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Abstract. In this paper, we present a new platform for experimenting with net-
worked systems and distributed applications called Virtualized Application Net-
working Infrastructure (VANI). This infrastructure is designed as a converged
communications and computing infrastructure that would facilitate operationof
an open applications marketplace. VANI enables introduction of new network ar-
chitectures that require in-network (hardware-accelerated) contentprocessing and
storage. We describe the VANI architecture and the resources it provides. VANI
has two main planes; control and management plane, and applications plane.
VANI resources are virtualized and made available to the researchers and appli-
cation providers through a service-oriented control and managementplane. The
current VANI resources are processing, storage, networking andvarious software-
based resources. VANI also includes a new reprogrammable hardware resource
that enables experimenting with hardware-based or hardware-accelerated net-
working algorithms and protocols. We present performance evaluations of this
reprogrammable hardware resource, and the VANI virtual networking mecha-
nism. The results show that by using the reprogrammable hardware resource,
researchers can evaluate high performance and high throughput networking algo-
rithms as easily as evaluating software-based networking algorithms.

Key words: Networking Testbed, Network Architecture, Service-Oriented Ar-
chitecture

1 Introduction

In the past few years, the idea of clean slate network design has been circulated in
the networking community and there have been several proposals for introducing new
network architectures and protocols [1, 2, 3]. One of the major obstacles in introduc-
ing new network architectures was and still is experimentation with proposed network
architectures in a large scale environment and possibly with massive numbers of end
users. To address this problem, there have been several initiatives to build large scale
testbeds for networking research.

GENI [4] is one of these initiatives that tries to create a testbed by federating dif-
ferent testbeds such as PlanetLab [5, 6] and Emulab [7] on topof a research dedicated
network. GENI is still in the design and development phase, but currently it follows
a slice-based architecture [8], and different testbeds would be able to connect to each
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other through GENI wrappers. The exact communication protocol between the GENI
wrapper and the testbed is left to each testbed’s control plane and currently there are a
few major control planes that are trying to federate using the wrappers.

Probably among these testbeds PlanetLab [5] is the most developed. PlanetLab pro-
vides edge hosts on Internet and implements a slice-based architecture using the Linux
vServer [9] technology. PlanetLab, however, does not have aclear solution for exper-
imentation with new layer three protocols, and it’s not clear how it would facilitate
building high scale new routers that would need hardware-based acceleration.

In Canada, there is a research dedicated optical network called CANARIE [10] that
provides light paths connecting universities and researchcenters across Canada. CA-
NARIE has sponsored design and development of a User Controlled Light Path [11]
(UCLP) software that enables researchers to configure CANARIE network elements
through Web Services (WS) interfaces on-demand.

Another major initiative is FEDERICA [12] in Europe that is under development
through federation of several research network platforms in Europe such as i2CAT in
Spain and HEAnet in Ireland. FEDERICA uses WS-based UCLP software for creating
on-demand virtual networks atop of involving test platforms.

Another project for experimentation with lower layer protocols and networking al-
gorithms is NetFPGA [13]. NetFPGA is a PCI card with a Field Programmable Gate
Array (FPGA), and four Gigabit Ethernet interfaces that could be used for developing
networking components such as a layer three router or a hardware accelerator.

In this paper, we present a new testbed for networking experiments and networked
systems. This testbed is different than the above mentionedprojects in several as-
pects. It benefits from a novel architecture for control and management functions ca-
pable of managing various hardware-based and software-based resources. It also al-
lows experimenting with new network architectures that require in-network content
processing and storage capabilities. Moreover, it includes a new high performance and
high throughput hardware resource that makes experimentation with hardware-based or
hardware-accelerated networking algorithms and protocols as easy as experimentation
with software-based protocols.

Our vision in designing this testbed was to develop a converged computing and
communications infrastructure to support an open applications marketplace. We in-
vestigated architectural aspects of this application-oriented network and presented a
proposal in [14]. We also investigated autonomic management issues and proposed an
approach using virtual networks in [15].

The essential aspects to enabling the above application-oriented environment are:
1. Service-oriented application creation; 2. Infrastructure as a Services methods for
configuring and scaling resources to support applications;3. Virtualization of physical
resources.

Based on this view of an application-oriented network, we began the development
of a testbed that would allow university researchers and application providers to de-
velop new networked systems and networking architectures.This testbed, Virtualized
Application Networking Infrastructure (VANI), allows thecreation of virtual networks
of computing and communications resources. A VANI node consists of resources such
as processing, storage, networking, and programmable hardware. A service-oriented
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control and management plane allows VANI nodes to be interconnected into virtual
networks to support applications operating in the applications plane.

