLA) contracted to their customers (i.e.,
end users), while reducing operational costs by optimizing the
placement of servers in multiple data centers. This typically
involves solving two problems jointly: (1) deciding on the
number of servers placed in each data center, and (2) routing
each request to appropriate servers to minimize response time.
As InPs typically offer on-demand and elastic resource access,
it is possible to adjust the number of servers to dynamically
match service demand in an agile and responsive manner.

Another factor that needs to be considered in making
placement decisions is the fact that, the price of resources
offered by InPs are also subject to change. In particular, energy
consumption is a major contributor to the operational cost of
a data center [3]. In many parts of the U.S., the electricity
grid of each region is managed independently by a Regional
Transmission Organization (RTO) which operates wholesales
electricity markets in order to match supply and demand for
electricity, as illustrated in Fig. 1. As a result, electricity prices
in each region can vary independently over time. Based on
this fact, recently there have been several studies on dynamic
server placement [4], [5] and request dispatching [6] in private
clouds, taking into account fluctuating energy costs. The same
benefit of geographical load balancing can be achieved in
public clouds by introducing some degree of dynamic pricing
[7], such as the one used by Amazon EC2 [8]. Combining the
above observations, a SP is facing the problem of dynamically
controlling the number of servers placed in each data center
to minimize the total resource cost while satisfying SLA
requirements, taking into consideration the fluctuation of both
demand and resource price. We call this problem dynamic
service placement problem (DSPP). This problem shares many
similarities with traditional replica placement problem studied
(e.g., [9]), however, the price fluctuation is often neglected
in the existing literature. Recently, there are several papers
that have studied the problem of price-aware geographical
load balancing (e.g., [5]). However, the dynamic aspect of
the problem, particularly the reconfiguration cost, is still
largely unaddressed. However, in addition to achieve high
responsiveness to demand fluctuation, one must also take into
account the cost of reconfiguration (i.e., the cost of adding
and removing servers). The consideration of reconfiguration
cost is important for ensuring system stability and minimum

0733-8716/13/$31.00 c© 2013 IEEE

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013

Fig. 1. Service placement in geographically distributed data centers.

management overhead. For instance, adjusting the number of
servers typically incur switching costs for setup (e.g., VM
image distribution) and tear-down (e.g., saving data and states
of the server to storage devices). On the other hand, stability is
perhaps a more important objective. During our experiments,
we have found a reconfiguration cost-oblivious algorithm can
cause frequent oscillation of server assignment as resource
price changes overtime. As SPs strive to reduce operational
cost while improving the agility of their services, it is a major
challenge to dynamically adjust the resource allocations while
considering the reconfiguration costs.

In this paper, we study the DSPP problem using both
control and game theoretic methods. Specifically, we first
propose a control framework based on Model Predictive
Control (MPC) approach to provide an online adaptive control
mechanism which aims at reducing service provider costs,
namely, resource allocation and reconfiguration costs. We
further extend this framework to a game-theoretic model to
consider the competition among multiple SPs, taking into
account the capacity constraint of each data center. This
model is realistic for several reasons: (1) on-demand resource
allocation mechanisms can often lead to situations where
resource demand exceeds the capacity available in a data
center (e.g., during holiday seasons). (2) Recently, there are
numerous proposals that advocate for small-scale data centers
(e.g., [10]). In both cases, limited data center capacity can
result in some SPs not getting the resources they desire. As a
result, we analyze the outcome of resource competition. As an
extension of our previous work [1], we show that while there
exists an optimal Nash Equilibrium (NE) [11] that maximizes
the social welfare in the MPC setting (i.e., every SP forecasts
the future demand and uses this information for dynamic
control of service placement), the worst NE can be far from
optimal. To address this issue, we present an algorithm that can
be implemented by the InP to attain the optimal NE. Finally,
we evaluate the performance of our solutions using realistic
simulations.

The rest of the paper is organized as follows: Section II
surveys the related work. Section III presents the DSPP

framework for a single SP. Section IV-A describes the problem
formulation of DSPP for the case of a single SP. The design
of our controller for DSPP is provided in Section V. Sec-
tion VI extends the framework to a multi-provider scenario and
analyze the outcome of the resource competition game. We
present our experiment results in Section VII, and conclude
the paper in Section VIII.

II. RELATED WORK

Service placement in large-scale shared service hosting
infrastructures has been studied in many contexts in the past.
Early works on this problem primarily focused on placing
content replicas in the context of Content Delivery Networks
(CDNs) (e.g. [12]). However, most of the work in that context
have addressed the centralized cases where the demand profile
is static or time invariant. More recent studies have also
investigated dynamic cases [13] where iterative improvement
algorithms are proposed. Laoutaris et. al. formulated the ser-
vice placement problem as an Uncapacitated Facility Location
Problem (UFLP) [14], and presented a local search heuristic
algorithm for optimizing the placement of services over time.
However, the objective of these studies is to ensure the
algorithm converges to a near optimal solution for a static
topology in a finite number of iterations, instead of optimizing
the overall system performance in the presence of demand
and resource dynamics. Furthermore, the cost of dynamic
reconfiguration is not considered in these studies.

With the growth of large-scale data center infrastructures,
energy consumption has recently become an acute problem.
Not only does energy consumption account for a signifi-
cant fraction of data center operating cost, it also raises
concerns regarding environmental impact and sustainability
of these infrastructures. Driven by the fact that electricity
grids are independently managed in different geographical
regions, several studies have also exploited geo-diversity to
achieve energy cost reduction. For instance, Qureshi et. al.
[6] provided a detailed analysis of regional electricity markets
and have shown that energy-aware request routing can achieve
significant cost savings for large CDNs. Following this line
of research, Rao et. al. [4] studied the problem of server
placement in a multi-electricity market environment with the
goal of minimizing electricity cost. Liu et. al. [5] presented a
distributed solution for the same problem, taking into consid-
eration both request response time and energy cost. However,
these studies have only considered static cases. Lastly, the
application of control theory to capacity provisioning in data
centers has been studied recently, primarily in the context of
autonomic computing. Kusic et. al. [15] presented a control-
theoretic framework for reducing energy consumption while
satisfying SLA constraints. However, their work only applies
to intra-data center environments (i.e., inside a data center),
while the impact of geographical location was not considered.

III. SYSTEM ARCHITECTURE AND DESIGN

We consider a multi-regional cloud environment that con-
sists of multiple data centers situated at different geographical
locations. Our system architecture consists of 4 components
as depicted in Fig. 2: (1) request routers, (2) monitoring

ZHANG et al.: DYNAMIC SERVICE PLACEMENT IN GEOGRAPHICALLY DISTRIBUTED CLOUDS 3

Fig. 2. System architecture for a single service provider.

module, (3) analysis and prediction module, and (4) resource
controller. Both the request router and the monitoring module
can be directly owned by the SP, or leased from other service
providers who offer them as services. In particular, the service
provider controls request routers (a.k.a. redirectors) which
are responsible for redirecting the requests to appropriate
servers [16]. In practice, request redirection can play a key
role in improving server accessibility through load balancing,
latency minimization and content replication. For instance,
Amazon EC2 Elastic Load Balancing service [17] is an
example of a simplified request router. More sophisticated
designs (e.g., [16]) have also been studied in the literature.
The monitoring module is responsible for collecting statistics,
including the number of requests received (i.e., the demand)
at the different request routers and the prices offered by each
data center. The analysis and prediction module models the
dynamics of demand and price fluctuations, and forecasts
their future values. In practice, it has been shown that both
demand and price in production data centers generally show
daily fluctuation patterns [5], [6]. It is worth noting that
our framework is not restricted to any particular prediction
technique. In practice, the prediction technique should depend
on the application characteristics. For example, recent work
shows that the Auto-Regressive Integrated Moving Average
(ARIMA) model [18] is sufficient to achieve high predic-
tion accuracy for realistic HTTP workloads [19]. Finally,
the resource controller is responsible for solving DSPP and
making online control decisions at run time. It dynamically
adjusts the number of servers leased in each data center in
order to satisfy the SLA requirements (in terms of response
time), while minimizing the resource rental cost. Furthermore,
it informs the request routers about the number of servers
allocated in each data center. The request routers must then
find appropriate assignment of demand to the allocated servers.
In our system architecture, request router adopts a simple
strategy which is to split demand proportionally among the
servers that satisfy the SLA requirements. We will formally

define the demand assignment model in Section IV-C. In
the next section, we will first provide a mathematical model
for DSPP, and then describe the request assignment policy
employed by each request router.

