
IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 43/46 Vol.8, No.3, May 2013

KANDOO: A FRAMEWORK FOR EFFICIENT AND SCALABLE OFFLOADING OF CONTROL

APPLICATIONS

SOHEIL HASSAS YEGANEH AND YASHAR GANJALI

UNIVERSITY OF TORONTO

{SOHEIL, YGANJALI}@CS.TORONTO.EDU

1. Introduction

Frequent network events can easily stress the control

plane and hinder the scalability of Software-Defined

Networks (SDNs) [1]. For instance, network-wide

statistic collection and flow arrivals at a high frequency

can over-consume the bandwidth allocated for the

control channels with severe impact on other parts of

the control plane. Thus, limiting the overhead of

frequent events on the control plane is essential for

scalable Software-Defined Networking.

Existing solutions try to address this problem by

processing frequent events in the data plane. For

instance, DIFANE [3] offloads part forwarding

decisions to special switches, called authority switches,

and DevoFlow [1] introduce new functionalities in the

data plane to suppress frequent events and to reduce the

load on the control plane.

To limit the load on the controller, an effective option

is to handle frequent events close to the datapath, but

preferably without modifying switches. Adding new

primitives to switches comes at the cost of visibility in

the control plane and necessitates changes to the

southbound protocols (e.g., OpenFlow).

Kandoo. Taking an alternative route, we have

proposed Kandoo [4], a framework for preserving

scalability without modifying switches. Kandoo is a

novel distributed control plane that offloads local

control applications (i.e., applications that do not

require the network-wide state), over available

resources in the network to process frequent events at

scale.

2. Design

As illustrated in Figure 1, a network controlled by

Kandoo has multiple local controllers and a logically

centralized root controller structured in a two layer

hierarchy: (i) at the bottom layer, we have a set of

controllers with no interconnection, and no knowledge

of the network-wide state, and (ii) at the top layer, we

have a logically centralized controller that maintains

the network-wide state. Controllers at the bottom layer

run only local control applications near datapath. These

controllers handle most of the frequent events and

effectively shield the top layer.

Kandoo is OpenFlow-compatible in a sense that it does

not introduce any new data plane functionality in

switches, and, as long as they support OpenFlow,

Kandoo supports them, as well. To that end, all

network functionalities are implemented as control

applications that are automatically distributed by

Kandoo without any manual intervention. In other

words, Kandoo control applications are not aware of

how they are deployed in the network, and application

developers can assume their applications would be run

on a centralized OpenFlow controller. The only extra

meta-data Kandoo requires is a flag showing whether a

control application is local or not.

Figure 1. Two layers of controllers in Kandoo.

An Example. To shed more light on Kandoo’s design,

we show how Kandoo can be used to reroute elephant

flows in a simple network of three switches (Figure 2).

Our example has two applications: (i) Appdetect that

detects elephant flows, and (ii) Appreroute that reroute

the detected elephant flows. To detect elephant flows,

Appdetect constantly queries each switch. Once an

elephant flow is detected, Appdetect notifies Appreroute,

which in turn may install or update flow-entries on

network switches. Without modifying switches, it is

extremely challenging, if not impossible, to implement

this application in current OpenFlow controllers [1].

That is to say, collecting network-wide statistics from a

(logically) centralized control would place a

considerable load on control channels that results in

profound degradation in the quality of service.

As shown in Figure 2, Kandoo replicates Appdetect on

processing resources close to the switches; hence, each

application instance can frequently query each switch

to detect an elephant flow without affecting the other

parts of the control plane. Once an elephant flow is

detected, Appdetect notifies Appreroute residing on the root

controller. Since these events are significantly less

frequent than statistic queries, Kandoo can scale

considerably better than a normal OpenFlow network.

Kandoo local controllers alongside with the logically

centralized root controller collectively form Kandoo’s

Sw itch

Local
C ontroller

Sw itch Sw itch Sw itch Sw itch

Local
C ontroller

Local
C ontroller

Root C ontroller

Rare
Events

Frequent
Events

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 44/46 Vol.8, No.3, May 2013

distributed control plane. Each local controller can

control multiple switches, but each switch is controlled

by one and only one local controller. If the root

controller needs to communicate with a switch, it

delegates the request to the respective local controller.

