
Efficient Implementation of Security Applications
in OpenFlow Controller with FleXam

Sajad Shirali-Shahreza, Yashar Ganjali
Department of Computer Science

University of Toronto
Toronto, Canada

{shirali, yganjali}@cs.toronto.edu

Abstract— Current OpenFlow specifications provide limited
access to packet-level information such as packet content,
making it very inefficient, if not impossible, to deploy security
and monitoring applications as controller applications. In this
paper, we propose FleXam, a flexible sampling extension for
OpenFlow designed to provide access to packet level
information at the controller.
Simplicity of FleXam makes it possible to implement it easily in
OpenFlow switches and operate at line rate without requiring
any additional memory. At the same time, its flexibility allows
implementation of various monitoring and security
applications in the controller, while maintaining balance
between overhead and collected information details. FleXam
realizes the advantages of both proactive and reactive routing
schemes by providing a tunable trade-off between the visibility
of individual flows, and the controller load. As an example, we
demonstrate how FleXam can be used to implement a port
scan detection application with an extremely low overhead.

Keywords-OpenFlow, Port Scan, Sampling,
Software-Defined Network

I. INTRODUCTION
1

Network security applications, such as intrusion detection
systems (IDS), usually require access to packet level
information: port scan detection needs packet header
information (to determine whether a connection is a scan or
legitimate) and inter-arrival times (to detect scans), worm
detection needs access to packet contents (to search for
specific signatures), botnet detection needs connection
patterns and packet contents (to distinguish between
legitimate traffic such as sending email and sending spams).

Software-Defined Networking (SDN) aims at simplifying
and enhancing network control and management, while
making it easy to implement new applications. For some
networks, it might be desirable to implement security
services such as network monitoring and intrusion detection
systems as controller applications in the SDN framework,
due to simplicity and agility of such a solution. For instance,
in small-sized networks, the cost of deploying and
maintaining extra security boxes can be significantly reduced
if we can implement such services as controller applications.

A preliminary version of this was presented at HotSDN 2013 (in
conjunction with SIGCOMM 2013) as a short paper. This project
was partly supported by NSERC SAVI Strategic Network.

However, the feasibility of such a design is not obvious,
as packet level information might not be readily available in
SDN controllers. OpenFlow, a widely adopted open standard
for SDN, is primarily designed for routing applications [1],
and mostly deals with flows rather than individual packets.
There are three major information channels for the controller
in the current OpenFlow specification:

1) Event-based Messages. Event-based messages are
sent by the switches at events such as state change of a link
or port, and usually deliver information about changes in
network structure and topology.

2) Flow Statistics. Flow statistics (received packets,
received bytes and duration in the current specification) are
collected by the switches and pulled by the controller. This
is the only way for the controller to collect information
about active flows.

3) Packet-in Messages. A switch may send a packet-in
message either because it did not know what to do with the
packet – no matching entry found in the flow table – or as a
result of a send-to-controller action in the matching flow
entry. The switch may buffers the original packet and only
includes part of the packet – usually the first 128 bytes – in
the packet-in message.

These information channels are designed to provide flow-
level (as opposed to packet-level) information to the
controller. The first two do not provide any packet-level
information, and the third one only provides limited access to
such information. Even in the original OpenFlow proposal
[1], it is suggested to direct flows that require further packet-
level analysis to a separate machine dedicated to this
purpose.

As a result, it is difficult and inefficient, if not
impossible, to implement security applications that need
packet-level information as OpenFlow controller
applications.

There are two ways for an OpenFlow controller
application to access packet-level information of a given
flow. The first option is to not install any flow entries for the
desired flow on one of the switches on the path. Every packet
of the flow will be a table miss at that switch, triggering a
packet-in message from the switch to the controller. The
controller then needs to tell the switch to send out these
packets on the correct port. The controller can continue this

process as long as it needs access to packet contents, and
ends it by installing a rule to send out the packet on the
appropriate port. This option was used in SDN-based port-
scan detection system proposed by Mehdi et al. [2].

This approach has two major limitations. First, the
controller effectively sits on the packet delivery path,
potentially creating a bottleneck, and leading to increased
packet delivery times. Second, the switch may and probably
prefer to buffer the packet locally and only send part of it to
the controller. This will limit the amount of packet content
that controller can access. While this might not be a problem
for some applications such as port scan detection [2] that
only need packet header, it will create problems for
applications such as worm detection that need to search the
entire packet content.