In the rest of this paper, we describe the main requirements in VANI design, and
its architecture and main components. Also, we explain how our design would satisfy
the requirements. Moreover, we present the performance evaluations on the developed
resources for this infrastructure including a virtualizedreprogrammable hardware re-
source that enables hardware-based experimentation of networking algorithms and pro-
tocols.

2 VANI Design Requirements

Virtualized Application Networking Infrastructure (VANI) is a testbed that allows uni-
versity researchers and application providers to utilize its internal resources to rapidly
create and deploy networked systems, and to even experimentwith new layer three pro-
tocols. Although the underlying concepts of the VANI testbed comes from our view on
Application-Oriented Network [14], but networked systemsrunning in VANI environ-
ment could follow any architecture in any networking layer.The only limitation that the
researchers are facing in VANI is that their experiments should run on top of Ethernet
as their layer two. Next, we describe the main requirements in designing VANI.

The VANI design follows some basic requirements (figure 1) The first requirement
for VANI testbed is that it should allow experimentation forfuture network architec-
tures that might not fit into the traditional layer three definitions. Currently networks
are primarily responsible for delivering raw data but in future it would be possible for
future network architectures to shift-up the network tasksto new functionalities that
might be required by emerging applications. Among these functionalities could be the
task of content-delivery in addition to data-delivery (such as the network architecture
discussed in [14]) that would imply having content processing and storage functions in
the infrastructure.

The second main requirement was to allow researchers to experiment with new layer
three protocols (as in the traditional definition of L3) instead of the current Internet
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Fig. 1. VANI design requirements
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Fig. 2. VANI architecture

Protocol. To do so, we designed the testbed assuming that everything above layer two
could be redesigned and experimented with, and we chose Ethernet protocol as the basis
of our layer two design.

Another main requirement in the testbed is to be able to setupexperiments or create
new applications rapidly using already developed and readyto use components that
could be accessed through open interfaces. These components could be the virtualized
resources such as processing, low-latency hardware processing, and accelerator nodes,
or software components such as event processors that are used in many experiments for
data gathering and analysis. This requirement could be satisfied through the use of the
SOA technologies and standards that could allow flexible anddynamic composition of
reusable service components.

The fourth main requirement was to provide an isolated and secure environment
for researchers to carry on their experiments and develop their networked applications.
This requirement has to be satisfied at different levels suchas traffic separation, band-
width allocations, storage access, secure access to the physical resources, and isolation
between different physical resources. The fifth main requirement was the monitoring
and debugging mechanisms. In our design, we envisioned powerful complex event pro-
cessing components that could be customized to gather and analyze test and debugging
data for each experiment separately as well as for the testbed itself.

2.1 VANI Architecture

Based on these main requirements, we designed a two plane architecture for our plat-
form: control and management plane (VANI-CMP) and applications plane (VANI-AP).

VANI-CMP is responsible for virtualizing physical resources and allocating them to
the researchers and application providers. On the other hand, researchers deploy their
applications and experiments in the VANI applications plane (VANI-AP). Applications
operating in the applications plane can have their own architecture inside an applica-
tions plane slice that is created by VANI-CMP.
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Fig. 3. Researcher interaction with VANI planes

For example, an experiment/application could be a new layerthree protocol that
covers OSI layer three and four functions, could replace TCP/IP layer, or could be a
new content delivery network. Figure 2 shows this architecture including its two planes.

All virtualized resources and service components that can be used by researchers for
creating an application reside in the applications plane. Researchers can ask for these
resources through the testbed control and management planeand then they can directly
connect to the virtualized resource in the applications plane through any resource spe-
cific protocol such as HTTP, UDP/IP, or ssh.

For example, a user can ask for uploading or downloading of a file to the storage
service through the control plane, and then if permitted by the control plane, it has to
directly contact the storage file service using HTTP/TLS connection and download or
upload its files.

VANI control and management plane (VANI-CMP) is responsible for allocating
testbeds resources to the researchers. Researchers ask VANI-CMP for a resource using
VANI-CMP’s Web Service interface. WS interface is chosen dueits universal accep-
tance for SOA, and the abundance of available tools for orchestrating and creating new
applications using independent Web Services.