IV. PROBLEM FORMULATION

We model the network as a bipartite graph G = (L∪V,E),
where L denotes the set of data centers, V denotes the location
of customers. For instance, V can be the set of access networks
to which customers are connected. Denote by E ⊆ L×V the
communication paths between customers and data centers. We
also assign constant weights dlv to denote the network latency
between a data center l ∈ L and a client location v ∈ V .

In our framework, we consider a discrete-time system model
where time is divided into multiple time periods called re-
configuration periods corresponding to the timescale at which
server placement and routing decisions are made. We assume
that there is an interval of interest K = {0, 1, 2, ...,K} that
consists of K+1 periods. Let N = {1, 2, ..., n} denote the set
of SPs. We assume that at time k ∈ K, each customer location
v ∈ V has demand Dv

k in terms of average arrival rate of
requests from location v at time k. For simplicity, we assume
that all the servers leased by each SP have identical size and
functionality. For instance, a server can be a virtual machine
(VM) that runs a specific application image. We define the
state variable xl

k ∈ R+ as the number of servers owned by
the SP at location l ∈ L at time k. To simplify the model, we
assume that xl

k can take continuous values rather than discrete
values. This assumption is reasonable for large-scale services
that require tens or hundreds of servers, where the weight of
each individual server in the overall solution is small. In this
case, we can always obtain a feasible solution by rounding
up the continuous values to the nearest integer values. Based
on this assumption, we can further decouple xl

k by defining
xlv
k ∈ R+ as the number of servers at location l serving

demand from v ∈ V :

xl
k =

∑
v∈V

xlv
k , ∀l ∈ L, 0 ≤ k ≤ K. (1)

Let ulv
k ∈ R denote the change in the number of servers in

xlv
k at time k, we then have:

xlv
k+1 = xlv

k + ulv
k , ∀l ∈ L, v ∈ V, 0 ≤ k ≤ K. (2)

A. Modeling the Server Allocation and Reconfiguration Cost

To model the cost of server allocation, we assume that there
is a price plk for running a server at data center l ∈ L at time
k. The total resource cost Hk for service hosting at time k is

Hk =
∑
l∈L

xl
kp

l
k =

∑
l∈L

∑
v∈V

xlv
k plk, ∀0 ≤ k ≤ K (3)

We also assume that there is a convex function S : R→ R+

that computes the cost of reconfiguration. For instance, we
can define S(·) as a quadratic function S(ulv

k) = cl(ulv
k)2.

Quadratic penalty functions are widely used in control theory
literature, as they penalize rapid reconfiguration of system
states. The actual value of the constant cl is usually determined
experimentally by finding a fair tradeoff between convergence

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013

TABLE I
TABLE OF NOTATIONS

Symbol Meaning

xl
k Num. of servers at DC l at time k

xlv
k Num. of servers at l serving demand from v at time k

Dv
k Avg. demand arrival rate originated from v

σlv
k Avg. arrival rate of demand from v to DC l at time k

ulv
k Change in the number of servers at DC l at time k

λlv
k Avg. arrival rate to each server from v to l at time k

dlv Network latency between location v and data center l
μ Request process rate of a single server
pl Price of each server at DC l
Cl Capacity of DC l
Hk Resource allocation cost at time k
Gk Reconfiguration cost at time k
J Total operational cost

rate and reconfiguration cost [20]. In this case, the total
reconfiguration cost is:

Gk =
∑
l∈L

∑
v∈V

S(ulv
k) =

∑
l∈L

∑
v∈V

cl(ulv
k)2,0 ≤ k ≤ K. (4)

However our system can also be extended to adopt any other
convex reconfiguration cost functions.

B. Modeling the Constraints

While minimizing the total operational cost, the allocation
of servers and demand assignment must satisfy a set of
constraints, including (1) demand constraint and (2) SLA
performance constraint. Define σlv

k as the demand arrival rate
from v assigned to data center l at time k, the demand
constraint ensures that all demands are satisfied:∑

l∈L

σlv
k = Dv

k, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (5)

In addition, there is a SLA performance constraint that speci-
fies a maximum delay d̄lv that the SP tries to achieve between
a location v and a data center l. We focus on modeling this
constraint in the rest of this subsection. For data center l ∈ L,
we assume that the demand σlv

k arriving from location v is

equally split among the local servers xlv
k . Let λ =

σlv
k

xlv
k

denote
the arrival rate of requests for each server. To simplify the
discussion, we model the behavior of a single server using
the standard M/M/1 queueing model. However, we believe
it is straightforward to adapt our framework to other queueing
models as well. Thus, the queueing delay between location
v ∈ V to a server at l ∈ L can be computed as:

q(xlv
k , σlv

k) =
1

μ− λ
=

1

μ− σlv
k

xlv
k

, (6)

where μ is the service rate of each server. We aim to ensure
that for any (v, l) ∈ E with σlv

k > 0, the average delay (i.e.,

the sum of propagation and queuing delay) is less than d̄lv
1:

dlv + q(xlv
k , σlv

k) ≤ d̄lv, ∀v ∈ V, l ∈ L, 0 ≤ k ≤ K. (7)

By defining the constant

alv =

{
1

μ−(d̄lv−dlv)−1 , if d̄lv − dlv > 0,

∞, otherwise ,
(8)

we can rewrite the constraint (7) as:

xlv
k ≥ alvσlv

k , ∀v ∈ V, l ∈ L. (9)

We can combine constraints (5) and (9) to eliminate σlv
k :

∑
l∈L

xlv
k

alv
≥ Dv

k, ∀v ∈ V, 0 ≤ k ≤ K. (10)

C. Modeling the Demand Assignment

We can define the demand assignment policy for each
request router as:

σlv
k = Dv

k ·
xlv
k

alv∑
l∈L

xlv
k

alv

. (11)

Imposing constraint (11) implies that SLA requirement is
met by all request routers. In practice, each request router
for location v ∈ V can implement the policy by splitting the
demand Dv

k proportionally according to equation (11) using
any standard load balancing technique.

D. DSPP Formulation

Given the system model described above, the goal of
DSPP is to minimize the total cost of server allocation and
reconfiguration cost. Based on (3) and (4), the goal of DSPP
is to satisfy constraints (10) and (2) while minimizing the
following objective function:

J :=

K∑
k=0

Hk +Gk =

K∑
k=0

∑
v∈V

∑
l∈L

xlv
k plvk + cl(ulv

k)2.