The second option, which was suggested in [1], is to ask
the switch to send a copy of each packet to another machine
(probably a monitoring host other than controller,
considering the load and scalability issues of the controller),
during the forwarding process. While this option does not
have the problems associated with the previous option, it
might have a high overhead in certain scenarios. The entire
flow will be sent to the monitor, regardless of whether it only
needs the few first packets, only packet headers, or just a few
samples every minute. The monitoring machine needs to be
extremely powerful given the significant load resulting from
applications such as IDS that need to process all connections.
This can lead to major increases in cost and complexity of
the network.

In this paper, we propose FleXam, a flexible sampling
extension for OpenFlow that enables the controller to access
packet-level information. Simply stated, the controller can
define which packets should be sampled, what part of packet
should be selected, and where they should be sent. Packets
can be sampled stochastically (with a predetermined
probability) or deterministically (based on a pattern), making
it flexible for different applications. At the same time, it is
simple enough to be done entirely in the data path. The
controller can also request switches to only send part of
packets that are needed (e.g. headers only, payload, etc.) and
define where they should be sent, make it possible to easily
manage and distribute the load.

FleXam allows developers to implement security
applications that need packet level data with low overhead.
As a result, the application could be run directly on the
controller for small networks, eliminating the need for
additional monitoring machines. More complex applications
for larger networks can be implemented with the help of
distributed monitors, at a fraction of the overhead of existing
solutions, where all flow has to be directed to a monitor

FleXam can also be used to infer information about
different flows that match a wild-carded rule (a flow entry
that match more than one flow, e.g. all flows from host A to
host B). This is a powerful complement to switch statistics
that makes it easier to use proactive control schemes without
losing visibility. As a result, we have the best of both worlds:
flow setup times are eliminated, we can have a smaller flow
table, and the control plane load will also be reduced [3],
while we still have visibility over active flows.

II. OPENFLOW SAMPLING EXTENSION

Our goal is to provide a sampling feature that is general
enough for different applications, simple to be implemented
fully in the data-path and operate at line rate and completely
tunable by the controller to balance the overhead and
information detail.

FleXam includes two types of sampling: (1) select each
packet of the flow with a probability of ρ, and (2) select m
consecutive packets from each k consecutive packets,
skipping the first δ packets of the flow.

The first case is the stochastic sampling. The second case
is a generalized version of the deterministic sampling. For
m=1, it is equivalent to the normal one out of k, or every kth
packet sampling. If an application needs more than one
consecutive sample, it can set m to a value more than one. By
choosing a very large k, an application can ensure it will only
receive the first m consecutive packets. This is usually what
security applications such as intrusion detection need.
Finally, by changing the value of δ, the application can skip
the first few packets of each flow. This can have a significant
impact on the number of sampled packets, by excluding
small and short flows (mice flows).

Considering that sending full packets could impose a
significant load on the network, and not all applications need
full packet contents, we let the controller decide what parts
of sampled packets should be sent (e.g. IP header only).

Although there are previous works in the SDN domain
that use sampling, they either use uniform sampling methods
like sFlow, such as DevoFlow [3], or use statistics that are
gathered by OpenFlow switches – e.g. received packet count
– to replace the need for sampling techniques like NetFlow,
such as the one proposed by Jose et al. [4].

FleXam is a per-flow sampling, so it has the advantages
of per-flow sampling such as generating more accurate
estimation of traffic statistics [5] in comparison to per-packet
sampling methods like sFlow. It is also more useful for
security applications (such as intrusion detection systems
(IDS)) that need data about short-lived flows, which can be
missed by uniform sampling [6] or flow-based sampling
techniques that focus on heavy-hitters [7]. Note that we are
not proposing a new sampling method. We are proposing an
extension to OpenFlow that enables the controller to
efficiently perform sampling. We believe such an extension
can be extremely useful for some applications such as
monitoring and security applications.

A. OpenFlow Specification Modification

In our OpenFlow implementation, we define sampling as
a new action (OFPAT_SAMPLING) that could be assigned
to each flow. This new action is similar to
OFPAT_OUTPUT, which sends the sampled packet to the
controller. The action has six parameters: scheme, ρ, m, k, δ
and destination. The scheme parameter defines the sampling
scheme that identifies which parts of the sampled packets
will be sent. The m, k, and δ parameters define deterministic
sampling, and the ρ parameter defines stochastic sampling.
The destination parameter defines the host that sampled
packets should be sent to. It could be the controller (e.g. for
small networks that that the controller can run the application

that uses the sampled data) or another host that will process
the sampled packets and communicate with the controller.