After receiving the requests for resources from a researcher, VANI-CMP authen-
ticates the researcher and authorizes its request and then sends the request to the re-
source virtualization layer. The resource virtualizationlayer is the layer which abstracts
a physical resource and offers it as a service to the control and management layer. If
the allocation is successful, VANI-CMP records the allocation, and replies back to the
researcher with a successful return result.

VANI-CMP also programs and releases the resource whenever an authorized re-
searcher wants to do so. Figure 3 depicts the logical view of the VANI testbed and how
a researcher interacts with VANI planes.
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2.2 Current Physical Resources in VANI (VANIv1 Resources)

Currently, several physical resources have been virtualized and made available to VANI
users. In [16], the design and development details of these resources have been pre-
sented, and here, we briefly overview these resources and type of functionalities that
they can offer to researchers.

In VANI all physical resources are virtualized. Through virtualization, we separate
applications from their underlying physical resources. Todo so, we developed a virtu-
alization layer and virtualization agents for each physical resource as shown in figure 4.
The task of the virtualization layer is to coordinate the system wide virtualization of a
resource and to expose the resource as a service component with Web Service interface
to the rest of the system, and the agents task is to launch or destroy the virtual resources
on top of each physical resource.

The first physical resource that we have virtualized is the reprogrammable hardware
resource. To develop this resource we have used BEE2 boards [17]. Each BEE2 board
has four high-end Xilinx Field Programmable Gate Arrays (FPGA) each connected to
four 10GE interfaces. We have virtualized all four FPGAs in aBEE2 board so that a
researcher could ask for one or more FPGAs and program it as s/he likes.

Researchers can ask for an FPGA through the control plane andthen program it,
configure it, or release it. They also have access to the libraries for controlling the 10
GE interfaces and some other commonly used hardware blocks such as DDR2 mem-
ory modules. After programming an FPGA, a researcher can directly connect to the
FPGA through the 10GE interfaces according to whatever protocol designed for that
FPGA. For example, a researcher can use one FPGA or all four FPGAs to develop a
layer three router with 4x10GE ports or 16x10GE ports, or a content-based routers that
routes packets based on the packets payload rather than their headers. We present the
performance evaluation results for this hardware resourcein the performance evaluation
section of this paper.
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Another physical resource in the VANI testbed is the processing resource. The pro-
cessing service is developed based on Linux vServer [9] technology. Linux vServer is
an OS-level virtualization software that creates a virtualprocessing node on top of a
Linux kernel. Researchers are able to get a processing resource through VANI-CMP,
and release it whenever they wish to do so. Once a virtual processing node is allocated,
the researcher can directly ssh to the node. Researchers arealso able to program the
virtual processing node with a specific image, create an image of their own, and save it
on the storage service, and share it with others or program other virtual nodes with that
image.

We have also virtualized the internal fabric of the testbed for creating virtual net-
works. The internal fabric consists of a set of high capacityEthernet switches that are
able to isolate traffic between different applications and experiments by creating sep-
arate virtual LANs. Moreover, it allows different experiments to intercommunicate by
creating shared virtual LANs that all have access to. This resource, together with the
processing resource, enable VANI to guarantee the bandwidth for an experiment. Later
in the bandwidth guarantee section, we will discuss this feature in more detail.

The gateway and bridge resource is another developed resource that enables com-
munication between different VANI nodes. If one of the resources in VANI needs to be
accessible from the Internet or from a resource in another VANI node, it can ask for
a public address through the gateway service and get an address for duration that the
external access is needed. The researcher can release the public address when it is no
longer needed.

Th bridge service is used for experiment involving new layerthree protocols on top
of Ethernet network. Using the bridge service, a researchercan send and receive layer
two Ethernet frames to any other VANI node, and hence, would be able to develop and
test new layer three protocols over a wide area network. Thisfunctionality would only
be available if the VANI nodes are connected using a wide areaEthernet network. We
will discuss this case later in more detail.

Another physical resource developed for VANI is the storageresource. Storage re-
source is implemented on a set of distributed file servers that emulates one big storage
server. Researchers are able to connect to the storage service through VANI-CMP and
then directly connect to a file server for uploading and downloading files. All the direct
communications to the file servers for uploading and downloading files are done over a
secure HTTP/TLS connection. Researchers can use this service to store images for pro-
gramming other resources such as processing resource, and reprogrammable hardware
resource, and they can also share file with other researchersthrough this service.

2.3 Example: Requesting a Resource in VANI

Figure 5 shows a sample message exchange scenario between a researcher, the VANI
control and management plane and physical resources insidea VANI node. A researcher
starts requesting for a resource by invoking the getResource operation of the VANI-
CMP WS interfaces. In that request, the researcher includes the type of resource, the
duration and number of required resources.

