Virtualized Application Networking Infrastructure

Bannazadeh H., Leon-Garcia A., Redmond K.,
Tam G., Khan A., Ma M., Dani S., and Chow P.

Electrical and Computer Engineering Department
University of Toronto
10 King’s College Road, Toronto, ON M5S 3G4 Canada
hadi . bannazadeh@ut or ont 0. ca

Abstract. In this paper, we present a new platform for experimenting with net-
worked systems and distributed applications called Virtualized Application Net-
working Infrastructure (VANI). This infrastructure is designed asoaverged
communications and computing infrastructure that would facilitate operafion
an open applications marketplace. VANI enables introduction of new mietave
chitectures that require in-network (hardware-accelerated) cqmecessing and
storage. We describe the VANI architecture and the resources it pROWANI

has two main planes; control and management plane, and applicatiores pla
VANI resources are virtualized and made available to the researahe rEpgli-
cation providers through a service-oriented control and managgrteere. The
current VANI resources are processing, storage, networkingaunalis software-
based resources. VANI also includes a new reprogrammable hardesource
that enables experimenting with hardware-based or hardware-ateelaet-
working algorithms and protocols. We present performance evalsatibthis
reprogrammable hardware resource, and the VANI virtual netwgrkiecha-
nism. The results show that by using the reprogrammable hardwarerces
researchers can evaluate high performance and high throughmatrkieg algo-
rithms as easily as evaluating software-based networking algorithms.

Key words: Networking Testbed, Network Architecture, Service-Oriented Ar-
chitecture

1 Introduction

In the past few years, the idea of clean slate network designbleen circulated in
the networking community and there have been several patgp&s introducing new
network architectures and protocols [1, 2, 3]. One of theomabstacles in introduc-
ing new network architectures was and still is experimémtatith proposed network
architectures in a large scale environment and possibly missive numbers of end
users. To address this problem, there have been severafiveis to build large scale
testbeds for networking research.

GENI [4] is one of these initiatives that tries to create dlted by federating dif-
ferent testbeds such as PlanetLab [5, 6] and Emulab [7] ooftagesearch dedicated
network. GENI is still in the design and development phase,cirrently it follows
a slice-based architecture [8], and different testbedddvibe able to connect to each

2 Hadi Bannazadeh et al.

other through GENI wrappers. The exact communication patbetween the GENI
wrapper and the testbed is left to each testbed'’s contrakpdad currently there are a
few major control planes that are trying to federate usimgwhappers.

Probably among these testbeds PlanetLab [5] is the mostogeek PlanetLab pro-
vides edge hosts on Internet and implements a slice-baskifieature using the Linux
vServer [9] technology. PlanetLab, however, does not haslear solution for exper-
imentation with new layer three protocols, and it's not cleaw it would facilitate
building high scale new routers that would need hardwassthacceleration.

In Canada, there is a research dedicated optical netwdddd@aANARIE [10] that
provides light paths connecting universities and reseeaettiers across Canada. CA-
NARIE has sponsored design and development of a User Chaatrbight Path [11]
(UCLP) software that enables researchers to configure CAEARtwork elements
through Web Services (WS) interfaces on-demand.

Another major initiative is FEDERICA [12] in Europe that isder development
through federation of several research network platformiSurope such as i2CAT in
Spain and HEAnet in Ireland. FEDERICA uses WS-based UCLRveoft for creating
on-demand virtual networks atop of involving test platferm

Another project for experimentation with lower layer protés and networking al-
gorithms is NetFPGA [13]. NetFPGA is a PCI card with a Fieldg@ammable Gate
Array (FPGA), and four Gigabit Ethernet interfaces thatldde used for developing
networking components such as a layer three router or a laaedaccelerator.

In this paper, we present a new testbed for networking exygris and networked
systems. This testbed is different than the above mentigmefcts in several as-
pects. It benefits from a novel architecture for control arahagement functions ca-
pable of managing various hardware-based and softwaedh@sources. It also al-
lows experimenting with new network architectures thatunexjin-network content
processing and storage capabilities. Moreover, it induaew high performance and
high throughput hardware resource that makes experinemtaith hardware-based or
hardware-accelerated networking algorithms and prosoasleasy as experimentation
with software-based protocols.

Our vision in designing this testbed was to develop a comeigpmputing and
communications infrastructure to support an open apjdicatmarketplace. We in-
vestigated architectural aspects of this applicatioerddd network and presented a
proposal in [14]. We also investigated autonomic manageissaes and proposed an
approach using virtual networks in [15].

The essential aspects to enabling the above applicatiented environment are:
1. Service-oriented application creation; 2. Infrastinetas a Services methods for
configuring and scaling resources to support applicati®ngjrtualization of physical
resources.