Representing sampling as an action has two main
advantages. First, it can be easily added to current OpenFlow
implementations without the need to modify the overall
processing structure (such as matching with the flow table or
performing different actions). Second, there is no overhead
for flows that do not need sampling.

B. Switch Implementation

Implementing per-flow sampling in traditional networks
and in solutions such as ProgME [8] requires significant
changes to the hardware and packet processing flow in the
switches. However, identifying the flow that the packet
belongs to and keeping a record of the identified flows – a
major task for per-flow sampling methods in traditional
networks such as ProgME [8] – is an essential part of
OpenFlow. As a result, our sampling extension could be
easily implemented without requiring any significant
hardware changes or software modifications.

The stochastic case is relatively straightforward to
implement: for each packet, we generate a random number
uniformly between 0 and 1. If it is less than ρ, the packet will
be selected for sampling.

The deterministic case can also be implemented easily,
without any additional memory or counter. OpenFlow
switches maintain a number of counters for each flow. One
of them is the Received Packets counter, which counts the
number of packets received for each flow. Deterministic
sampling of m first packets from each k packets after
ignoring δ packets could be done using this counter: if

((Received_Packet_Counter-δ) % k)<m
then the packet will be sampled. This simple expression
could be executed in the data-path at line rate without need
to any new memory for sampling.

III. PORT SCAN DETECTION

To demonstrate how FleXam can be used to implement
security applications, we show how we can implement the
Threshold Random Walk (TRW) [9] port scan detection,
which is one of the prominent port scan detection methods
studied in different previous studies [7] [2] [10].

A. Threshold Random Walk

TRW is based on the assumption that during a port scan,
the attacker tries to connect to different hosts and most of
these connections fail, while the probability of a failed
connection is relatively low for a benign host. This algorithm
performs a sequential hypothesis testing by maintaining a
likelihood ratio for each host. Each time the host initiates a
connection to another host, this likelihood ratio will be
increased if the connection failed, or decreased if the
connection succeeded.

TRW assumes that we can mark each connection either
as successful or failed when it starts. Considering that the
monitoring host may not receive all packets of a connection
(e.g. due to sampling [7] or as a result of unidirectional links
in backbone [10]), there are slightly modified versions of it
for such cases. We implemented a similar modification: a

UDP connection is marked as successful if we see at least
two packets from it, and a TCP connection is marked
successful if we see at least one packet that is not TCPSYN.

B. Evaluation Setup

We use an OpenFlow switch simulator that we have
developed for simulating packet processing. Our simulator
provides an API similar to the API provided by NOX [11],
so our port scan detection implementation can be easily
changed to run on real hardware.

We use the benign and port scan attack data collected by
Mehdi et al. [2]. The benign traffic is collected from 8
different hosts in a residential network over a period of one
day and then merged together. The attack traffic is collected
from three hosts performing a TCP SYN port scan attack to
port 80 with 5 different rates (0.1, 1, 10, 100, and 1000
packets/second) for a period of two minutes. The attack and
the benign data are provided separately. To better simulate
the real world port scan attacks, in which a host might
initiate an attack and at the same time generate other
legitimate connections, we created 20 different trials from
these data set by inserting the attack data at different times
inside benign data, and averaged the results over all runs.

C. Resolving Flow-Shortening Problem

We start by describing how the FleXam deterministic
sampling can be useful in port scan detection. One of the
problems that per-packet uniform sampling introduces for
port scan detection is flow-shortening [7]: we will only see a
small fraction of flow samples. For small flows, it means that
we probably see only one packet. If this is the SYN packet,
then that connection will mark as a failed connection,
decreasing the accuracy of port scan detection.

Deterministic sampling in FleXam can easily solve this
problem. If we see the SYN packet from a flow, then we can
ask the switch to send us the next packet from this flow by
setting m=1 and k=∞. As a result, the next packet of this
connection (which will be the first packet that matches the
flow entry rule) will be sampled. So we will definitely
receive another packet from flows that are not a single SYN
packet, and they will not be marked as failed connection,
eliminating the flow-shortening problem.