Define xk = [x11
k , ...xL1, ..., xlv

k , ..., xLV
k]� ∈ R

LV
+ ,

p
′
k = [p1k, p

2
k, ..., p

L
k] ∈ R

L
+, pk = [p

′
k,p

′
k, ...p

′
k]

� ∈
R

LV
+ , uk = [u11

k , ...uL1, ..., ulv
k , ..., uLV

k]� ∈ R
LV , avk =

[1
a1v
k
, 1
a2v
k
, ..., 1

aLv
k

]�, ak = diag−1{a1k, ..., aVk } ∈ R
LV×V
+ ,

R
′
= [c1, c2, ..., cL] ∈ R

L
+, R = diag{[R′

,R
′
, ...,R

′
]} ∈

R
LV×LV
+ , Dk = [D1

k, ..., D
V
k]�, C = [C1, C2, ...CL]� ∈ R

L
+,

1It should be pointed out that even though our model focuses on guarantee-
ing the average delay, it is straightforward to extend it to handle more general
cases, such as φ-percentile delay (where φ is typically 95%). According to
queueing theory, the φ-percentile delay of an M/M/1 queue can be computed

as q =
ln(1

1−φ
)

μ−λ
, assuming μ > λ. Thus the only change that needs to be

made is to multiply q(xlv
k , σlv

k) by a constant factor ln
(

1
1−φ

)
.

ZHANG et al.: DYNAMIC SERVICE PLACEMENT IN GEOGRAPHICALLY DISTRIBUTED CLOUDS 5

Algorithm 1 MPC Algorithm for DSPP
Provide initial state x0, k ← 0
loop
At beginning of control period k:

Predict Dl
k+t|k for horizons t = 1, · · · ,W using a

demand prediction model
Solve DSPP to obtain uk+t|k for t = 0, · · · ,W − 1
Change the resource allocation according to uk|k
Update demand assignment policy of request routers
according to equation (11)
k ← k + 1

end loop

s = [IL×L, ..IL×L]� ∈ R
LV×L
+ , we can rewrite DSPP as:

min
{u0,..,uK−1}

J =

K∑
k=1

p�
k xk +

K−1∑
k=0

u�
k Ruk

s.t. a�k xk � Dk, ∀0 ≤ k ≤ K,

xk+1 = xk + uk, ∀0 ≤ k ≤ K − 1,

xk ∈ R
LV
+ ,uk ∈ R

LV , ∀0 ≤ k ≤ K − 1.

V. CONTROLLER DESIGN FOR DSPP

The DSPP formulation described in the previous section is
a linear-quadratic program that can be solved using standard
methods [21]. Even though DSPP can be solved optimally, in
practice, the resource controller must solve this problem in an
online setting where future demand is unknown. In this case,
we use the Model Predictive Control (MPC) framework which
is widely used for solving online control problems. Algorithm
1 is our MPC algorithm used by the resource controller for
solving DSPP online. It can be described as follows. At time
k, the resource controller predicts the future demand Dv

k for
multiple periods [k+1, ..., k+W], where W is the prediction
horizon. Denote by Dv

k+t|k the demand predicted for time
k + t at time k. The controller then solves the optimization
problem for the horizon [k, ..., k+W], starting with the initial
state xlv

k|k = xlv
k . Even though the solution of the optimization

problem will contain a set of values ulv
k|k, ...,u

lv
k+W−1|k, the

controller will only execute the first step in sequence ulv
k|k.

When the next period k + 1 starts, the same procedure is
repeated by the controller. Using this algorithm, the controller
can effectively adjust the number of servers in each data center.

However, simply applying MPC framework is not sufficient
to guarantee the satisfaction of SLA, as an underestimation
of future demand (e.g., unexpected demand spikes) can lead
to under-provisioning of server resources. There are several
possible ways to deal with this limitation. The simplest solu-
tion is to provision additional server capacities (i.e., resource
padding) to account for demand uncertainty. However, if
the demand spike does not occur, these additional allocated
capacity will be wasted. Another possibility is to increase the
frequency at which the MPC algorithm runs. Doing so will
reduce the duration in which servers are under-provisioned
at the cost of high computational overhead. However, in our
experiment we have found the computational overhead of the
controller is almost negligible. Thus we believe it is reasonable

to run the controller frequently, as long as reconfiguration cost
is properly chosen in the computation.

As for the running time of Algorithm 1, computing the
predicted values using ARIMA model takes O(|V | · |L| · l)
time, where l is the number of lags used in the ARIMA model.
Solving DSPP can be done in polynomial time, although tech-
niques such as interior point methods usually run reasonably
fast. Section VII reports the running time of Algorithm 1.

VI. COMPETITION AMONG MULTIPLE PROVIDERS

In this section, we extend our previous model and consider
the case where multiple SPs share the cloud platform in
terms of resources in data centers. The goal of each SP
is to minimize its operational costs while respecting the
SLA performance requirements and the data center capacity
constraints. In our model, we assume that the placement
configuration of each SP is kept private from other SPs.
In this scenario, strategic interactions may arise as each SP
makes decisions independently. Therefore, we can model the
system as a multi-person non-cooperative game. Our objective
is to analyze the equilibrium outcome, and design appropriate
algorithms if the resulting competition leads to sub-optimal
outcome in terms of social welfare. Generally speaking, the
social welfare is defined as the sum of the service revenue
minus the resource rental cost of all the SPs. In our case,
the service revenue of each SP is fixed assuming that it can
provision resources to satisfy its demand. As a result, the
social welfare is maximized when the sum of the total resource
rental cost of all SPs is minimized.

A. Problem Formulation

We formally define the resource competition game in this
section. For each v ∈ V , define N = {1, 2, ..., N} as the
set of SPs, and let i ∈ N represent the index of each SP.
Let K = {0, 1, 2, ...K} denote the set of stages (i.e., time
indices) of the game. At time k, 0 ≤ k ≤ K , each SP i
has a state xiv

k = [xi1v
k , ..., xiLv

k]� ∈ R
L
+ that describes the

number of servers allocated to demand from v ∈ V in data
center l ∈ L. Each SP i also makes a control decision uiv

k =
[ui1v

k , ..., uiLv]� ∈ R
L at time k ∈ K, where uilv

k denotes the
change in the number of servers serving v ∈ V at data center
l ∈ L at time k. Given an initial system state xi

0, the system
dynamics are captured by the following state equation:

xiv
k+1 = xiv

k + uiv
k ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K − 1, (12)

At time k ∈ K, we assume each SP i has a demand Di
k =

[Di1
k , Di2

k , ..., Div
k]�, where Div

k represents the demand for SP
i originated from v ∈ V at time k ∈ K. Similar to the single
SP scenario, the total resource allocation for each SP should
be sufficient to handle all demands without violating the SLA:

ai�k xiv
k � Div

k , ∀i ∈ N , v ∈ V, 0 ≤ k ≤ K, (13)

where aik is defined as in Section IV-D for each SP i. We
also require the total allocated resources to satisfy the data
center capacity constraint. If there is insufficient capacity for
hosting a server, the server request is rejected. In this case,
the SP will try to find another data center to host the server.
Given a set of resource types (e.g. CPU, memory and disk)

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013

R, define sir = sir · IL×L ∈ R
L×L
+ as a vector that represents

the “size” of a server owned by SP i for resource type r ∈ R.
Denote by si = [si1, ..., s

i
R]