Based on this view of an application-oriented network, wganethe development
of a testbed that would allow university researchers andicgijpn providers to de-
velop new networked systems and networking architectdnas. testbed, Virtualized
Application Networking Infrastructure (VANI), allows th@eation of virtual networks
of computing and communications resources. A VANI node sta®f resources such
as processing, storage, networking, and programmablevhaed A service-oriented

Virtualized Application Networking Infrastructure 3

control and management plane allows VANI nodes to be intarected into virtual
networks to support applications operating in the appbeatplane.

In the rest of this paper, we describe the main requiremant#\NI design, and
its architecture and main components. Also, we explain homndesign would satisfy
the requirements. Moreover, we present the performandaati@ns on the developed
resources for this infrastructure including a virtualizegprogrammable hardware re-
source that enables hardware-based experimentationvedrikéng algorithms and pro-
tocols.

2 VANI Design Requirements

Virtualized Application Networking Infrastructure (VANIs a testbed that allows uni-
versity researchers and application providers to utiligériternal resources to rapidly
create and deploy networked systems, and to even expenmitemew layer three pro-
tocols. Although the underlying concepts of the VANI testlsemes from our view on
Application-Oriented Network [14], but networked systemsning in VANI environ-
ment could follow any architecture in any networking laylére only limitation that the
researchers are facing in VANI is that their experimentaukhoun on top of Ethernet
as their layer two. Next, we describe the main requirementesigning VANI.

The VANI design follows some basic requirements (figure 1¢ Tirst requirement
for VANI testbed is that it should allow experimentation fature network architec-
tures that might not fit into the traditional layer three digfims. Currently networks
are primarily responsible for delivering raw data but irufiet it would be possible for
future network architectures to shift-up the network tagksiew functionalities that
might be required by emerging applications. Among thesetfanalities could be the
task of content-delivery in addition to data-delivery (sws the network architecture
discussed in [14]) that would imply having content proceggind storage functions in
the infrastructure.

The second main requirement was to allow researchers toimerd with new layer
three protocols (as in the traditional definition of L3) &wtl of the current Internet

: ’- - =
' ~ .
4 : N .
. 4 '
Rapid exp setup/
Isolation/ app creation

Security .

1

" ;
N

Testing new Monit(?ring/
L3 protocols Y Testing

Fig. 1. VANI design requirements

4 Hadi Bannazadeh et al.

Two main planes
— Control and Management
Plane
— Application Plane
All resources needed for
experiment setup are in app
plane
Control/Management used
for allocating a slice of
resources to a
researcher/application
provider
Applications can have their
own architecture inside an
app plane slice
— Examples: A new network
instead of IP network with a
new layering/a New
Content Delivery Network

aued
uonedrddy

ued
JUQWASRURA
29 [0NU0))

Fig. 2. VANI architecture

Protocol. To do so, we designed the testbed assuming thattlevey above layer two
could be redesigned and experimented with, and we choseiétigrotocol as the basis
of our layer two design.

Another main requirement in the testbed is to be able to setppriments or create
new applications rapidly using already developed and reéadyse components that
could be accessed through open interfaces. These compawid be the virtualized
resources such as processing, low-latency hardware gingeand accelerator nodes,
or software components such as event processors that a@usany experiments for
data gathering and analysis. This requirement could bsfigatithrough the use of the
SOA technologies and standards that could allow flexibledym&mic composition of
reusable service components.

The fourth main requirement was to provide an isolated awcdreeenvironment
for researchers to carry on their experiments and devekiprietworked applications.
This requirement has to be satisfied at different levels sisdnaffic separation, band-
width allocations, storage access, secure access to tlsephgesources, and isolation
between different physical resources. The fifth main regmoent was the monitoring
and debugging mechanisms. In our design, we envisionedrfdwemplex event pro-
cessing components that could be customized to gather atgranest and debugging
data for each experiment separately as well as for the t&twf.

2.1 VANI Architecture

Based on these main requirements, we designed a two plamiéeatare for our plat-
form: control and management plane (VANI-CMP) and appiicet plane (VANI-AP).

VANI-CMP is responsible for virtualizing physical resoascand allocating them to
the researchers and application providers. On the othet, magearchers deploy their
applications and experiments in the VANI applications pl@#ANI-AP). Applications
operating in the applications plane can have their own techire inside an applica-
tions plane slice that is created by VANI-CMP.