For high availability, the root controller can register

itself as a slave controller in switches supporting

OpenFlow 1.2 or higher.

Figure 2. Rerouting elephant flows in Kandoo.

Deployment Model. Kandoo has an elastic

architecture, and thus can be tailored based on the

characteristics of a network. For in-software, virtual

switches, local controllers can be directly deployed on

the same end-host. Similarly, for programmable

switches equipped with general purpose co-processors,

we can deploy Kandoo directly on the switch.

Otherwise, we deploy Kandoo local controllers on the

processing resources closest to the switches (e.g., on an

end-host directly connected to the switch). In such a

setting, one should provision the number of local

controllers based on the workload and available

processing resources. We note that one can utilize a

hybrid model in real settings.

3. Concluding Remarks

Kandoo is a highly configurable and scalable control

plane, with a simple yet effective approach: it

processes frequent events in highly replicated local

control applications and rare events in a logically

centralized controller. As confirmed by experiment [4],

Kandoo scales considerably better than a normal

OpenFlow implementation.

Although distinctive, Kandoo’s approach is orthogonal

to other distributed control plane. HyperFlow [2] and

Onix [5] try to distribute the control plane while

maintaining logically centralized, eventually consistent

network state. These approaches can be used to realize

a scalable root controller; the controller that runs non-

local applications in Kandoo.

Moving forward, we are extending Kandoo’s

abstraction to include control applications that are not

necessarily local but that have a limited scope and can

operate by having access to the events generated by a

part of the data plane. We note that this necessitates

using a hierarchy of controllers (as opposed to the

presented two-level hierarchy). We have also started

porting Kandoo to programmable switches. When such

switches are equipped with Kandoo, they can natively

run local control applications.

References

[1] Jeffrey C. Mogul et al., "DevoFlow: cost-effective flow

management for high performance enterprise networks,"

in Proceedings of the 9th ACM SIGCOMM Workshop on

Hot Topics in Networks, 2010, pp. 1:1--1:6.

[2] Amin Tootoonchian and Yashar Ganjali, "HyperFlow: a

distributed control plane for OpenFlow," in Proceedings

of the 2010 internet network management conference on

Research on enterprise networking, 2010, pp. 3-3.

[3] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and

Jia Wang, "Scalable flow-based networking with

DIFANE," in Proceedings of the ACM SIGCOMM

conference, 2010, pp. 351-362.

[4] Soheil Hassas Yeganeh and Yashar Ganjali, "Kandoo: a

framework for efficient and scalable offloading of

control applications," in Proceedings of the first

workshop on Hot Topics in Software Defined Networks

(HotSDN'12), 2012, pp. 19-24.

[5] Teemu Koponen et al., "Onix: a distributed control

platform for large-scale production networks," in

Proceedings of the 9th USENIX OSDI conference, 2010,

pp. 1-6.

Soheil Hassas Yeganeh is PhD

student at the University of

Toronto. He received his bachelors

and masters from Sharif University

of Technology. His research

interests include software-defined

networking, network virtualization,

and congestion control.

Yashar Ganjali is an associate

professor of computer science at

the University of Toronto. His

research interests include packet

switching architectures/algorithms,

software defined networks,

congestion control, network

measurements, and online social

networks. Dr. Ganjali has received

several awards including an Early

Researcher Award, Cisco Research Award, best paper

award in Internet Measurement Conference 2008, best

paper runner up in IEEE INFOCOM 2003, best demo

runner up in ACM SIGCOMM 2008, and first and

second prizes in NetFPGA Design Competition 2010.

Root C ontroller

Local C ontrollerLocal C ontroller

Sw itchSw itch

Appdetect

End-host Sw itch

Appdetect

End-host

Flow -Entry

Eelephant

Legend

Logical C ontrol C hannel

D atapath C onnection

Local C ontroller

Appdetect

Appreroute

Flow -Entry