D. Elephant Flow Exclusion

Performing uniform per-packet sampling with probability
ρ is simple with FleXam: every installed flow entry rule will
have a sampling action with stochastic sampling rate ρ and
there is also one wild-carded rule2 rule that matches all other
packets with an action to perform sampling with probability
ρ. However, uniform per-packet sampling is not suitable for
port scan detection. The major problem of per-packet
sampling (in addition to the flow-shortening that discussed
previously) is missing most of the short flows – also known

2 For simplicity, we assume that one single rule can describe
how the rest of traffic should be routed. In reality, this one
rule might be replaced with a set of rules (e.g. one rule per
output port).

as flow-reduction [7] – which are important for security
applications such as port scan detection [6].

To solve this problem, we identify and exclude large (i.e.
elephant) flows, which enables us to focus on small (i.e. non-
elephant) flows and spend our sampling budget only on
them. This is based on the fact that a small number of flows
carry most of the traffic [12]. Figure 1 shows the benign
traffic statistics that we used. We can see that while less than
6% of flows have more than 50 packets, they carry 96% of
all packets and 95% of total bytes. FleXam enables us to
identify and exclude elephant flows with a very low
overhead (both in terms of switch/controller and network
load), without the need to complicated modifications to
OpenFlow switches (e.g. DevoFlow [3] or Hedera [13]).

We use the same sampled packets that are sent by the
switches for port scan detection to identify elephant flows: a
wild-carded rule is installed with stochastic sampling rate ρ
action that matches all packets that do not belong to any
detected elephant flows. We keep track of how many packets
we see from each observed flow (any flow that we are aware
of since we have received at least one sampled packet from
that flow in the past). If the number of packets we have
received from a flow is greater than ε – the elephant flow
detection threshold – then we mark this flow as an elephant
flow and exclude it from sampling by installing a rule that
describes how its packets should be routed but without any
sampling action. This process will identify and exclude flows
with size greater than ε/ρ.

As a result, for a fixed sampling budget (the acceptable
network overhead), we can have a higher sampling rate for
non-elephant flows. This could result in higher accuracy for
port scan detection without increasing the network overhead.

E. Network Overhead

There are two tunable parameters in our port scan
detection method: non-elephant flow sampling rate (ρ) and
elephant flow detection threshold (ε). Increasing each of
them will increase the overhead. However, they have
different effects: increasing the non-elephant flow sampling
rate (ρ) will increase the accuracy as we will see smaller
flows with a higher probability. Increasing the elephant flow
detection threshold (ε), on the other hand, will decrease the
number of flows marked as elephant and reduce the flow
table occupancy on switches.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000

CD
F

(%
)

Flow Size (packets)

Total Traffic %

Flow Count %

Total Packet %

Figure 1. Benign traffic statistics.

Figure 2. Sampling overhead for different (ρ, ε) values.

We tested a wide range of possible values for these
parameters in our simulations: sampling rates of 1%, 2%, …,
100% and elephant flow detection threshold 1, 2, 3, …,
3000, 4000, 5000 and ∞. Figure 2 shows the overhead of
different combinations of these parameters. As we see, the
sampling overhead is low for a wide range of values, i.e. it is
less than 0.4% for ρ<10 and ε<10.

F. Accuracy

For attack rates of 10, 100 and 1000 packets/seconds, all
scanners were detected for any pairs of (ρ, ε), i.e. we have an
accuracy of 100%. For these attack rates, we could select the
pair (ρ=1%, ε=1) that has about 0.1% overhead for 10 and
100 pkts/s and 0.5% overhead for 1000 pkts/s.

In the case of lower attack rates (0.1 and 1 pkts/s), the
accuracy depends on the values of ρ and ε. Figures 3 and 4
show the average accuracy for these attack rates as a function
of ρ (averaged over all ε) and ε (averaged over all ρ). As we
can see, the accuracy only depends on the sampling rate. The
parameter ε only determines when an observed flow should
be marked as an elephant and excluded from sampling, and
has no impact on how many different flows are seen.

0

10
20

30
40

50
60

70
80

90
100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

 (%
)

Non-Elephant Flow Sampling Rate (%)

0.1

1

Figure 3. Average accuracy for different sampling rates.

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Elephant Flow Detection Threshold

0.1

1

Figure 4. Average accuracy for different elephant flow detection

threshold.

The reason that accuracy for an attack rate of 0.1 pkts/s is
zero for small values of ρ is that the attack duration is only 2
minutes, so there are only 12 attack flows, while TRW needs
at least 7 consecutive failed connections to mark a host as a
scanner. Figure 3 shows the average accuracy over all values
of ε. Among pairs with 100% accuracy, the pair of (ρ=50%,
ε=3) has the lowest overhead of 0.7% for an attack rate of
0.1 pkts/s, and the pair of (ρ=5%, ε=4) has the lowest
overhead of 0.25% for an attack rate of 1 pkts/s.