Virtualized Application Networking Infrastructure 5

Researcher!

v

UDP/IP

v
'

‘Web Service-Interface SSH HTTP/SSL

v td 3
; WS
4 R
WS WS i
Virtualization Layer Virtualization Layer i li
pomii;iry v p i §
irtuali ﬂ izati i

Control and Management Plane ' Application Plane

Resources

Fig. 3. Researcher interaction with VANI planes

(=]
s
=

Physical

Phy Res
Phy Res
Phy Res
Phy Res

For example, an experiment/application could be a new l#yee protocol that
covers OSI layer three and four functions, could replace /ITRCRwyer, or could be a
new content delivery network. Figure 2 shows this architexincluding its two planes.

All virtualized resources and service components that earsled by researchers for
creating an application reside in the applications plareserchers can ask for these
resources through the testbed control and managementaartben they can directly
connect to the virtualized resource in the applicationag@ldrough any resource spe-
cific protocol such as HTTP, UDP/IP, or ssh.

For example, a user can ask for uploading or downloading déddithe storage
service through the control plane, and then if permittedigydontrol plane, it has to
directly contact the storage file service using HTTP/TLSrzmtion and download or
upload its files.

VANI control and management plane (VANI-CMP) is responsibidr allocating
testbeds resources to the researchers. Researchers asiICWNfor a resource using
VANI-CMP’s Web Service interface. WS interface is chosen dseiniversal accep-
tance for SOA, and the abundance of available tools for atciing and creating new
applications using independent Web Services.

After receiving the requests for resources from a researseNI-CMP authen-
ticates the researcher and authorizes its request and ¢nels the request to the re-
source virtualization layer. The resource virtualizati@yer is the layer which abstracts
a physical resource and offers it as a service to the contibinaanagement layer. If
the allocation is successful, VANI-CMP records the allamatand replies back to the
researcher with a successful return result.

VANI-CMP also programs and releases the resource whenevauthorized re-
searcher wants to do so. Figure 3 depicts the logical vielweMANI testbed and how
a researcher interacts with VANI planes.

6 Hadi Bannazadeh et al.

Web Service interfaces

Virtualization Virtualization Virtualization
Layer Layer Layer
Interconnection Fabric %| PR SN | ﬁ

[wee [
M| Storage | ﬁ
—

Fig. 4. Virtualizing physical resources in VANI
2.2 Current Physical Resourcesin VANI (VANIv1 Resources)

Currently, several physical resources have been virecnd made available to VANI
users. In [16], the design and development details of theseurces have been pre-
sented, and here, we briefly overview these resources aedofyfunctionalities that
they can offer to researchers.

In VANI all physical resources are virtualized. Throughtwalization, we separate
applications from their underlying physical resourcesddcso, we developed a virtu-
alization layer and virtualization agents for each phylgiesource as shown in figure 4.
The task of the virtualization layer is to coordinate thetegswide virtualization of a
resource and to expose the resource as a service compotiehtel Service interface
to the rest of the system, and the agents task is to launcrstogie¢he virtual resources
on top of each physical resource.

The first physical resource that we have virtualized is tpeagrammable hardware
resource. To develop this resource we have used BEE2 bdaftd€fach BEE2 board
has four high-end Xilinx Field Programmable Gate Arrays@A} each connected to
four 10GE interfaces. We have virtualized all four FPGAs iBEE2 board so that a
researcher could ask for one or more FPGAs and program ihadikés.

Researchers can ask for an FPGA through the control planéhandprogram it,
configure it, or release it. They also have access to theridsréor controlling the 10
GE interfaces and some other commonly used hardware blocksas DDR2 mem-
ory modules. After programming an FPGA, a researcher carctlljr connect to the
FPGA through the 10GE interfaces according to whateveopobtdesigned for that
FPGA. For example, a researcher can use one FPGA or all fo@ABRo develop a
layer three router with 4x10GE ports or 16x10GE ports, orrgemt-based routers that
routes packets based on the packets payload rather thaméagiers. We present the
performance evaluation results for this hardware resaorite performance evaluation
section of this paper.

Virtualized Application Networking Infrastructure 7

Another physical resource in the VANI testbed is the proogssesource. The pro-
cessing service is developed based on Linux vServer [9htdoby. Linux vServer is
an OS-level virtualization software that creates a virfu@cessing node on top of a
Linux kernel. Researchers are able to get a processingresthrough VANI-CMP,
and release it whenever they wish to do so. Once a virtuabssieg node is allocated,
the researcher can directly ssh to the node. Researcheatsarable to program the
virtual processing node with a specific image, create anénadigheir own, and save it
on the storage service, and share it with others or prograer etrtual nodes with that
image.