VANI-CMP authenticates and authorizes the request and forwards the request to the
resource. All resources in the testbed expose their operations to VANI-CMP through a
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Fig. 5. A sample interaction between a researcher and VANI

generic WSDL interface. This makes it possible to easily extend the types of resources
and services in the testbed without changing the control andmanagement software.

The resource responds back to the control plane request witha success result, and
a Universally Unique IDentifier (UUID) for the resource. Thecontrol plane stores this
returned UUID and passes it to the researcher. The researcher can program the resource
identified by returned UUID, and release it at a later time.

In the next section, we delve into the control and managementdesign and we de-
scribe its main functionalities in detail.

3 VANI Control and Management Plane (VANI-CMP)

VANI-CMP is responsible for performing Authentication Authorization Accounting
(AAA) operations and allocates resources to the researchers and application providers.
In addition, it performs user management functions, and stores and manages the testbed
configuration data. It also has a registry for all services and resources that can be used
by researchers for creating a new application or experimentsetup. Researchers can reg-
ister new types of resources in this registry, and make them available for use by other
researchers.

VANI-CMP is designed based on service-oriented design concepts and developed
using SOA technologies. VANI-CMP is developed in Business Processes Execution
Language (BPEL) [18] and deployed on an Enterprise Service Bus (ESB) [19]. Similar
to other virtualized resources and services in the testbed,all internal components and
functions of VANI-CMP have also been developed as independent service components,
and are accessed through Web Services interfaces.

The use of ESB and Web Services enables VANI-CMP to be easily extended in func-
tionality and accessed through other types of interfaces inthe future. This design choice
also enables independent development, testing, and redeployment of internal functions
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of VANI-CMP such as AAA operation, configuration management, etc. Moreover, the
use of BPEL language for VANI-CMP enables a high level description of the VANI
control and management operations. This enables rapid and easy modifications of the
control and management logic.

In the next subsections, we examine each of the functionalities of the control and
management plane and we describe the design steps and interfaces of each of the mod-
ules.

3.1 User Management

Three concepts are used to manage users in VANI: applicationplans, service levels, and
plan administrator levels. Application plans are used to show different experiments and
to organize resources and resource usage in each experiment. When booking a resource,
the researcher must specify which plan (experiment) the resource is being booked on.
Any researcher belongs to a service level which governs whatcontrol operations s/he
is allowed to call and also how much of each resource s/he is allowed to book. Custom
service levels may be designed for specific users in order to maintain flexibility. Lastly,
plan administrator levels are used to govern access to certain resources. Resource users
will be granted specific levels of access defining their ability to release, program, save,
etc.

3.2 Authentication Authorization Accounting

The control software is responsible for handling authentication of users. All operations
in the control plane require users to provide credentials. Currently, credentials are in the
form of a user name and password combination however the implementation allows this
to be easily changed. On every call to the control software, the user is authenticated and
a check is made to ensure that the user has the rights to execute the requested operation.
In addition to authentication, the control software is responsible for authorizing access
to resources. Every access to a resource consists of two checks, ensuring the resource
belongs to the user, and the user has the rights to manipulatethe resource as requested.

In order to prevent outsiders from directly accessing resources and bypassing the
control plane, all requests to resources require credentials known only to the control
plane. This credential is generated when resources are initialized.

The control software keeps a record every time a resource is booked or released.
This keeps an account of which resource was used by which user(on which plan) and
for how long as well as all resources currently in use. Resources are identified by a
UUID generated by the resource and passed back through the control plane.

3.3 Resource Allocation

Resources are booked through the control plane whether the user is a researcher or an
application provider building a resource on top of another.Users provide their creden-
tials and specify which resource they wish to book (on which VANI node) and the plan
to which the resource will belong. The control plane ensuresthe user is allowed to book
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<xsd:element name="getRequestGenericContents">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="internalIP" type="xsd:string"></xsd:element>

<xsd:element name="uuid" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Fig. 6. A sample schema for generic XML content in a getRequest response message

the resource and determines the location (WSDL address) of the resource in the net-
work. A getResource request is then made to the resource. Theresource does not know
who is requesting the resource as this information is hiddenby the control software. If
successful, the resource will return a UUID identifying theresource as well as any other
relevant data which is then passed back to the user. The UUID is used by the control
plane for accounting purposes.

