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Abstract—In this paper, we obtain an energy-efficient power

allocation technique for a Rayleigh block-fading channel with

delay-limited applications. In particular, we consider a prob-

abilistic delay constraint as the user quality-of-service (QoS)

requirement, and incorporate the concept of effective capacity to

obtain the maximum arrival rate, at which, the delay constraint

is satisfied. We obtain the energy efficiency (EE), which is

formulated as the ratio between the effective capacity and the

total expenditure power, of this system and derive the power

allocation strategy that maximizes the EE. Numerical results are

conducted to corroborate our theoretical results. In addition,

for comparison reasons, we plot the maximum achievable EE

under two well-known power allocations schemes, namely, water-

filling (wf ) and constant power allocation (cons) when considering

delay constraints. The results show that in stringent delay lim-

ited systems, adaptive power allocation improves the maximum

achievable EE significantly.

Index Terms—Cross-layer design, energy efficiency, delay

constraint, effective capacity.

I. INTRODUCTION

The expansion of wireless communications systems has

been enabled through increasingly utilizing natural resources,

such as power. In particular, to provide delay constraint, which

is considered as one of the major user quality-of-service (QoS)

requirements [1], high transmission powers are required [2].

However, the battery technology improvement rate is shown to

be slower than the desire for increasing energy consumption in

the communications systems [3]. Furthermore, the energy con-

sumption of the information and communication technologies

(ICT) accounts for almost 3% of the worldwide electric energy

consumption [3], [4]. Therefore, energy efficiency (EE), which

is defined as the data transferred per unit energy consumed,

i.e., b/J, by the system, has recently received a growing

attention [3]–[7].

The tradeoff between spectral efficiency (SE) and EE was

first studied in [5], wherein the minimum bit energy required

for transmitting one bit is obtained. In particular, the EE

metric is considered as the ratio between the service rate (i.e.,

Shannon rate in [5]) and the transmission power. It is proved

that the maximum EE is achieved at low signal-to-noise ratios

(SNRs) or low spectral efficiency (SE). However, [5] does

not account for the circuit-power consumption. In [6], the

expenditure power is considered as a combination of a rate-

independent circuit-power and transmission power, and joint

power and subchannel allocation techniques are proposed for

an Orthogonal Frequency-Division Multiple Access (OFDMA)

channel. A water-filing (wf ) power allocation approach is

proposed in [7] to optimize EE, when a minimum-rate require-

ment is considered in the system. In addition, power allocation

strategies for maximizing EE is provided in [8], wherein a

concave-convex fractional programming approach is used.

The tradeoff between EE and SE is more restrained in

delay limited systems, since more energy is required to satisfy

the delay requirements while maintaining the total throughput

of the system. Delay constraints are considered in [9], [10],

wherein a power-delay tradeoff is studied by minimizing a

weighted sum of the expenditure power and the average

delay. An energy-efficient rate-control policy proposed in [11]

considers a buffer-constrained system. On the other hand,

delay-outage probability constraints are considered in [12],

[13], wherein, EE is defined as the ratio between the effective

capacity and the transmission power. The effective capacity

provides a measure for the maximum constant arrival rate that

can be transferred through the fading channel, provided that

delay-outage probability requirement is satisfied. In addition,

the minimum bit energy, which is defined as the average bit

energy normalized by the effective capacity, is found in low-

power systems [12].

In this paper, we find a power allocation strategy for

achieving the maximum EE in systems with delay-limited ap-

plications. The EE metric is defined as the achievable effective-

capacity-to-total-expenditure-power ratio when the user delay-

outage requirement is satisfied. The expenditure power is

considered as the combination of the circuit-power and the

transmission power. We prove that the EE-maximization ob-

jective function is a concave-convex optimization problem,

therefore a unique global maximum exists. By using fractional

programming, we the find the optimum power allocation

strategy to maximize the EE. For comparison reasons, we

further compare the results of the power allocation technique

proposed in this paper with the maximum achievable EE with

wf and cons transmission techniques. We provide numerical

results to investigate the effects of adaptive power allocation,

circuit-power and delay constraint on the maximum achievable

EE in a Rayleigh block-fading channel with delay constraints.
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II. SYSTEM MODEL

In this paper, we consider a point-to-point wireless com-

munication system. In the transmitter, the upper-layer packets

are stored in the transmit first-in-first-out (FIFO) buffer at a

constant arrival rate and will be read out and transmitted over

the channel at a variable rate to be discussed in the following

paragraphs.