We have also virtualized the internal fabric of the testbadcfeating virtual net-
works. The internal fabric consists of a set of high capagityernet switches that are
able to isolate traffic between different applications argegiments by creating sep-
arate virtual LANs. Moreover, it allows different experimnts to intercommunicate by
creating shared virtual LANs that all have access to. Trésuece, together with the
processing resource, enable VANI to guarantee the banlfoden experiment. Later
in the bandwidth guarantee section, we will discuss thigifean more detail.

The gateway and bridge resource is another developed oesthat enables com-
munication between different VANI nodes. If one of the rases in VANI needs to be
accessible from the Internet or from a resource in anothédMAode, it can ask for
a public address through the gateway service and get ansadfireduration that the
external access is needed. The researcher can releasebttuegoidress when it is no
longer needed.

Th bridge service is used for experiment involving new lajeee protocols on top
of Ethernet network. Using the bridge service, a researcheisend and receive layer
two Ethernet frames to any other VANI node, and hence, woeldlle to develop and
test new layer three protocols over a wide area network. flimistionality would only
be available if the VANI nodes are connected using a wide Btharnet network. We
will discuss this case later in more detail.

Another physical resource developed for VANI is the storaggmurce. Storage re-
source is implemented on a set of distributed file servetsatimailates one big storage
server. Researchers are able to connect to the storageestwaugh VANI-CMP and
then directly connect to a file server for uploading and doading files. All the direct
communications to the file servers for uploading and dovwditagfiles are done over a
secure HTTP/TLS connection. Researchers can use thisséostore images for pro-
gramming other resources such as processing resourcegpiodjrammable hardware
resource, and they can also share file with other researttivergyh this service.

2.3 Example: Requesting a Resourcein VANI

Figure 5 shows a sample message exchange scenario betwessaecher, the VANI
control and management plane and physical resources eS| node. A researcher
starts requesting for a resource by invoking the getResooperation of the VANI-
CMP WS interfaces. In that request, the researcher inclddes/pe of resource, the
duration and number of required resources.

VANI-CMP authenticates and authorizes the request anddiatsvthe request to the
resource. All resources in the testbed expose their opesato VANI-CMP through a

8 Hadi Bannazadeh et al.

Researcher Control Virtualized

Start 1 ; Resource
Auth/Authz H

getResource !

programResoyrce

,,,,,,,,,,,,,,,,,,,,,,,

Fig. 5. A sample interaction between a researcher and VANI

generic WSDL interface. This makes it possible to easilyrakthe types of resources
and services in the testbed without changing the controhaatbgement software.

The resource responds back to the control plane requestvgititcess result, and
a Universally Unique IDentifier (UUID) for the resource. Teantrol plane stores this
returned UUID and passes it to the researcher. The resea@am@rogram the resource
identified by returned UUID, and release it at a later time.

In the next section, we delve into the control and managemesign and we de-
scribe its main functionalities in detail.

3 VANI Control and Management Plane (VANI-CM P)

VANI-CMP is responsible for performing Authentication Awtrization Accounting
(AAA) operations and allocates resources to the reseas@ret application providers.
In addition, it performs user management functions, anestand manages the testbed
configuration data. It also has a registry for all serviced @sources that can be used
by researchers for creating a new application or experimetnip. Researchers can reg-
ister new types of resources in this registry, and make thegitable for use by other
researchers.

VANI-CMP is designed based on service-oriented design etscand developed
using SOA technologies. VANI-CMP is developed in BusinesscBsses Execution
Language (BPEL) [18] and deployed on an Enterprise Service(BSB) [19]. Similar
to other virtualized resources and services in the testélethternal components and
functions of VANI-CMP have also been developed as indepetskyvice components,
and are accessed through Web Services interfaces.

The use of ESB and Web Services enables VANI-CMP to be eagiéyded in func-
tionality and accessed through other types of interfactseifuture. This design choice
also enables independent development, testing, and meheght of internal functions

Virtualized Application Networking Infrastructure 9

of VANI-CMP such as AAA operation, configuration managemett. Moreover, the
use of BPEL language for VANI-CMP enables a high level degiam of the VANI
control and management operations. This enables rapidasydmodifications of the
control and management logic.

In the next subsections, we examine each of the functideslitf the control and
management plane and we describe the design steps anddetedf each of the mod-
ules.

3.1 User Management

Three concepts are used to manage users in VANI: applicpkéms, service levels, and
plan administrator levels. Application plans are used tstifferent experiments and
to organize resources and resource usage in each experiffteen booking a resource,
the researcher must specify which plan (experiment) theures is being booked on.
Any researcher belongs to a service level which governs wittrol operations s/he
is allowed to call and also how much of each resource s/héowedl to book. Custom
service levels may be designed for specific users in orderiotain flexibility. Lastly,
plan administrator levels are used to govern access tamrceesources. Resource users
will be granted specific levels of access defining their Bbib release, program, save,
etc.