�, Cr = [C1
r , C

2
r , ...C

L
r] ∈ R

L
+ and

C = [C1, ...,CR]
�, The capacity constraint can be written as:∑

i∈N

∑
v∈V

sixiv
k � C, 0 ≤ k ≤ K. (14)

Lastly, we define uiv = {uiv
0 ,uiv

1 , ...,uiv
K−1} xiv =

{xiv
0 ,xiv

1 , ...,xiv
K−1}, ui = {ui1,ui2, ...,uiV }. Furthermore,

let u−i = {u1, ...,u(i−1),u(i+1), ...,uN} represent the con-
trol decisions of the other SPs N\{i}, the objective of SP i
is to minimize its cost function:

J i(ui,u−i) =
K∑

k=0

∑
v∈V

pkx
iv
k + uiv�

k Riuiv
k

subject to equation (12), (13) and (14). Here, Ri =
[ci1, ci2, ..., ciL] ∈ R

L
+ which captures the weight factor for

reconfiguration cost for SP i in every data center l ∈ L.
We now characterize the Nash equilibrium (NE) of the

resource competition game. The NE refers to the stable
outcome of the competition, where no SP can improve its
cost by unilaterally changing its server allocation over time.
Formally, the resource competition game can be represented
as a N -player dynamic non-cooperative game Ξ. Notice that
as our controller relies on the MPC framework for dynamic
resource allocation, we need to introduce a new version of NE
for control strategies using the MPC framework. We first start
with the following general definitions:

Definition 1 (η-Nash Equilibrium [11]). Let Iik be the in-
formation set of a SP i at time k under a given information
structure ηi, and Γi is the set of all admissible policies of SP i
under ηi. The policy {γi∗, i ∈ N} is an η−Nash equilibrium
of the game Ξ, where ui = γi∗(Iik) and η = {ηi, i ∈ N}
if J i(γi∗, γ−i∗) ≤ J i(γi, γ−i∗), for all admissible policies
γi ∈ Γi and for all i ∈ N , where γ−i∗ = {γj, j = i, j ∈ N}.

Definition 1 provides a general description of NE under a
given information structure (IS) ηi. The dynamic game Ξ can
admit different NEs under different information structures η.
Typical information structures are, for example, open-loop IS,
where the policy is only dependent on the initial conditions,
and the perfect-state feedback IS, where the policy depends
on the perfect measurement of the system state. The IS under
MPC algorithms in Algorithm 1 can be deemed a special
mixture between open-loop IS and feedback IS since at each
stage each SP computes within a window in an open-loop
manner but the initial condition of the computation is the
current state known to SPs. With this special IS, we can
define NE under MPC-type computations for our resource
competition game.

Definition 2 (W-MPC Nash Equilibrium). Let W i be the
prediction window of SP i and every SP adopts MPC as
outlined in Algorithm 1. The dynamic non-cooperative game
Ξ admits W−MPC Nash Equilibrium, W = {W i, i ∈ N},
if the sequences uiv∗ := {uiv∗

k , 0 ≤ k ≤ K} obtained under
MPC algorithms satisfy J i(ui∗,u−i∗) ≤ J i(ui,u−i∗), for all
admissible sequences ui ∈ U i and for all i ∈ N , where

U i is the set of admissible control sequences under MPC
algorithms, and u−i∗ = {uj, j = i, j ∈ N}.

Note that NE solutions may not be unique, and hence we
let U∗ to denote the set of NE solutions u∗ := {ui,u−i} that
satisfy Definition 2. The W−MPC Nash equilibrium {ui∗, i ∈
N} can be used to compare with the optimal MPC solution
{ui◦, i ∈ N} to the following Social Welfare Problem (SWP):

min
{u1,...,uN}

∑
i∈N

J i(u1, ...,uN)

subject to equation (12), (13) and (14). The NE is defined as:

J i(u∗) = min
ui∈RLV

J i(ui,u−i∗) ∀i ∈ N

The price of anarchy (PoA) ρMPC and the price of stability
(PoS) ξMPC of the dynamic non-cooperative game Ξ under
centralized MPC Algorithm 1 are defined by

ρMPC = inf
u∗∈U∗

∑
i∈N

∑
v∈V J i

v(u
i◦)∑

i∈N
∑

v∈V J i
v(u

i∗)

ξMPC = sup
u∗∈U∗

∑
i∈N

∑
v∈V J i

v(u
i◦)∑

i∈N
∑

v∈V J i
v(u

i∗)
,

where {ui◦, i ∈ N} is the optimal solution to (SWP)
obtained by MPC algorithm 1, and {ui∗, i ∈ N} is the
W−MPC Nash equilibrium of the game Ξ. The metrics
ξMPC and ρMPC are measures of the best-case and worse-case
efficiency loss of the game, respectively. It is easy to observe
that both ρMPC and ξMPC are always greater or equal to 1.

Theorem 1. Assume that the prediction horizon of each SP
i, i ∈ N , is the same, i.e., W i = W̄ and W̄ is also the
prediction window used for (SWP). Then, the price of stability
ξMPC of the game Ξ is always equal to 1, i.e., there exists a
NE solution that yields no efficiency loss under the common
knowledge of the capacity constraint.

Theorem 2. The price of anarchy ρMPC of the game Ξ is
unbounded.

The proofs of Theorem 1 and 2 are given in the Appendix.

B. Mechanism Design for a Single Infrastructure Provider

The result provided in the previous section is rather discour-
aging: If each SP behave selfishly in an uncoordinated manner,
then the outcome can be severely unfair: certain SPs will
experience much higher cost than others due to insufficient
resource capacities in their preferred locations. This also hurts
the efficiency of the NE. To address this issue, in this section
we analyze the outcome with the participation of the InP.

Similar to existing work on Cloud resource pricing (e.g.
[22]), we consider a market where there is a single InP who
wishes to maximize the social welfare of all the participants,
including both the SPs and the InP itself. For the InP, the utility
is determined by (1) the revenue from selling resources and
(2) service quality determined by number of rejected resource
requests. In a highly dynamic scenario where it is not always
possible to satisfy all resource demand at all times, rejecting a
resource request may cause an under-provisioning of the SP’s
service infrastructure, resulting in a loss in SP’s revenue. This,

ZHANG et al.: DYNAMIC SERVICE PLACEMENT IN GEOGRAPHICALLY DISTRIBUTED CLOUDS 7

in turn, will result in poor robustness and hurt the customer
satisfaction of the InP’s service. Therefore, we assume there is
a convex penalty function π(sixiv

k −C) ∈ R+ that captures the
penalty of demand rejection. The utility of the InP becomes:

JInP (p,u1, ..uN) =

K∑
k=0

∑
i∈N

∑
v∈V

p�
k x

iv
k − e�k s

ixiv
k

−
K∑
k=1

π(
∑
i∈N

∑
v∈V

sixiv
k −C)

where ek represents the production cost of resources. Typ-
ically, ek includes the cost of electricity, server and land
cost amortized over time. Notice that we assume the data
center is energy proportional2. However, our model can be
adapted to the cases where energy consumption is a convex
function of resource utilization [15]. On the other hand,
the social welfare of SP is determined by J i(p,ui,u−i) =
−∑K

k=0

∑
v∈V p�

k x
iv
k + uiv�

k Riuiv
k , thus the social welfare

can be computed as JSW (p,u1, ..uN) = JInP (p,u1, ..uN)+∑
i∈N J i(p,ui,u−i) , which becomes

min
K∑

k=0

∑
i∈N

∑
v∈V

e�k s
ixiv

k + uiv�
k Riuiv

k

+

K∑
k=1

π(
∑
i∈N

∑
v∈V

sixiv
k −C)

subject to constraints (12), (13). In this case, it is straightfor-
ward to design a mechanism for this problem using dual de-
composition technique. To facilitate the decomposition, we can
introduce an ancillary variable vk =