Discrete-time Rayleigh block-fading channels are assumed

for the link between the transmitter and the receiver. Channel

gain is assumed to be a stationary and ergodic random process,

which remains constant during a fading-block Tf , but varies

independently in the following fading-block. The transmitter

updates its transmission power based on the channel state

information (CSI) available at the transmitter prior to trans-

mission.

We further assume that the stochastic service process

{r[t], t = 1, 2, . . . , T} is ergodic and stationary. Given that

the Gartner-Ellis theorem assumptions [14, Pages 34-36] are

satisfied, then the effective capacity of an independent and

identically distributed (i.i.d.) block-fading channel is given

by [15]

Ec(θ) = −
1

θTfB
ln

(

E
[

e−θTfBr[t]
])

(b/s/Hz), (1)

where E[·] indicates the expectation operator, t is the time-

index of the fading-block, B denotes the transmission band-

width. The service rate of the fading channel, r[t], is

r[t] = log2 (1 + p(γ[t], θ)γ[t]) (b/s/Hz).

Here, γ[t] = |h[t]|2

σ2
nLp

is the channel-to-noise power ratio, with

|h[t]|2 indicating the unit-variance Rayleigh fading channel

power gain, Lp is the distance-based path-loss, and σ2
n =

N0B, with N0 indicating the noise spectral density. p(γ[t], θ)
is the transmission power as a function of γ[t], and θ. For the

ease of notation, we refer to σ2
nLp by Kℓ.

Assuming that the steady-state queue length process, q(∞),
exists and based on the large deviation principle (LDP) theo-

rem, it is shown in [16], [2] that

Pr {q(∞) ≥ x} ≈ e−xθ, for large x.

where f(x) ≈ g(x) means that limx→∞
f(x)

g(x)
= 1 and θ

is found from (1) for a given arrival rate. Hereafter, θ will

be referred to by delay exponent. Finally, the delay-outage

probability can be approximated by [15]

P out
delay = Pr {Delay ≥ Dmax} ≈ εe−θµDmax ,

where µ is the maximum constant arrival rate in b/s/Hz when

µ = Ec(θ), Dmax is the maximum tolerable delay in units of

symbol duration or
1

B
, and ε is the probability of a non-empty

buffer and can be approximated by the ratio of the constant

arrival rate to the average service rate [16], [2].

It can be observed that θ → 0 corresponds to a system

that can tolerate no delay constraint, while θ → ∞ refers to

a system that can tolerate strict delay constraint. For a given

θ, we can obtain the user maximum supportable arrival-rate

under a given delay constraint. An interested reader is referred

to [15] for more details.

Note that effective capacity relates to the asymptotic case

for the delay and is defined for large values of Dmax. However,

it has been shown in [2], [15] that this model also provides a

good estimate for small values of Dmax.

III. ENERGY EFFICIENCY IN DELAY LIMITED SYSTEMS

The problem for maximizing the effective capacity of a

point-to-point block-fading channel under average transmit

power constraints is studied in [2], which shows that high

transmission powers are required for satisfying delay con-

straints while maintaining the throughput of the system. In

this paper, we aim to maximize the transmitted data per unit

energy, or equivalently, to minimize the energy consumption

per bit, while the delay-outage constraint is satisfied.

The EE metric for delay limited systems is defined as

the ratio between the effective capacity and the expenditure

power [13], which can be formulated as1

EE(θ) =
Ec(θ, p(γ, θ))

Pc + Eγ [p(γ, θ)]
(b/J/Hz),

where Ec(θ, p(γ, θ)) indicates the effective capacity of the

channel as a function of θ and p(γ, θ), Eγ [·] indicates the

expectation over γ, and Pc is the constant circuit-power

that corresponds to the power dissipation of the transmitter

circuitry, which is independent of the transmission rate [17].