3.2 Authentication Authorization Accounting

The control software is responsible for handling authexibm of users. All operations
in the control plane require users to provide credentialstéhtly, credentials are in the
form of a user name and password combination however themmgattation allows this
to be easily changed. On every call to the control softwaeeuser is authenticated and
a check is made to ensure that the user has the rights to exbeutquested operation.
In addition to authentication, the control software is msgble for authorizing access
to resources. Every access to a resource consists of twas;hestsuring the resource
belongs to the user, and the user has the rights to manighktesource as requested.

In order to prevent outsiders from directly accessing ressiand bypassing the
control plane, all requests to resources require credertimwn only to the control
plane. This credential is generated when resources aiaiiret.

The control software keeps a record every time a resourcedkda or released.
This keeps an account of which resource was used by whichlaserhich plan) and
for how long as well as all resources currently in use. Resgsuare identified by a
UUID generated by the resource and passed back through ttr@ikcplane.

3.3 Resource Allocation

Resources are booked through the control plane whetherstitésia researcher or an
application provider building a resource on top of anothksers provide their creden-
tials and specify which resource they wish to book (on whigiNVnode) and the plan

to which the resource will belong. The control plane ensthresiser is allowed to book

10 Hadi Bannazadeh et al.

<xsd:element name="getRequestGenericContents">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="internalIP" type="xsd:string"></xsd:element>
<xsd:element name="uuid" type="xsd:string"></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Fig. 6. A sample schema for generic XML content in a getRequest resporssage

the resource and determines the location (WSDL addresskeafetource in the net-
work. A getResource request is then made to the resourceeharce does not know
who is requesting the resource as this information is hidgetine control software. If
successful, the resource will return a UUID identifying theource as well as any other
relevant data which is then passed back to the user. The U&JiBed by the control
plane for accounting purposes.

3.4 Generic Resources/Registration

New resources can be made available dynamically in the @gpiane through a reg-
istration operation. The new resource must consist of ausnigame, a service name,
a port name, one or more WSDL addresses, and optionally a JNdfess for the re-
sources GUI. The service and port name are used to createl goien reference which
is assigned to the partner link when the resource is to besaede The resource may
have multiple WSDL addresses if there are different instaiééhe resource on differ-
ent VANI nodes. The control software will select the appraigraddress depending on
which node the user is attempting to access. Lastly, a JNIdRead may be included
which allows resource creators to design and deploy their@wl using Java web start
technology [20].

In order for resource creators to dynamically add new ressuio the control plane,
it is necessary to use a generic WSDL interface for all ressurthe main objective
with the generic interface is to provide a template that rakeating resources easy
while providing flexibility. This is accomplished by providy a number of operations,
messages that are common between many resources suchrategst, and program.
To maintain flexibility, each operation contains an optiokilL string which can be
used to customize data that is passed in and out (figure &hdfarore a generic op-
eration is included in the WSDL which can be used to includeatpens not already
included in the template.

4 Security in VANI

One of the basic requirements in VANI design was to make sweeekperiments are
done in a secure and isolated environment from the otheicapipins and experiments.
To create this secure environment we have to consider $g@Bues in various parts
of the system architecture.

Virtualized Application Networking Infrastructure 11

The first part is to secure the communications between theareisers and VANI-
CMP. In VANI all communications between these two entities encrypted using se-
cure SSL connections and WS-security specification. To death researcher has to
share his/her public key with VANI (and vice versa). On toptttdt VANI-CMP au-
thenticates the researchers and application provideng) tise credentials provided in
all transactions, and then, authorizes the researchexsadevel to the resource.

The second part is the communications between the resoarces&/ANI-CMP.
These communications have also been encrypted. Moreaeetemtials only known
to the resource and VANI-CMP are included in all communiagi from VANI-CMP
to the resources.

All internal traffic within one experiment is separated frother experiments using
tagged Ethernet VLANSs. By proper configuration of the tegdtinéernal fabric resource,
we are able to isolate these tagged VLANs from each othes ddse is discussed in
more detail in the bandwidth guarantee section.

Communications inside the applications plane, internain® experiment, or com-
ing to and from that experiment could be encrypted or not dejog on the experiment,
and therefore it is outside of the scope of the VANI desigrisEtlows researchers to
freely design and develop new encryption and decryptioarétgns in different layers
inside their application plane slice.