∑
i∈N

∑
v∈V sixiv

k −C.
The problem can be rewritten as

min
K∑

k=0

∑
i∈N

∑
v∈V

e�k s
ixiv

k + uiv�
k Riuiv

k +
K∑

k=1

π(vk)

subject to the constraint that vk �
∑

i∈N
∑

v∈V sixiv
k −C,

vk � 0 as well as constraints (12), (13). The lagrangian dual
problem can be stated as:

maxλk
(infxiv

k ,vk

∑K
k=0

∑
i∈N

∑
v∈V (e

�
k s

i + λks
i)xiv

k

+uiv�
k Riuiv

k +
∑K

k=1 π(vk)− λk(C+ vk))

which is separable. Therefore, our dual decomposition mech-
anism is described by Algorithm 2. At time k, the InP
announces the future resource prices for a window 1 ≤ t ≤W ,
and each provider i ∈ N submits the demand xiv

k+t|k∀v ∈ V .
At each step, the SP solves the problem

min
uiv

k+t|k

W∑
t=0

∑
v∈V

(e�k+t|ks
i + λk+t|ksi)xiv

k+t|k + uiv�
k+t|kR

iuiv
k+t|k

subjects to constraints (12), (13). The InP will solve the
following problem:

min
vk+t|k∈RV

W∑
t=0

π(vk+t|k)− λk+t|k(C+ vk+t|k)

2Even though achieving perfect energy proportionality is difficult in prac-
tice, recent work has shown that the most energy efficient data centers today
can achieve a power usage efficiency (PUE) less than 1.1 [23].

Algorithm 2 Iterative Algorithm for Achieving the best NE
1: At beginning of time k, provide initial state x0, k ← 0,

Initialize Ci ∈ R
L
+, x̄i

k ← 0, ∀k ∈ K J̄(u1, ...,uN) ←
∞, converged← false

2: pk+t|k ← siek∀0 ≤ t ≤W − 1
3: repeat
4: for i = 1→ N do
5: ui ← solution of DSPPi with price pk+t|k, ∀0 ≤ t ≤

W − 1
6: end for
7: J(u1, ...,uN) =

∑
i∈N J i(u1, ...,uN)

8: if |J(u1, ...,uN) − J̄(u1, ...,uN)| ≤ 0.01 ×
J̄(u1, ...,uN) then

9: converged← true
10: end if
11: if converged = true then
12: λk+t|k := (λk+t|k +α(

∑
i∈N

∑
v∈V sixiv

k+t|k−C−
vk+t|k))+

13: pk+t|k = e�k s
i + λks

i

14: end if
15: J̄(u1, ...,uN)← J(u1, ...,uN)
16: until converged = true

and update the λk+t|k according to the following equation,
where α ∈ R+ is the step size:

λk+t|k := (λk+t|k + α(
∑
i∈N

∑
v∈V

sixiv
k+t|k −C− vk+t|k))+

and announce a new price pk+t|k = e�k s
i + λks

i. This
process repeats until the solution converges to a local optimal
solution. Finally, even though convergence rate can be a
practical concern for gradient-based algorithms. However, our
mechanism can simultaneously adjust prices many steps into
the future, which gives more time for prices to converge. The
convergence rate of Algorithm 2 is analyzed in Section VII.

Remark 1. In this work we assume a monopolized market
where the goal of the InP is to maximize social welfare rather
than purely optimizing revenue. This is a reasonable model as
the social welfare, in some sense, is a measure of service
quality. An InP that maximizes social welfare is likely to
attract more businesses in the future. Secondly, to prevent
the InP from setting unfair prices, governments are likely
to impose a fair return price [24]. One limitation of setting
fair return price is the possibility of low income of the InP.
However, it is straightforward to consider the case where the
fair return price considers the revenue gain of the InP.

In summary, the lesson we learned in the theoretical analysis
is that simply rejecting requests when capacity is reached
can lead to inefficient outcomes where certain SPs may be
treated unfairly. A dynamic congestion-pricing mechanism can
be helpful for mitigating this problem.

VII. SIMULATIONS

We have implemented our solutions and conducted several
simulation studies. In our simulations, we have used a real
Internet topology graph from the Rocketfuel project [25],

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8
x 10

4

Time (minutes)

N
um

be
r

of
 R

eq
ue

st
s

pe
r

M
in

ut
e

Region 1
Region 2
Region 3
Region 4

Fig. 3. HTTP requests in the Worldcup 98 dataset.

 0.0124

 0.0125

 0.0126

 0.0127

 0 2 4 6 8 10 12 14 16 18 20

R
SE

Number of lags

Fig. 4. Prediction accuracy vs. number of lags used.

which contains link latency information. However, as the
data set only contains topologies for several tier-1 Internet
Service Providers (ISPs), we have augmented the topology
graph by introducing regional and local ISPs, similar to
the procedure for generating transit-stub networks in the
GT-ITM network topology generator [26]. We specify the
communication latency at intra-transit, stub-transit and intra-
stub domain links to be 20ms, 5ms and 2ms, respectively
[27]. Based on our experience with Google’s data centers,
in our experiment, we have created 3 large data centers
located in Mountain View, CA, Houston, and TX, Atlanta,
GA. To generate realistic service requests, we have decided
to use the Worldcup 98 dataset [28] which contains HTTP
requests for a total duration of 92 days. This dataset contains
several occurrences of demand spikes, which is useful for
demonstrating the performance of our algorithm. However, as
the dataset does not contain location information of access
networks, we use the request regions provided in the dataset
to approximate the source of requests. In our simulation, we
assume there is one access network responsible for generating
requests from a single region. Fig. 3 illustrates the service
demand for week between June 13 - June 20 for 4 different
regions. In our experiment, the price of resources in each data
center is set to the electricity price per VM according to the
VM size. Fig. 9 shows the electricity price during different
times of the day. For comparison purpose, we assume the price
in Atlanta is constant (i.e., not market-driven).

A. The Case for a Single Service Provider

In this subsection, we report our experiment results for the
single service provider case. We first evaluate the quality of
demand prediction model (ARIMA in our case), which plays
an important role in determining the quality of the solution.
In our evaluation, we divided the workload into two data
sets. The first set is used to estimate the parameters of the
ARIMA model. The second set is used to assess the accuracy
of the prediction. The prediction error is measured by the
Relative Squared Error (RSE). Typically, the smaller is the

 0

 1

 2

 3

 4

 72 144 216 288 360 432 504

D
em

an
d

(x
10

4)

Time (hour)

Real Demand
Predicted Demand

Fig. 5. Actual demand vs. Predicted demand for region 2.

RSE, the better is the prediction. Fig. 4 shows the prediction
error as a function of the number of lags (previous samples)
used as inputs for the ARIMA model. It can be seen that
the prediction using 6 lags achieves the lowest RSE. Fig. 5
shows the predicted demand compared to the actual demand
for region 2, which has the highest demand fluctuation among
all the regions. It is clear that ARIMA model can achieve an
accurate prediction of service demand (RSE≈ 0.01245).