The EE maximization problem, therefore, is formulated as

EEopt(θ) = max
p(γ,θ)≥0

−
1

θTfB
ln

(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

Pc + Eγ [p(γ, θ)]

subject to: Eγ [p(γ, θ)] ≤ Pav

(2)

where α =
θTfB

ln(2)
and Pav is the average transmit power limit.

As one can observe, the maximization of the EE (2) involves

the maximization of the ratio of two functions of p(γ, θ). In

general, the EE maximization problem is different from SE

maximization problems, as the transmit power constraint does

not necessarily need to be satisfied with equality in EE optimal

systems.

In the following, we first provide a solution for an uncon-

strained EE optimization problem given as

EEun
opt(θ) = max

p(γ,θ)≥0

−
1

θTfB
ln
(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

Pc + Eγ [p(γ, θ)]
.

(3)

1Hereafter, we omit the time index t, wherever, it is clear from the context.
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It is been shown in [17] that when the achievable rate of

the channel, e.g., the effective capacity in this paper, is a

concave function of the transmit power, the EE maximization

problem can be solved using fractional programming. We start

by proving that the effective capacity formula, used in (3),

is a concave function in p(γ, θ). The proof is provided in

Appendix A. Therefore, the objective function in (3) is the

ratio of a concave and an affine function in p(γ, θ), indicating

hence that the EE objective function (3) is a concave-convex

optimization function, and as such, we can obtain a solution

for (3) by using fractional programming [18].

By using the transformation ζ =
1

Pc + Eγ [p(γ, θ)]
, the

optimization problem (3) can be converted to

min
p(γ,θ)≥0

ζ ln
(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

(4)

subject to: ζ (Pc + Eγ [p(γ, θ)]) ≤ 1. (5)

The objective function in (4) is a concave function. Further-

more, since the denominator of (3) is an affine function [18],

the inequality in (5) can be changed to equality. The Karush-

Kuhn-Tucker (KKT) conditions are, therefore, both sufficient

and necessary for the optimal solution [18]. We now provide

the lagrangian of (4) according to

L (p (γ, θ) , ζ, λ) =ζ ln
(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

,

+ λ (ζ (Pc + Eγ [p(γ, θ)])− 1) ,

where λ is the Lagrangian parameter, and then expand the

KKT conditions according to

ζ (Pc + Eγ [p(γ, θ)]) = 1 (6)

ζ
−αγ (1 + p(γ, θ)γ)

−α−1
fγ(γ)

Eγ

[

(1 + p(γ, θ)γ)
−α

] + ζλfγ(γ) = 0 (7)

ln
(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

+ λ (Pc + Eγ [p(γ, θ)]) = 0.

(8)

From (7), we get

αγ (1 + p(γ, θ)γ)
−α−1

= λEγ

[

(1 + p(γ, θ)γ)
−α

]

.

Hence, the power allocation can be found as

p(γ, θ) =

[

α
1

1+α

ν
1

1+α γ
α

1+α

−
1

γ

]+

, (9)

with ν = λEγ

[

(1 + p(γ, θ)γ)
−α

]

and [x]+ = max(0, x).

The optimal value of λ can be found by inserting the power

allocation (9) in (8), yielding

Eγ

[

(1 + p(γ, θ)γ)
−α

]

ln
(

Eγ

[

(1 + p(γ, θ)γ)
−α

])

+ ν



Pc + Eγ





[

α
1

1+α

ν
1

1+α γ
α

1+α

−
1

γ

]+






 = 0. (10)

Note that (10) only depends on ν and is independent from ζ.

We can derive a closed-form expression for obtaining ν

ν

(

Pc +

(

αKα
ℓ

ν

)
1

1+α

Γ

(

1

1 + α
,
Kℓν

α

)

− Ei

(

Kℓν

α

))

+ k

(

Kℓν

α

)

log

(

k

(

Kℓν

α

))

= 0, (11)

where Ei(x) = −
∫∞

−x
e−s

s
ds indicates the exponential integral,

Γ(a, x) =
∫∞

x
sa−1e−sds is the upper incomplete Gamma

function [19], and

k(y) =y
α

1+αΓ

(

1

1 + α
, y

)

+ 1− e−y.