False positives – benign hosts marked as scanners – are
extremely rare with our method, mainly due to the
deterministic sampling that enables us to solve the flow-
shortening problem: only in 0.06% of more than 50,000
simulations one of benign hosts incorrectly marked as
scanner, and there was no clear relation between the attack
rate, the non-elephant flow sampling size, or the elephant
flow detection threshold and these false detections.

G. Comparison

In this section, we compare the accuracy and overhead of
our algorithm with other possible options to perform port
scan detection. We start with uniform sampling. The special
case of ε = ∞ represents the uniform sampling: no flow will
be excluded from the sampling and all packets will be
uniformly sampled with probability ρ. Figure 5 shows the
accuracy of uniform sampling. The minimum required
sampling rate for 100% accuracy is 60% for an attack rate of
0.1 pkts/s and 7% for an attack rate of 1 pkts/s. For higher
attack rates (10, 100, and 1000 pkts/s), 1% sampling leads to
100% accuracy, so in these cases, the overhead is 1%.

Next, we compare the overhead of our method with the
scheme proposed by Mehdi et al. [2] that uses current
OpenFlow packet-in messages. In their implementation, they
do not install any rule upon receiving the first packet of the
flow, and wait for the second packet to determine whether
the connection was successful or not, and then install the
rule. So the overhead of their method is equal to the case of
(ρ=100%, ε=2). The overhead associated with this approach
is shown in Table 1. These results show that FleXam
significantly reduces the network overhead for port scan
detection in comparison to uniform packet sampling or
approaches such as Mehdi et al. [2] that use packet-in
messages to access to packet contents.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

 (%
)

Uniform Sampling Rate (%)

0.1

1

Figure 5. Uniform sampling accuracy.

TABLE I. OVERHEAD COMPARISON OF DIFFERENT METHODS

Method
Attack Rate

0.1 1 10 100 1000

Our Method 0.7% 0.25% 0.1% 0.1% 0.5%

Uniform Sampling 60% 7% 1% 1% 1%

Mehdi et al. [2] 1.1% 1.2% 2% 9% 47%

Reactive OpenFlow Routing 0.7% 0.8% 1.5% 8.7% 47%

Finally, we compare the overhead of our method with
regular reactive routing in OpenFlow without any port scan
detection. Here, the first packet of each flow is sent to the
controller (via a packet-in message) and then the controller
installs the flow entry in the switches. This is equal to the
case of (ρ=100%, ε=1). The overhead of these packet-in
messages is shown in Table 1, which shows that our port
scan detection overhead is even less than normal reactive
routing overhead.

Figure 6 shows the flow visibility of controller
(percentage of flows that the controller received at least one
packet from them) for different non-elephant flow sampling
rates. Flow visibility only depends on non-elephant flow
sampling rate (ρ), similar to the accuracy (see section III.F).
Although the reactive routing gives the controller 100% flow
visibility, the controller may not need such a high flow
visibility. On the other hand, simple proactive routing
reduces the flow visibility to 0%, because all packets will be
routed by switches without reaching the controller. FleXam
enables the controller to achieve a balance between flow
visibility and controller overhead depending on control
applications requirements. Regular proactive or reactive
routing schemes are special cases in this model.

IV. OTHER POSSIBLE APPLICATIONS

In the previous section, we demonstrated how we can use
FleXam to implement port scan detection as an example of
security applications. In addition to security applications,
FleXam can be used for other types of applications:

0
10

20
30

40
50

60
70

80
90

100

0 20 40 60 80 100

O
bs

er
ve

d
Fl

ow
 (%

)

Non-Elephant Flow Sampling Rate (%)

0.1

1

10

100

1000

Figure 6. Flow visibility of different sampling rates.

Traffic Classification: The controller could analyze the
data payload of sampled packets, e.g. the first few packets
[14], to determine the traffic type of flow to provide Quality
of Service or block certain type of traffics. For example, it
could reserve some low-load routes for time-sensitive flows
such as VOIP, then detect and reroute VOIP traffic through
them. This is not possible in current specifications as the
controller has no access to packet contents.