To demonstrate how our controller adjusts resource allo-
cation to handle demand fluctuation, we consider the case
where there is a single data center responsible for requests
from two regions. Fig. 6 shows that the controller always
tries to adjust the resource allocation to match the demand.
We also analyzed the effect of the prediction horizon W on
the outcome of dynamic resource allocation. Fig. 7 shows
that the change in the number of servers decreases as W
increases. The controller with a long window size is less
aggressive than a controller that only looks few steps into
the future. But at the same time, it can cause higher cost due
to poor prediction of future demand (Fig. 8). To demonstrate
controller’s reaction to price change, we have simulated a
scenario where 2 data centers (Mountain View and Atlanta)
are used to serve demand from region 2. Our experiment result
is shown in Fig. 10. Accordingly, Fig. 10 shows that our
controller allocates fewer servers in the Mountain View DC in
the afternoon, since price in Atlanta is cheaper. This confirms
our algorithm can balance load according to price change.
Finally, we demonstrate the importance of reconfiguration
cost. We have implemented a greedy algorithm that ignores
reconfiguration cost. The output of the algorithm is shown in
Fig. 11. It can be seen that, since the price in Atlanta is cheaper
in the afternoon the greedy algorithm performs a massive
migration of servers in the afternoon. Similarly, once the price
in Mountain View becomes cheaper, the greedy algorithm
performs another massive migration to send them back to
Mountain View. It is evident that reconfiguration cost plays
a crucial role in avoiding massive migrations in this scenario.
We also found the prediction window produces a similar effect
as reconfiguration cost (Fig. 7 and Fig. 12). However, since the
prediction window is used to capture trend in system inputs,
and its effect is highly dependent on the prediction accuracy,
it should not be used to control the aggressiveness of dynamic
adaptation. Finally, we have also evaluated the running time
using all 4 DC locations and 24 access networks with synthetic
workloads, and found Algorithm 1 usually runs in less than 1
second.

ZHANG et al.: DYNAMIC SERVICE PLACEMENT IN GEOGRAPHICALLY DISTRIBUTED CLOUDS 9

0 2 4 6 8 10 12
0

5

10

15

20

25

Time (hours)

N
um

be
r

of
 S

er
ve

rs

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 S

er
vi

ce
 R

eq
ue

st
s

Capacity Provisioned
Demand

Fig. 6. Response to demand fluctua-
tion.

0 2 4 6 8 10 12
0

5

10

15

20

25

Time (hours)

N
um

be
r

of
 S

er
ve

rs

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 S

er
vi

ce
 R

eq
ue

st
s

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 S

er
vi

ce
 R

eq
ue

st
s

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 S

er
vi

ce
 R

eq
ue

st
s

W=4
W=8
W=12

Fig. 7. Effect of prediction window
size on the number of servers.

0 2 4 6 8 10 12
32

34

36

38

40

42

44

46

Prediction window size

S
o
lu

tio
n
 c

o
st

Fig. 8. Effect of prediction horizon
on the solution cost.

2 4 6 8 10 12 14 16 18 20 22 24
10

20

30

40

50

60

70

80

Time (hours)

P
ric

e
($

/M
W

h)

Mountain Vew, CA
Houston, TX
Atlanta, GA

Fig. 9. Prices of electricity used in
experiments.

12 17 22 27 32 37 42 47
0

5

10

15

20

25

Time (hours)

N
u

m
b

e
r

o
f

S
e

rv
e

rs

12 17 22 27 32 37 42 47
0

2

4

6

8

10
x 10

4

N
u

m
b

e
r

o
f

S
e

rv
ic

e
 R

e
q

u
e

st
s

Capacity Provisioned in Mountain View DC
Capacity Provisioned in Atlanta DC
Demand from Region 2

Fig. 10. Impact of price on solution
quality.

12 17 22 27 32 37 42 47
0

5

10

15

20

25

Time (hours)

N
um

be
r

of
 S

er
ve

rs

12 17 22 27 32 37 42 47
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 S

er
vi

ce
 R

eq
ue

st
s

Capacity Provisioned in Mountain View DC
Capacity Provisioned in Atlanta DC
Demand from Region 2

Fig. 11. Output of the greedy algo-
rithm.

12 17 22 27 32 37 42 47
0

5

10

15

20

25

Time (hours)

N
u
m

b
e
r

o
f
S

e
rv

e
rs

12 17 22 27 32 37 42 47
0

2

4

6

8

10
x 10

4

N
u
m

b
e
r

o
f
S

e
rv

ic
e
 R

e
q
u
e
st

s

Capacity Provisioned in Mountain View DC
Capacity Provisioned in Atlanta DC
Demand from Region 2

Fig. 12. Output with no reconfigura-
tion cost and long window size.

2 4 6 8 10 12 14
0

10

20

30

40

50

Number of SPs

C
o
s
t
(D

o
lla

rs
)

Outcome without coordination
Price controlled Outcome
Optimal outcome

Fig. 13. Comparing the cost of NEs
versus the number of players.

50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

Number of Players

N
um

be
r

of
 It

er
at

io
ns

Outcome of the uncoordinated game
Outcome produced by dynamic pricing mechanism

Fig. 14. Number of players vs. con-
vergence rate.

20 40 60 80 100 120 140 160 180 200 220 240
−5

0

5

10

15

20

Capacity of the Bottleneck Data Center

N
u
m

b
e
r

o
f
It
e
ra

tio
n
s

Outcome of the uncoordinated game
Outcome produced by dynamic pricing mechanism

Fig. 15. Capacity of the Bottleneck
DC vs. convergence rate.

0 1 2 3 4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

Prediction window size

N
um

be
r

of
 it

er
at

io
ns

Outcome of the uncoordinated game
Outcome produced by dynamic pricing mechanism

Fig. 16. Prediction horizon length vs.
convergence rate.

1 2 3 4 5 6 7 8 9 10 11
58

60

62

64

66

68

70

72

Prediction window size

So
lu

tio
n

co
st

Fig. 17. Impact of prediction horizon
length on the cost.

B. The Case for Multiple Service Providers

To analyze the outcome of the resource competition game,
we generate the input parameters (μi, Di

k, si, cil,d̄i) for each
SP i ∈ N randomly. We first simulated the standard game
by allowing every SP to move in a sequential order, until no
SP can further reduce its cost without violating the capacity
constraint. We also implemented our coordination algorithm
described by Algorithm 2. We set the step size α = 0.5, and
define π(v) = v�Iv · P , where P = 10. We plotted the
average cost of uncoordinated NEs and the cost produced
by Algorithm 2 for the duration of 24 hours in Fig. 13.
For comparison purpose, we also plotted the optimal offline
solution in Fig. 13. Clearly, Algorithm 2 improves the social
welfare by 10− 20% compared to uncoordinated NEs.