Let Pun denote the average transmit power at which the

maximum EE can be achieved, which can be found by taking

the expectation over the power allocation given in (9) with

the optimal value for ν found from (11). One can show that

the optimum power allocation strategy to maximize the EE, as

obtained in (9), is also an optimum power allocation strategy to

maximize the effective capacity of a Rayleigh fading channel

with an average transmit power limit Pun. In the following

section, we use this fact to find the maximum achievable EE

of a fading channel with average transmit power constraints.

IV. MAXIMUM ACHIEVABLE EE UNDER TRANSMIT

POWER CONSTRAINTS

Assume that we obtain the power allocation strategy for

maximizing the power-unconstrained EE. In order to obtain

the maximum power-constrained EE (2), we divide the opti-

mization problem into two regions, i.e., when Pav > Pun and

when Pav ≤ Pun.

A. When Pav > Pun

This condition refers to the case when the total transmission

power for achieving the maximum unconstrained EE is lower

than the transmit power limit. As such, the power allocation

strategy for maximizing the unconstrained EE, also satisfies

the average transmit power constraint in (2), and hence, the

maximum power-constrained EE is the same as maximum

power-unconstrained EE.

B. When Pav ≤ Pun

This scenario refers to the case when the required power

for maximizing the unconstrained EE is more than the input

transmit power limit. Therefore, the EE optimization problem

becomes an SE optimization problem, i.e., maximizing the

effective capacity with an average input power constraint, as

given below:

max
p(γ,θ)≥0

−
1

θTfB
ln
(

Eγ

[

e−θTfBr[t]
])

,

subject to: Eγ [p(γ, θ)] ≤ Pav. (12)
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Fig. 1: Maximum achievable EE versus delay exponent, θ, for
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V. NUMERICAL RESULTS

In this section, we numerically evaluate the EE of a delay-

limited system in Rayleigh block-fading channels. In the fol-

lowing numerical results, we assume the fading-block duration

Tf = 2ms, bandwidth B = 180 kHz, and noise spectral density

N0 = −174 dBm/Hz. Also, the distance-based path-loss for a

macro-cell environment with a carrier frequency of 2 GHz is

considered [20]

Lp(dB) = 128.1 + 37.6 log10(d),

where d is the distance between the transmitter and receiver

and is considered to be d = 1km. The circuit-power is set to

Pc = 0.1 watts, otherwise only if indicated.

We start by plotting the graphs for the EE versus delay

exponent, θ, for Pc = 0.1 watts (solid lines) and Pc = 0.2
watts (dashed lines), in Fig. 1. Fig. 1 also includes the plots

for the maximum EE that can be achieved with the well-

known wf and cons transmission techniques. In particular, in

cons technique, the transmitter uses fixed power. The plots

shows that the maximum achievable EE decreases as the delay

exponent or the circuit-power increases. The optimum power

allocation technique proposed in this paper achieves higher

EE when compared to wf or cons techniques. In particular,

while wf transmission technique performs good for loose delay

limited systems, it achieves very low EE, even lower than cons

technique, when delay becomes stringent.

In Fig. 2, we study the characteristics of the optimum power

allocation technique, given in (9). Particularly, we plot the

instantaneous transmission power, p(γ, θ), versus the channel

power gain γ for various delay exponents. Fig. 2 shows that

for delay limited systems with loose delay requirement, e.g.,

θ = 10−4, the power increases monotonically as γ increases,

following the same trend as wf. However, as θ increases,

the region wherein the transmission power is cut off shrinks
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Fig. 2: Instantaneous transmission power p(γ, θ), given in (9),
versus channel power gain for various delay exponents, θ.
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1

B
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and power is distributed to a wider range of channel power

gains. By further increasing the delay exponent, more power

is allocated to weaker channel gains. When delay becomes

very stringent, maintaining a constant rate for a wide range

of channel conditions, i.e., channel inversion transmission

technique, is the optimal power allocation strategy.

In Fig. 3, we plot the delay-outage probability limit versus

the maximum tolerable delay, Dmax, in units of symbol du-

ration for various energy efficiencies. The figure shows that

increasing the required EE results in increasing delay-outage

probability significantly.