3.4 Generic Resources/Registration

New resources can be made available dynamically in the control plane through a reg-
istration operation. The new resource must consist of a unique name, a service name,
a port name, one or more WSDL addresses, and optionally a JNLP address for the re-
sources GUI. The service and port name are used to create an end point reference which
is assigned to the partner link when the resource is to be accessed. The resource may
have multiple WSDL addresses if there are different instances of the resource on differ-
ent VANI nodes. The control software will select the appropriate address depending on
which node the user is attempting to access. Lastly, a JNLP address may be included
which allows resource creators to design and deploy their own GUI using Java web start
technology [20].

In order for resource creators to dynamically add new resources to the control plane,
it is necessary to use a generic WSDL interface for all resources. The main objective
with the generic interface is to provide a template that makes creating resources easy
while providing flexibility. This is accomplished by providing a number of operations,
messages that are common between many resources such as get,release, and program.
To maintain flexibility, each operation contains an optional XML string which can be
used to customize data that is passed in and out (figure 6). Furthermore a generic op-
eration is included in the WSDL which can be used to include operations not already
included in the template.

4 Security in VANI

One of the basic requirements in VANI design was to make sure the experiments are
done in a secure and isolated environment from the other applications and experiments.
To create this secure environment we have to consider security issues in various parts
of the system architecture.
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The first part is to secure the communications between the researchers and VANI-
CMP. In VANI all communications between these two entities are encrypted using se-
cure SSL connections and WS-security specification. To do so,each researcher has to
share his/her public key with VANI (and vice versa). On top ofthat VANI-CMP au-
thenticates the researchers and application providers using the credentials provided in
all transactions, and then, authorizes the researcher’s access level to the resource.

The second part is the communications between the resourcesand VANI-CMP.
These communications have also been encrypted. Moreover, credentials only known
to the resource and VANI-CMP are included in all communications from VANI-CMP
to the resources.

All internal traffic within one experiment is separated fromother experiments using
tagged Ethernet VLANs. By proper configuration of the testbed internal fabric resource,
we are able to isolate these tagged VLANs from each other. This case is discussed in
more detail in the bandwidth guarantee section.

Communications inside the applications plane, internal toone experiment, or com-
ing to and from that experiment could be encrypted or not depending on the experiment,
and therefore it is outside of the scope of the VANI design. This allows researchers to
freely design and develop new encryption and decryption algorithms in different layers
inside their application plane slice.

5 Bandwidth Guarantee in VANI

In order to make sure that one experiment cannot undermine another experiment’s ca-
pability to send and receive traffic, we need to have a bandwidth guarantee mechanism
in place. Likewise, for communications between different VANI nodes, there should be
a rate guarantee in place so that a distributed experiment could have a guaranteed access
to the available bandwidth.

Since all communication in VANI is carried over the VLAN tagged Ethernet frames,
an Ethernet rate limiting mechanism in processing nodes hasbeen developed. By doing
so, we limit the rate in which each virtual processing node sends and receives traffic
from/to another virtual processing nodes inside a VANI node.

Also the gateway and bridge service controls the rate in which an experiment
sends/receives traffic to/from the VANI wide area network. The wide area network
that is used to connect the VANI nodes would be a research-dedicated network like
CANARIE [10] that can guarantee the aggregated traffic to/from the VANI nodes. If
the wide are network was able to provide dynamic and on-demand bandwidth alloca-
tion, VANI would be able to use this functionality whenever an experiment asks for
sending/receiving traffic to/from the wide area network. VANI nodes could also be con-
nected to the public Internet network, however, bandwidth could not be guaranteed for
the experiments in this case.

To request a bandwidth guarantee in VANI, a researcher can specify the bandwidth
requirements of a virtual processing node in the resource get request. Likewise, a band-
width requirement can be specified when access to the VANI wide are network is re-
quested. The virtualization layer in VANI control and management plane makes sure
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that the specified requirements are met when allocating virtual resources to the experi-
ment.
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Fig. 7. Connecting VANI nodes in IP layer

5.1 Interconnecting VANI Nodes in IP Layer

Figure 7 shows how we can set up an experiment or create a distributed application
across a wide area IP network. In this setting, all resourcesinside an experiment in a
VANI node get a local IP address in the range of 10.X.X.X. All resource could send
traffic to the wide are network using the NAT functionality implemented in the gateway
service (shown as GW in figure 7). It is possible to put multiple gateways in place and
direct outgoing traffic to different gateways to avoid bottlenecks in the system.