5 Bandwidth Guaranteein VANI

In order to make sure that one experiment cannot undermioia@nexperiment’s ca-
pability to send and receive traffic, we need to have a barttivgdarantee mechanism
in place. Likewise, for communications between differeAtW nodes, there should be
arate guarantee in place so that a distributed experimeid bave a guaranteed access
to the available bandwidth.

Since all communication in VANI is carried over the VLAN tagmjEthernet frames,
an Ethernet rate limiting mechanism in processing nodeséas developed. By doing
so, we limit the rate in which each virtual processing nodedseand receives traffic
from/to another virtual processing nodes inside a VANI node

Also the gateway and bridge service controls the rate in kvlain experiment
sends/receives traffic to/from the VANI wide area networkeTwide area network
that is used to connect the VANI nodes would be a researcleated network like
CANARIE [10] that can guarantee the aggregated traffic ¢offthe VANI nodes. If
the wide are network was able to provide dynamic and on-ddrbandwidth alloca-
tion, VANI would be able to use this functionality whenever experiment asks for
sending/receiving traffic to/from the wide area network NiAodes could also be con-
nected to the public Internet network, however, bandwidihid not be guaranteed for
the experiments in this case.

To request a bandwidth guarantee in VANI, a researcher cagifgpghe bandwidth
requirements of a virtual processing node in the resourceegeest. Likewise, a band-
width requirement can be specified when access to the VANg i@ network is re-
quested. The virtualization layer in VANI control and maeagent plane makes sure

12 Hadi Bannazadeh et al.

that the specified requirements are met when allocatingaliresources to the experi-
ment.

VANI Node

10.X.X.X/20

VLAN#20

Legend:

VANI Node GW = Gateway
VR = Virtual Resource

Fig. 7. Connecting VANI nodes in IP layer

5.1 Interconnecting VANI Nodesin IP Layer

Figure 7 shows how we can set up an experiment or create #distt application
across a wide area IP network. In this setting, all resourcgde an experiment in a
VANI node get a local IP address in the range of 10.X.X.X. Asource could send
traffic to the wide are network using the NAT functionalitypfemented in the gateway
service (shown as GW in figure 7). It is possible to put mudtiphteways in place and
direct outgoing traffic to different gateways to avoid berécks in the system.

On the other hand, if a resource needs to be accessible frerwitte area net-
work, the researcher can ask the gateway service for a patiicess/name, and the
gateway service redirects all traffic to that public addtesthe resource’s internal 1P
address/VLAN.

5.2 Interconnecting VANI Nodesin Ethernet Layer

Figure 8 shows an Ethernet connected VANI. Ethernet coedééANIs use the bridge
service instead of the gateway service to interconnedtdrssVANI node, all resources
in an experiment communicate using a specific VLAN which igqua to the VANI
node. If an experiment needs to operate across multiple \siddles (for instance, to
test a new layer three protocol), the VANI wide area netwak to be able to transfer
Ethernet frames. In this case, a unique Q-in-Q tag [21] wbaldssigned to the experi-
ment. The bridge service would be used to re-frame the iatéagged Ethernet frames
to the wide are Q-in-Q frames and the destination bridge #vdol the reverse opera-
tion, and deliver the Ethernet frames to the destination MA@N in the destination
VANI node.

Since Q-in-Q tagged Ethernet frames might not be availaldenide area network,
we are able to define public MACs that can be used for redirgdtaffic to an internal

Virtualized Application Networking Infrastructure 13

VANI Node

VANI Node

Wide Area
Ethernet

Legend:
BR = Bridge

VANI Node

Fig. 8. Connecting VANI nodes in Ethernet layer

MAC/VLAN by the bridge service. This functionality would able any other Ethernet-
based experiment to send Ethernet frames to a resource timeaimxperiment through
the bridge service.

5.3 Experimentation with L3 Protocols

Figure 9 shows how the testbed could be used to test a newttager protocol in a a
large scale and distributed environment using proxy noldethis setting, the new L3
protocol is tunneled within IP payload to a resource insidBI node, and then that
resource strips off the IP header and feed the new L3 paclezttbe VANI wide are
Ethernet network.

6 SW-Based Resourcesin VANI

One of the main contributions in our testbed control and rgameent plane is that we
could encapsulate any software or hardware resource irestired as a service. To do
S0, the resource can be virtualized, and abstracted asiaeseomponent that follows
a generic resource WSDL template. Then it can be registetedhia control plane and

Example:

“Red” network = s . -
protocol stack
deployed in slices % % % %

of VANI nodes & #
tested to scale

m Network

Fig. 9. Large scale experimentation with new L3 protocols

14 Hadi Bannazadeh et al.

made available to other researchers. Details on how thictsbe accomplished have
been discussed in the control and management plane settiois paper.