We then analyze the scalability of the algorithm in terms
of convergence rate. To produce a competition scenario, we
set the number of servers in the data center with the cheapest
cost (i.e., Data center in Houston, TX) to 500 respectively, and
record the number of iterations required to produce an approx-
imately stable outcome. In our experiment, we call an outcome
approximately stable if |J̄(u1, ...,uN) − J(u1, ...,uN)| ≤
0.01 · J̄(u1, ...,uN)), where J̄(u1, ...,uN) is the cost of the
solution in the previous iteration. Fig. 14 shows the number of
iterations to obtain a stable outcome grows with the number of
players. However, as mentioned before, the convergence pro-
cess can start W − 1 steps ahead, thus the convergence rate is
still acceptable. Finally, even though dynamic conditions such

as machine failures, SPs joining and leaving the system can
hurt the convergence rate, by correctly modeling the penalty
caused by dynamic conditions (e.g. using penalty function
π(·)) and using short time intervals, it is possible to bring the
impact of dynamic conditions to a minimum. Finally, we also
conducted experiments to examine the impact of prediction
horizon W on the solution optimality and convergence rate.
Fig. 16 suggests that longer prediction horizon can improve
convergence rate. However, the selecting the right window size
should also consider the solution quality. Similar to Fig. 7,
we found setting window size to W = 3 archives the best
outcome. Finally, Fig. 18 shows the number of rejected request
in a scenario with 2 DCs and 20 SPs having identical demand
(same as Region 2 in Fig. 5). The number of requests rejected
is proportional to the capacity of the bottleneck DC, who has
lower cost. We found the percentage of rejected request is
small even when demand sometimes can be 20× more than
the capacity of the data center.

VIII. CONCLUSION

In this paper, we presented a framework for the dynamic ser-
vice placement problem based on control- and game-theoretic
models. In particular, we provided a solution that optimizes
the hosting cost dynamically over time according to both
demand and resource price fluctuations. We also considered
the case where multiple SPs compete for revenue dynamically.
Our analysis showed that in an uncoordinated scenario where

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 10, OCTOBER 2013

0 10 20 30 40 50 60 70 80 90 100 110
−2

0

2

4

6

8

10

12
x 10

−3

Capacity of the Bottleneck Data Center

F
ra

ct
io

n
of

 R
eq

ue
st

s
R

ej
ec

te
d

Fig. 18. Req. rejection rate vs. the capacity of the bottleneck DC.

Fig. 19. Example illustrating the PoA of the game.

service providers behave in a selfish manner, the resulting
NE can be significantly worse than the optimal NE in terms
of social welfare. Based on this observation, we proposed a
mechanism that can be adopted by the InP to maximize the
social welfare of the system. Our simulations not only confirm
the theoretical findings, but also demonstrate the benefits of
the proposed approach. Finally, we believe there are many
interesting directions for future exploration, such as analyzing
the competition among multiple InPs, and studying the impact
of pricing models on the outcome of the competition.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science
and Engineering Council of Canada (NSERC) under the
Smart Applications on Virtual Infrastructure (SAVI) Research
Network, in part by a Google Faculty Research Award, and
in part by the World Class University (WCU) Program under
the Korea Science and Engineering Foundation funded by the
Ministry of Education, Science and Technology (Project No.
R31-2008-000-10100-0).

APPENDIX

Proof of Theorem 1: Define uiv
k = [ui1v

k , ui2v
k , ...uiLv

k]�,
ziv,k = [(uiv

1)�, ..., (uiv
k)�]�, Ri = [ci1, ci2, ..., ciL] and

Ei
v,k = diag{diag−1{Ri}, ..., diag−1{Ri}} ∈ R

Lk×Lk
+ ,

Fi
v,k = [kp�

1 , (k − 1)p�
2 , ...,p

�
k]

� ∈ R
Lk,

w = IL×L, Miv
k,1 =

⎡
⎢⎣

aiv�1 . . . 0
...

. . .
...

aiv�k . . . aiv�k

⎤
⎥⎦ ∈ R

k×Lk,

Miv
k,3 =

⎡
⎢⎣

wi . . . 0
...

. . .
...

wi . . . wi

⎤
⎥⎦ ∈ R

Lk×Lk,Mi
v,k =

[Miv�
k1 ,Miv�

k2 ,Miv�
k3]�, γiv

k,1 = [Div
1 − aiv1 xiv

0 , Div
2 −

aiv2 xiv
0 , ..., Div

k − aivKxiv
0]�, γi

v,k = [γiv�
k,1 ,

γiv�
k,1 , γiv�

k,1]� where γiv
k,2[C

�
1 , ...,C

�
L]

� ∈ R
Lk
+ ,

γiv
k,3 =

[−xiv�
0 ,−xiv�

0 , ...,−xiv�
0

]� ∈ R
Lk
+ ,

Si
v,k = [si, si, ..., si]� ∈ R

Lk
+ . At time k each SP i

solves the following problem:

min
zi
W,k

J̄ i :=
∑

v∈V (z
i
v,k)

TFi
v,k + (ziv,k)

TEi
v,k(z

i
v,k) (15)

Mi
v,kz

i
v,k ≥ γi

v,k, ∀v ∈ V (16)∑
i∈N (Si

v,k)
T ziv,k � C. (17)

Each SP faces two constraints in the above problem. One
is an internal constraint given by (16) and the other is the
coupled constraint on all the players, which is given by (17).
We can associate each internal constraint (16) with Lagrange
multipliers μi

v, i ∈ N , v ∈ V and the coupled constraint with
ν. The Lagrangian of SP i is given by

Li = J̄ i+
∑
v∈V

(
μi
v(M

i
v,k − γi)

)
+ν

(∑
i∈N

(Si
v,k)

T ziv,k −C

)
.

(18)
On the other hand, for (SWP), we face the following problem

at every time k:

min
{ziK,k,i∈N}

∑
i∈N J̄ i (19)

Mi
v,kz

i
v,k ≥ γi

v,k, ∀v ∈ V, ∀i ∈ N . (20)∑
i∈N (Si

v,k)
T ziv,k � C. (21)

By associating Lagrangian multipliers μ̃i
v, i ∈ N , v ∈ V with

constraints (20) and ν with (21), we have the Lagrange of the
social welfare problem

L =
∑
i∈N

J̄ i+
∑

i∈N ,v∈V

μ̃i
v(M

i
v,k−γi)+ν̃

(∑
i∈N

(Si
v,k)

Tziv,k −C

)
.

(22)
By letting μi

v = μ̃i
v , and ν = ν̃/N , we can further decompose

L into L =
∑

i∈N Li. Since it is strictly convex and separable
in i, the K−horizon social welfare problem admits a unique
solution, which also corresponds to the solution of each convex
subproblem associated with Li. Hence, the social optimal
solution is a NE at every k and the result follows.

Proof of Theorem 2: We provide an example to illustrate
that the price of anarchy is unbounded even when demands of
SPs are static. Consider the scenario illustrated by Fig. 19:
there are two data centers serving demand from a single
location v. The data centers have capacities C1 = 100 and
C2 = 200

ε respectively. The distance to each data center are
d1v = εc, d2v = c

ε respectively, where c and ε are constants.
Both data centers lease resources at the same unit price p,
i.e., p1k = p2k = p ∀k ≥ 0. Furthermore, There are two
SPs in the game. Their SLAs are d̄1 = (1 + ε + 1

ε)c and
d̄2 = (K + 1 + ε + 1

ε)c, respectively, where K ≥ 1 is a
constant. For both SPs, a single server can process requests
at rate μ = 1

c . The demand from location v for both SPs are
D1 = 100

c(1+ε) , D2 = 100
c(1+ 1

Kε+1)
. Now, consider the following

ZHANG et al.: DYNAMIC SERVICE PLACEMENT IN GEOGRAPHICALLY DISTRIBUTED CLOUDS 11

allocation for both SPs: SP 2 serves all its demands using
capacities in DC 1, and SP 1 serve all its demands from
DC2. It is easy to see this is a NE, as there is no free
capacity in DC 1 for SP 1. The total cost of this NE is
JNE1 =

∑
v∈V

∑
i∈N J i

v = (1 + 1
ε)100p. Now consider

another NE, where SP 1 uses all the capacities in DC 1,
and SP 2 serve all its demands from DC 2. The total cost
of this NE is JNE2 = 100(1+

1+ 1
K+ε

1+ 1
Kε+1

)p. As ε→ 0, we have

ρMPC ≥ limε→0
JNE1

JNE2
= limε→0

1+ 1
ε

1+
1+ 1

K
2

=∞.