Finally, Fig. 4 includes the plots of the EE versus the input

transmit power limit for various delay exponents. It shows that

the EE benefits from increasing input transmit power limit for

low signal-to-noise ratios. However, when the EE achieves its

maximum point, increasing input transmit power limit does
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not improve the achievable EE of the system.

VI. CONCLUSIONS

In this paper, we consider delay-outage constraints and

find the maximum achievable EE in a Rayleigh block-fading

channel. We incorporate the effective capacity concept that

provides a measure for the maximum-arrival rate to maintain

a delay-outage requirement. By proving that the EE maxi-

mization objective function is a concave-convex optimization

problem in the transmission power, we provided a simple

power allocation strategy for maximizing the EE of the channel

through fractional programming. Illustrative results show that

significant gains in the maximum achievable EE can be

achieved through adaptively allocating the transmission power,

specially in stringent delay limited systems.

APPENDIX A

We start by investigating whether the function

f(p(γ, θ)) = ln (U(p(γ, θ))) ,

where U(p(γ, θ)) = Eγ

[

(1 + p(γ, θ)γ)
−α

]

, is convex in

p(γ, θ) or not. Hereafter, for the ease of notation, we refer to

p(γ, θ) by Pt. We obtain the first partial derivative of f(Pt)
with respect to Pt , i.e., f ′(Pt), as follows:

f ′(Pt) =
U ′(Pt)

U(Pt)

= −α
Eγ

[

γ (1 + Ptγ)
−α−1

]

Eγ

[

(1 + Ptγ)
−α

]

≤ 0, (13)

where U ′(Pt) is the first derivative of U(Pt) with respect to

Pt. Therefore, f(Pt) is a non-increasing function of Pt. We

further note that

f ′(Pt)|Pt→∞ → 0. (14)

We now derive the second partial derivative of f(Pt) with

respect to Pt, i.e., f ′′(Pt), according to

f ′′(Pt) =
U ′′(Pt)U(Pt)− (U ′(Pt))

2

U2(Pt)

=
g(Pt)

U2(Pt)
.

where U ′′(Pt) is the second derivative of U(Pt) with respect

to Pt and

g(Pt) = α(α+ 1)Eγ

[

γ2 (1 + Ptγ)
−α−2

]

Eγ

[

(1 + Ptγ)
−α

]

− α2
(

Eγ

[

γ (1 + Ptγ)
−α−1

])2

.

We now prove that g(Pt) is always positive. The value for

g(Pt) at Pt = 0 and Pt → ∞ can be obtained as

g(Pt)|Pt=0 = α(α+ 1)Eγ

[

γ2
]

− α2 (Eγ [γ])
2
≥ 0, (15)

g(Pt)|Pt→∞ → 0,

where to obtain (15), we use the Jensen’s inequality. We now

prove that g(Pr) can never cross the zero-line. We prove it by

contradiction. Assume g(Pr) = 0. It follows that

U ′′(Pt)U(Pt)− (U ′(Pt))
2 = 0 ⇒

U ′′(Pt)

U ′(Pt)
=

U ′(Pt)

U(Pt)
⇒

∂ ln(−U ′(Pt))

∂Pt
=

∂ ln(U(Pt))

∂Pt
⇒

ln(−U ′(Pt)) = ln(U(Pt)) + c ⇒

U ′(Pt) = −ec ∗ U(Pt) ⇒

U ′(Pt)

U(Pt)
= −ec.

Therefore, f ′′(Pt) can be zero only when f ′(Pt) = −ec. We

now analyze the pattern for f ′(Pt). Using (13) and (15), we

note that f ′(Pt) starts from a negative value at Pt = 0 and

increases until it reaches f ′(Pt) = −ec. After this point,

f ′(Pt) becomes a decreasing function. Noting that f ′(Pt)
only changes direction when f ′(Pt) = −ec, and using the

fact that f ′(Pt) is a continuous function in Pt, one can

show that f ′(Pt) will be always a decreasing function after it

reaches f ′(Pt) = −ec. This, however, contradicts with (14).

Therefore, g(Pt) can never cross the zero line. Given the

fact that g(Pt)|Pt=0 is positive, we conclude that g(Pt) is

always positive and so is f ′′(Pt). Therefore, the objective

function f(Pt) is convex and, as such, the effective capacity

is a concave function of Pt.
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