On the other hand, if a resource needs to be accessible from the wide area net-
work, the researcher can ask the gateway service for a publicaddress/name, and the
gateway service redirects all traffic to that public addressto the resource’s internal IP
address/VLAN.

5.2 Interconnecting VANI Nodes in Ethernet Layer

Figure 8 shows an Ethernet connected VANI. Ethernet connected VANIs use the bridge
service instead of the gateway service to interconnect. Inside a VANI node, all resources
in an experiment communicate using a specific VLAN which is unique to the VANI
node. If an experiment needs to operate across multiple VANInodes (for instance, to
test a new layer three protocol), the VANI wide area network has to be able to transfer
Ethernet frames. In this case, a unique Q-in-Q tag [21] wouldbe assigned to the experi-
ment. The bridge service would be used to re-frame the internal tagged Ethernet frames
to the wide are Q-in-Q frames and the destination bridge would do the reverse opera-
tion, and deliver the Ethernet frames to the destination MAC/VLAN in the destination
VANI node.

Since Q-in-Q tagged Ethernet frames might not be available in a wide area network,
we are able to define public MACs that can be used for redirecting traffic to an internal
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MAC/VLAN by the bridge service. This functionality would enable any other Ethernet-
based experiment to send Ethernet frames to a resource in another experiment through
the bridge service.

5.3 Experimentation with L3 Protocols

Figure 9 shows how the testbed could be used to test a new layerthree protocol in a a
large scale and distributed environment using proxy nodes.In this setting, the new L3
protocol is tunneled within IP payload to a resource inside aVANI node, and then that
resource strips off the IP header and feed the new L3 packet over the VANI wide are
Ethernet network.

6 SW-Based Resources in VANI

One of the main contributions in our testbed control and management plane is that we
could encapsulate any software or hardware resource in our testbed as a service. To do
so, the resource can be virtualized, and abstracted as a service component that follows
a generic resource WSDL template. Then it can be registered into the control plane and

Testbed Network
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“Red” network 
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Fig. 9. Large scale experimentation with new L3 protocols
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made available to other researchers. Details on how this task can be accomplished have
been discussed in the control and management plane section in this paper.

Examples of such resources as a service are any hardware function or resource that
could be reused in different applications and experiments such as hardware accelerators
for encryption, decryption, content conversion, and content compression/decompression.
Also other reconfigurable hardware modules such as NetFPGA could be virtualized and
offered to the researchers on an on-demand basis.

Other types of processing nodes could also be offered to the researchers as a re-
source. For example, Amazon Elastic Computing Cloud (EC2) nodes [22], GENI vir-
tual processing nodes, VMWare-based virtualized processing nodes [23], or Graphics
Processing Units (GPUs) could be controlled and managed by VANI-CMP.

Moreover, software services such as database service, BPELorchestrator engine
and Complex Event Processing (CEP) engine, could be developed and/or deployed on
top of current virtual resources and made available to the researchers through VANI-
CMP. Currently, we have developed and deployed several software-based resources as
service components in VANI including a database service, BPEL orchestrator engine,
and a sensor service.

7 Federation with GENI

GENI is an initiative to create a large scale experiment through federation between
different testbeds. Federation in GENI is done using GENI wrappers. A GENI wrapper
is developed for each testbed and testbeds could connect to each other through them.
In VANI, we developed a wrapper for control and management plane, and through that
we invoke GENI wrapper operations to get a node on any GENI testbed. We tested our
wrapper with PlanetLab GENI wrapper and managed to obtain a PlanetLab processing
node through our VANI-CMP.

In VANI, researchers are able to get a PlanetLab processing resources using VANI
generic resource template. Since PlanetLab does not support storage service, and also
does not support other VANI requirements such as processingand bandwidth require-
ments, access to PlanetLab processing resources would not support these functionali-
ties. Figure 10, shows the structure of interconnection between VANI and PlanetLab
through the GENI wrappers. Currently, we are in the development phase of offering
VANI resources to GENI researchers through the VANI wrapper.

8 A VANI Node

A VANI node is composed of the resources described in this paper, their corresponding
virtualization software, control and management software, and the storage service. A
VANI node can be totally deployed on a computer cluster composed of normal com-
puting blades, and manageable Ethernet networking elements. The basic resources in a
VANI node are the processing resource, the storage service,and the fabric service for
the network virtualization that are deployed on a computer cluster.
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Fig. 10. Connecting VANI to GENI

All other resources and the control and management softwareare deployed on these
basic services. In addition, all other software-based resources, and the virtualization
layer for resources like reconfigurable hardware resource,and the VANI wrapper for
connecting to GENI testbeds are also deployed on these basicresources.