REFERENCES

[1] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, “Dynamic service
placement in geographically distributed clouds,” in Proc. Int. Conf.
Distrib. Comput. Syst. (ICDCS), 2012.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-
art and research challenges,” J. Internet Services Applications (JISA),
2010.

[3] Q. Zhang, M. F. Zhani, Q. Zhu, S. Zhang, R. Boutaba, and J. Hellerstein,
“Dynamic energy-aware capacity provisioning for cloud computing en-
vironments,” in Proc. IEEE/ACM Int. Conf. Autonomic Comput. (ICAC),
2012.

[4] L. Rao, X. Liu, and W. Liu, “Minimizing electricity cost: Optimization
of distributed Internet data centers in a multi-electricity-market environ-
ment,” in Proc. IEEE INFOCOM, 2010.

[5] Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew, “Greening
geographical load balancing,” in Proc. SIGMETRICS, 2011.

[6] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for Internet-scale systems,” in Proc. ACM
SIGCOMM, 2009.

[7] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for
spot markets in cloud computing environments,” in Proc. IEEE Int. Conf.
Utility Cloud Comput. (UCC), 2011.

[8] “Amazon ec2 spot instances,” [Online]. Available: http://aws.amazon.
com/ec2/spot-instances/

[9] L. Qiu, V. Padmandabhan, and V. Geoffrey, “On the placement of web
server replicas,” in Proc. IEEE INFOCOM, 2001.

[10] S. Islam and J. Grégoire, “Network edge intelligence for the emerging
next-generation Internet,” Future Internet, 2010.

[11] T. Başar and G. Olsder, Dynamic Noncooperative Game Theory. Society
for Industrial Mathematics, 1999.

[12] Y. Chen, R. Katz, and J. Kubiatowicz, “Dynamic replica placement for
scalable content delivery,” in Proc. Int. Workshop Peer-To-Peer Syst.
(IPTPS), 2002.

[13] C. Vicari, C. Petrioli, and F. Presti, “Dynamic replica placement and
traffic redirection in content delivery networks,” in Proc. IEEE MAS-
COTS, 2007.

[14] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros, “Distributed placement of service facilities in large-scale
networks,” in Proc. IEEE INFOCOM, 2007.

[15] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” in IEEE Int. Conf. Autonomic Comput., 2009.

[16] P. Wendell, J. Jiang, M. Freedman, and J. Rexford, “Donar: Decen-
tralized server selection for cloud services,” in Proc. ACM SIGCOMM,
2010.

[17] “Amazon elastic computing cloud (amazon ec2),” [Online]. Available:
http://aws.amazon.com/ec2/

[18] J. Hamilton, Time Series Analysis, vol. 2. Cambridge Univ Press, 1994.
[19] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud

using predictive models for workload forecasting,” in IEEE Int. Conf.
Cloud Comput. (CLOUD), 2011.

[20] E. Camacho and C. Bordons, Model Predictive Control. Springer, 2004.
[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-

versity Press, 2004.
[22] D. Niu, C. Feng, and B. Li, “Pricing cloud bandwidth reservations under

demand uncertainty,” in Proc. SIGMETRICS, 2012.
[23] “Designing a very efficient data center,” [Online]. Available: https://

www.facebook.com/note.php?note_id=10150148003778920
[24] C. McDonnell, Economics-Princples, Problems, and Policies, 1984.
[25] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP

topologies with rocketfuel,” IEEE/ACM Trans. Netw., 2009.
[26] “GTITM homepage,” [Online]. Available: www.cc.gatech.edu/projects/

gtitm/

[27] S. Ratnasamy, M. Handley, R. Karp, and S. Scott, “Topologically-aware
overlay construction and server selection,” in Proc. IEEE INFOCOM,
2002.

[28] “World cup 1998 web site requests,” [Online]. Available: http://ita.ee.
lbl.gov/html/contrib/WorldCup.html

Qi Zhang received his B.A.Sc. and M.Sc. from
the University of Ottawa (Canada) and Queen’s
University (Canada), respectively. He is currently
pursuing a Ph.D. degree in computer science from
the University of Waterloo. His current research
focuses on resource management for cloud comput-
ing systems. He is also interested in related areas
including network virtualization and management.

Quanyan Zhu (S’04-M’13) is a Ph.D. candidate
at the Department of Electrical and Computer En-
gineering and the Coordinated Science Laboratory
(CSL) at the University of Illinois at Urbana-
Champaign (UIUC). He has received his master of
applied science in electrical engineering from the
University of Toronto, and bachelor of engineering
in honors electrical engineering from McGill Uni-
versity. He has been a visiting researcher at the
University of Waterloo, University of Avignon, Uni-
versity of Houston, INRIA-Sophia Antipolis, Idaho

National Laboratory, SUPELEC, and the University of Washington and
Chinese Academy of Mathematics and System Science. He is a recipient of
the NSERC Canada Graduate Scholarship, University of Toronto Fellowship,
Ernest A. Reid Fellowship, and Mavis Future Faculty Fellowships. He is a
recipient of the best track paper award at the 4th International Symposium
on Resilient Control Systems (ISRCS).

Mohamed Faten Zhani received engineering and
M.S. degrees from the National School of Computer
Science, Tunisia, in 2003 and 2005, respectively.
He received his Ph.D. in computer science from the
University of Quebec in Montreal, Canada, in 2011.
Since then, he has been a postdoctoral research
fellow at the University of Waterloo. His research in-
terests include virtualization, resource management
in the cloud computing environment, and network
performance evaluation.

Raouf Boutaba received the M.Sc. and Ph.D.
degrees in computer science from the University
Pierre & Marie Curie, Paris, in 1990 and 1994,
respectively. He is currently a professor of com-
puter science at the University of Waterloo and
a distinguished visiting professor at the division
of IT convergence engineering at POSTECH. His
research interests include network, resource, and
service management in wired and wireless net-
works. He is the founding editor in chief of the
IEEE TRANSACTIONS ON NETWORK AND SER-

VICE MANAGEMENT (2007–2010) and on the editorial boards of other
journals. He has received several best paper awards and other recognition
such as the Premiers Research Excellence Award, the IEEE Hal Sobol Award
in 2007, the Fred W. Ellersick Prize in 2008, and the Joe LociCero and Dan
Stokesbury awards in 2009. He is a fellow of the IEEE.

Joseph L. Hellerstein manages the Computational
Discovery Department at Google Inc. in Seattle,
WA. Dr. Hellerstein received the Ph.D. in computer
science from the University of California at Los
Angeles. He was a Principal Architect at Microsoft
Corp. in Redmond, WA (USA) from 2006 to 2008,
and a researcher and senior manager at the IBM
Thomas J. Watson Research Center in Hawthorne,
NY, from 1984 to 2006. He has published over
100 peer-reviewed papers and two books, and has
taught at Columbia University and the University of

Washington. Dr. Hellerstein is a Fellow of the IEEE.