Examples of such resources as a service are any hardwat®sfuacresource that
could be reused in different applications and experimanth as hardware accelerators
for encryption, decryption, content conversion, and cointempression/decompression.
Also other reconfigurable hardware modules such as NetFR@W be virtualized and
offered to the researchers on an on-demand basis.

Other types of processing nodes could also be offered toetbearchers as a re-
source. For example, Amazon Elastic Computing Cloud (E@2es [22], GENI vir-
tual processing nodes, VMWare-based virtualized prongssodes [23], or Graphics
Processing Units (GPUs) could be controlled and managed\bii-CMP.

Moreover, software services such as database service, BRiflestrator engine
and Complex Event Processing (CEP) engine, could be deae@lapd/or deployed on
top of current virtual resources and made available to teearehers through VANI-
CMP. Currently, we have developed and deployed severaliamdtbased resources as
service components in VANI including a database servicd& IBBrchestrator engine,
and a sensor service.

7 Federation with GENI

GENI is an initiative to create a large scale experimentubtofederation between
different testbeds. Federation in GENI is done using GENippers. A GENI wrapper
is developed for each testbed and testbeds could conneathoather through them.
In VANI, we developed a wrapper for control and managemeantg| and through that
we invoke GENI wrapper operations to get a node on any GENbées We tested our
wrapper with PlanetLab GENI wrapper and managed to obtalarzeR_ab processing
node through our VANI-CMP.

In VANI, researchers are able to get a PlanetLab processsmurces using VANI
generic resource template. Since PlanetLab does not dugipoaige service, and also
does not support other VANI requirements such as processiddandwidth require-
ments, access to PlanetLab processing resources wouldipodrs these functionali-
ties. Figure 10, shows the structure of interconnectioméen VANI and PlanetLab
through the GENI wrappers. Currently, we are in the devekminphase of offering
VANI resources to GENI researchers through the VANI wrapper

8 A VANI Node

A VANI node is composed of the resources described in thigpdlpeir corresponding
virtualization software, control and management softwara the storage service. A
VANI node can be totally deployed on a computer cluster casegoof normal com-
puting blades, and manageable Ethernet networking elemEmé basic resources in a
VANI node are the processing resource, the storage sem#ickthe fabric service for
the network virtualization that are deployed on a compuitgster.

Virtualized Application Networking Infrastructure 15

'VANI-CMP

VANI-CMP E : VANIWrapper (C':D)

o w B,

@

| | 25

o g §

Virtualization E E GeniWrapper @

Layer o Client

VANI/GENI
Interface

Fig. 10. Connecting VANI to GENI

All other resources and the control and management sofavardeployed on these
basic services. In addition, all other software-basedwuess, and the virtualization
layer for resources like reconfigurable hardware resouwned,the VANI wrapper for
connecting to GENI testbeds are also deployed on these tessiarces.

The only elements that cannot be found in a normal computesterl are the re-
configurable hardware resources, the gateway and bridgiesgrand required 10GE
Ethernet switches. These resources are also co-locatbdhveitcomputing cluster to
provide the WAN connectivity and to enable running experitaton with the recon-
figurable hardware resource.

9 Performance Evaluations

Up to now, we presented the VANI architecture and we disaliggféerent aspects of
its design. To find if the currently developed resources caatri/ANI design require-
ments, we performed several experiments on those resolmtbis section, we present
performance measurements on two key physical resourcefdlia been virtualized
and offered to the researchers in VANI. The first one is theag@ammable hardware
resource, and the next one is the processing resource. Qufauoas in this part would
be to see if we could guarantee the promised quality of setai¢he researchers that
use these resources in their experiment.

9.1 Reprogrammable Har dware Resour ce

By introducing a virtualized and reprogrammable hardwas®urce in VANI, we en-
able researchers to test new networking algorithms ana@otst using high perfor-
mance and high throughput hardware resources. To do sorwuealized BEE2 boards
developed in the University of California at Berkeley. A BEBoard consists of one

16 Hadi Bannazadeh et al.

40 Gbps

v

o -
User |« BP<>| User
FPGA |<>l <> FPGA

< <

20 Gbpy
-

20 Gbps

40 Gbps Control 40 Gbps
FPGA

20 Gbps
20 Gbps

< <

User |« B<>| User

FPGA <> <> FPGA
<>

9’ [
M 40 Gbps
A
DDR2 DIMM slot 10 Gbps Ethernet port

Fig. 11. Reprogrammable Hardware (BEE2 Board)

controlling FPGA, and four high capacity Xilinx Vertex-1IF&As (figure 11) that can
be programmed by users. Each FPGA has four 10GE interfacgg, &B of memory.