The only elements that cannot be found in a normal computer cluster are the re-
configurable hardware resources, the gateway and bridge services, and required 10GE
Ethernet switches. These resources are also co-located with the computing cluster to
provide the WAN connectivity and to enable running experimentation with the recon-
figurable hardware resource.

9 Performance Evaluations

Up to now, we presented the VANI architecture and we discussed different aspects of
its design. To find if the currently developed resources can meet VANI design require-
ments, we performed several experiments on those resources. In this section, we present
performance measurements on two key physical resources that have been virtualized
and offered to the researchers in VANI. The first one is the reprogrammable hardware
resource, and the next one is the processing resource. Our main focus in this part would
be to see if we could guarantee the promised quality of service to the researchers that
use these resources in their experiment.

9.1 Reprogrammable Hardware Resource

By introducing a virtualized and reprogrammable hardware resource in VANI, we en-
able researchers to test new networking algorithms and protocols using high perfor-
mance and high throughput hardware resources. To do so, we virtualized BEE2 boards
developed in the University of California at Berkeley. A BEE2 board consists of one
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controlling FPGA, and four high capacity Xilinx Vertex-II FPGAs (figure 11) that can
be programmed by users. Each FPGA has four 10GE interfaces, and 4 GB of memory.

In VANI, a researcher can get a set of FPGAs on a BEE2 board, andcan ask for
on-board inter-chip communication channels which can carry up to 5 GigaBytes per
second (GBps). The detailed design of BEE2 virtualization system and introducing it
as a resource in VANI can be found in [16]. Here, we present theperformance mea-
surements on this resource. The parameters of interest are the programming time of the
FPGAs through the virtualization software as well as the speed with FPGAs can send
and receive data.

The first parameter is the time in which a researcher can program an FPGA through
the testbed control plane. Also, we would like to know how this time would change if
four researchers want to program all four FPGAs concurrently. To do so, we developed
a bitstream that initializes all 10GE interfaces on the FPGAs and starts sending a burst
of UDP/IP packets on one of its 10GE interfaces, and we programmed FPGAs through
VAN-CMP using the generated bistream for several times. Table 1 shows the average
maximum programming time that programming one, two, three,and four FPGAs take.
As can be seen, it only takes 30 seconds on average to program an FPGA in the case
where all four FPGAs are programmed concurrently, and this time is around 11 seconds
if only one FPGA is programmed at a time.

This fast programming time allows a researcher to get an FPGAwith four 10GE
interfaces in less than a minute, and to run an experiment andreturn the FPGA back to
the VANI resource pool as soon as it’s not required.

The next experiment that we performed is to measure the speedwith which the
FPGAs can send and receive traffic. To do so, we developed a traffic generator using
Verilog hardware description language, and we started sending traffic from one 10GE
interface to another 10GE interface on the same FPGA, and we recorded the maximum
bandwidth that we could receive in the hardware resource. Wealso compared this with
the traffic statistics gathered by the Ethernet switch connected to the FPGA. We re-
peated this experiment several times and were able to send and receive Ethernet frames
to the rate of 1GBps, which is equal to 8Gbps. The reason that we could not send more



Virtualized Application Networking Infrastructure 17

FPGAs 1 2 3 4
Programming Time (s)11 17 24 30

Table 1. Average maximum FPGA programming time

traffic is the 8/10 bit encoding mechanism for 10GE-CX4 interfaces, and 8Gbps is the
maximum achievable traffic rate per port on a BEE2 board. In our measurements, this
rate did not change if all ports started sending and receiving traffic at the same time
since separate internal modules are controlling each port.This experiment shows that
one FPGA alone can send and receive 32Gbps traffic. If a researcher get all four FPGAs
on a BEE2 Board it is possible to send/receive traffic in the rate of 4x32=128Gbps.

We have used this reprogrammable resource in developing thehigh capacity gate-
way and bridge service for VANI, and we have developed a bandwidth control mech-
anism on this resource that controls and guarantees the rateat which one experiment
could send and receive traffic to/from a wide are network. In the future, we will present
our design for the gateway and bridge service, and we will present our performance
measurements for this service as well.