Quality of Service: The controller could use the arrival
time of sampled packets to deduce the overall behavior of the
flows for QoS purposes. For example, it could distinguish
between constant rate flows and flows that send a burst of
data and then wait. This information could be used to predict
possible congestion or provide better QoS for delay-sensitive
or loss-sensitive flows. In other words, the controller can
infer fine-grained traffic properties that “have a significant
impact on effectiveness of switching mechanisms and traffic
engineering” [15].

Diagnostics: Sampling can help network administrators
become aware of what is happening in the network. In the
extreme case of sampling with a rate of 1/1, a copy of each
packet would be sent to the controller. Although this would
impose a huge overload, it would enable the operator to see
exactly what is happening in a switch. In other words, the
operator could remotely see every packet – or a subset of
packets – that passes through the switch to determine
possible causes of a problem. This will be similar to
OFRewind [16]. A selective sampling approach can control
the overhead, e.g. only sample packets on the switch that has
problem, or packets from a specific application or machine
that may cause the problem.

V. CONCLUSION

In this paper, we proposed FleXam, a flexible sampling
extension for OpenFlow that enables the controller to access
packet-level information such as packet contents. Our
extension is flexible for different applications (supporting
both deterministic and stochastic sampling), yet simple
enough to be implemented entirely in switch data-path and
operate at line rate without requiring any additional memory.
Using simulations, we showed how FleXam can be used for
efficient implementation of a port scan detection application,
as an example of security applications that need access to
packet-level information.

In addition to flexibility, FleXam is also scalable. For
small networks, the samples can be sent to the controller and
applications running on the controller. This can eliminate the
need for deployment and maintenance of multiple devices
for network management and monitoring, leading to
significant reductions in cost. On the other hand, for larger
networks where having dedicated middleboxes is
unavoidable, FleXam can still be used to significantly reduce
the load to such boxes. The downside here is that we need to
update the box to work with sampled traffic, a requirement
that sometimes can be challenging.

Security applications are not the only applications that
can benefit from FleXam. For example, the elephant flow
detection that we performed to eliminate elephant flows from
sampling, could be used in routing applications to optimize
the routing path of elephant flow while eliminating flow
setup time for mice flows, similar to what DevoFlow [3] tries
to do. We leave other applications of FleXam as a future
work.

REFERENCES

[1] McKeown N., et al. 2008. OpenFlow: enabling innovation in

campus networks. Comput. Commun. Rev. 38(2). 69-74.
[2] Mehdi, S.A., Khalid, J., and Khayam, S.A. 2011. Revisiting

traffic anomaly detection using software defined networking.
In RAID'11. 161-180.

[3] Curtis, A.R., et al. 2011. DevoFlow: scaling flow
management for high-performance networks. In
SIGCOMM'11. 254-265.

[4] Jose, L., Yu, M., and Rexford, J. 2011. Online measurement
of large traffic aggregates on commodity switches. In Hot-
ICE'11. Paper 13.

[5] Hohn, N., and Veitch, D. 2006. Inverting sampled traffic.
IEEE/ACM Trans. Netw. 14(1). 68-80.

[6] Salem, O., et al. 2010. A scalable, efficient and informative
approach for anomaly-based intrusion detection systems. Int.
J. Netw. Manag. 20(5). 271-293.

[7] Mai, J., et al. 2006. Is sampled data sufficient for anomaly
detection? In IMC '06. 165-176.

[8] Yuan , L., et al. 2011.ProgME:towards programmable
network measurement. IEEE/ACM Trans. Netw. 19(1).115-
128.

[9] Jung, J., et al. 2004. Fast portscan detection using sequential
hypothesis testing. In S&P 2004. 211-225.

[10] Sridharan, A., et al. 2006. Connectionless port scan detection
on the backbone. In IPCCC 2006. 10-576.

[11] Gude, N., et al. 2008. NOX: towards an operating system for
networks. SIGCOMM Comput.Commun. Rev. 38(3).105-110.

[12] Estan, C., and Varghese, G. 2003. New directions in traffic
measurement and accounting. ACM Trans. Comput. Syst., 21
(3), 270-313.

[13] Al-Fares, M., et al. 2010. Hedera: dynamic flow scheduling
for data center networks. In NSDI'10.

[14] Hassas-Yeganeh, S., et al. 2012. CUTE: traffic Classification
Using Terms. In ICCCN’12.

[15] Benson, T., et al. 2010. Understanding data center traffic
characteristics. In SIGCOMM CCR. 40(1). 92-99.

[16] Wundsam, A, et al. 2011. OFRewind: enabling record and
replay troubleshooting for networks. In USENIX ATC'11.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