9.2 Processing Service and Network Virtualization

Another main physical resource that we have virtualized is the processing service that
uses Linux vServer software. There have been studies on processing virtualization tech-
niques [24], and also specifically on Linux vServer [9]. Linux vServer performance
evaluations show that this virtualization module has a verylow overhead on overall
system performance.
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However, since we are also doing network virtualization in addition to the process-
ing virtualization, we conducted two more experiments thatwere necessary to show
that virtual processing nodes can have guaranteed access tothe VANI network.
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node01 from/to UDP UDP (rl) TCP TCP(rl)
node02 (12.50MBps)24.5/24.312.4/12.415∼35/24.712.3/12.3
node03 (18.75MBps)24.5/24.318.8/18.815∼35/24.318.4/18.4
node04 (25.00MBps)24.5/24.325.3/25.315∼35/24.124.8/24.6
node05 (31.25Mbps)24.5/24.331.7/31.615∼35/22.131.3/31.1
node06 (31.25Mbps)24.5/24.331.7/31.615∼35/23.231.3/31.1

Table 2. UDP/TCP traffic measurements in MBytes per second (MBps)

In our experiment, we virtualized cluster blades with dual Xen 1530 CPUs and 2GB
of RAM and one 1GE interface. The Linux kernel version that weused was 2.6.16, and
we used vServer 2.3.2. patch. The developed virtualizationlayer allows up to ten virtual
nodes on a physical node. For this experiment, we initialized and launched 5 virtual
nodes on a node named node01. We also launched 5 other virtualprocessing nodes
on five separate servers with same capabilities described for node01. These nodes are
named node02 to node06. Each of the virtual nodes in node01 belongs to an experiment
that includes one other virtual node running on one of the other nodes. The topology
and VLAN tags for experiments are shown in figure 12.

In this experiment, we measured the UDP and TCP traffic rate that each virtual node
in an experiment could send and receive in different cases. The first case is to find out
the maximum achievable rate when no limit is placed on the traffic rate and only one
experiment is active. This rate is 122MB per second (MBps) for both UDP and TCP
traffic which is equal to 976Mbit per second (Mbps). Table 2 show the achievable rate
in different cases when all experiments are active and send as fast as they can. Since
all experiments running on node01 try to send and receive on one 1Gbps Ethernet link
concurrently, they get a different share of this available traffic in different cases.

In table 2, we show the maximum traffic rate in MBps between a virtual node on
node01 and its corresponding virtual node on node02 to node06. The UDP and TCP
columns show the maximum rate when all virtual nodes in all experiments send and
receive UDP or TCP traffic, concurrently, without any rate limit mechanism in place.
As it can be seen, because of the massive packet loss in this case, TCP cannot achieve
a stable rate, and its rate changes from 15 to 35 MBps. These measurements prove the
need for a rate limiting mechanism when different experiments want to run on a shared
virtualized infrastructure.

The columns with (rl) show measurements when we limit the send and receive rate
in experiments to (12.5), (18.75), (25), (31.25), and (31.25) MBps respectively, totaling
to 118.75 MBps (950 Mbps). As can be seen, using the rate limitfunctionality we could
achieve the bandwidth guarantee requirements (with maximum 1% deviation from the
target rate) in a VANI node. Another case that we have studiedis the case where all
virtual nodes in one experiment start sending traffic to one virtual node concurrently.
This would result in congestion on the shared link that is serving the destination virtual
node. To solve this problem, we have developed a novel trafficcontrol mechanism that
we will present in a separate paper in future.
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10 Conclusion and Future Work

Virtualized Application Networking Infrastructure (VANI) is a converged communi-
cations and computing network that facilitates the realization of an open applications
marketplace using a service-oriented control and management plane capable of manag-
ing hardware-based and software-based resources.

The architecture of VANI is designed to allow rapid application creation and exper-
iment setup using service-oriented approaches. VANI utilizes virtualized commodity
physical resources such as processing, storage, and networking resources. It also in-
cludes reprogrammable hardware resources used for development and deployment of
high scale and high throughput networking algorithms and protocols.

VANI is designed to enable experimentation with architectures and applications that
provide responsiveness and quality of service by having processing, storage, and hard-
ware acceleration resources in all its nodes. Example applications that are video stream-
ing applications, new content delivery networks, as well aspower-aware and green net-
working architectures. In addition, applications that require high performance comput-
ing and networking can benefit from VANI’s reprogrammable hardware resource. This
resource can be reprogrammed in a short time to run hardware-based networking algo-
rithms and protocols, and can send and receive traffic rates up to 128Gbps. Currently,
we are working on development of a novel green networked system on VANI. We are
also in the process of designing novel functionalities intothe VANI control and man-
agement plane to automate application creation and deployment.
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