In VANI, a researcher can get a set of FPGAs on a BEE2 boardcandhsk for
on-board inter-chip communication channels which canycaprto 5 GigaBytes per
second (GBps). The detailed design of BEE2 virtualizatigstesm and introducing it
as a resource in VANI can be found in [16]. Here, we presenptréormance mea-
surements on this resource. The parameters of interestapedgramming time of the
FPGAs through the virtualization software as well as theedpgith FPGAs can send
and receive data.

The first parameter is the time in which a researcher can anogin FPGA through
the testbed control plane. Also, we would like to know hove tiiime would change if
four researchers want to program all four FPGAs concuiyeitl do so, we developed
a bitstream that initializes all 10GE interfaces on the FB@Ad starts sending a burst
of UDP/IP packets on one of its 10GE interfaces, and we prograd FPGAs through
VAN-CMP using the generated bistream for several timesleTatshows the average
maximum programming time that programming one, two, thaee, four FPGAs take.
As can be seen, it only takes 30 seconds on average to progr&R@A in the case
where all four FPGAs are programmed concurrently, andittmis is around 11 seconds
if only one FPGA is programmed at a time.

This fast programming time allows a researcher to get an FR@# four 10GE
interfaces in less than a minute, and to run an experimentednch the FPGA back to
the VANI resource pool as soon as it's not required.

The next experiment that we performed is to measure the spakdvhich the
FPGAs can send and receive traffic. To do so, we developedfia tyanerator using
Verilog hardware description language, and we startedisgraffic from one 10GE
interface to another 10GE interface on the same FPGA, anéeoeded the maximum
bandwidth that we could receive in the hardware resourcealgéecompared this with
the traffic statistics gathered by the Ethernet switch cotateto the FPGA. We re-
peated this experiment several times and were able to sehttegive Ethernet frames
to the rate of 1GBps, which is equal to 8Gbps. The reason taatowld not send more

Virtualized Application Networking Infrastructure 17

FPGAs 123 4
Programming Time (s)1 17 24 30

Table 1. Average maximum FPGA programming time

traffic is the 8/10 bit encoding mechanism for 10GE-CX4 ifstees, and 8Gbps is the
maximum achievable traffic rate per port on a BEE2 board. neeasurements, this
rate did not change if all ports started sending and recgitriaffic at the same time
since separate internal modules are controlling each Pbis. experiment shows that
one FPGA alone can send and receive 32Gbps traffic. If a dwraget all four FPGAs

on a BEE2 Board it is possible to send/receive traffic in the 0d4x32=128Gbps.

We have used this reprogrammable resource in developingighecapacity gate-
way and bridge service for VANI, and we have developed a baittveontrol mech-
anism on this resource that controls and guarantees thatratkich one experiment
could send and receive traffic to/from a wide are networkh&nftiture, we will present
our design for the gateway and bridge service, and we wikgme our performance
measurements for this service as well.

9.2 Processing Service and Network Virtualization

Another main physical resource that we have virtualizethésprocessing service that
uses Linux vServer software. There have been studies opgsimg) virtualization tech-

nigues [24], and also specifically on Linux vServer [9]. LinuServer performance

evaluations show that this virtualization module has a Vew overhead on overall

system performance.

‘VNJ?]‘ ‘VNJJ‘ ‘VNJj‘ ‘VNle‘ ‘VNJJ‘

’ node01 ‘

@)
=

VANI Internal Fabyic

5) 5) 4)

m m m m m
node02 ‘ node03 ‘ node04 ‘ node05 ‘ node06 ‘
[VvN21 \\ / [v32] [vN43] [Ws6]
vlan#101 vlan#102 vlan#103 ‘v]an#]()4 vlan#105

Exp#l Exp#2 Exp#3 Exp#4 Exp#3
Virtual Processing Nodes

Fig. 12. Traffic measurement experiment topology

However, since we are also doing network virtualizationddition to the process-
ing virtualization, we conducted two more experiments tliate necessary to show
that virtual processing nodes can have guaranteed accégs\W¥ANI network.

18 Hadi Bannazadeh et al.

node01 from/to UDP |UDP (rl) TCP TCP(rl)
node02 (12.50MBps$24.5/24.312.4/12.415~35/24.112.3/12.3
node03 (18.75MBps$24.5/24.318.8/18.815~35/24.318.4/18.4
node04 (25.00MBps$24.5/24.325.3/25.315~35/24.124.8/24.6
node05 (31.25Mbps24.5/24.331.7/31.615~35/22.131.3/31.1
node06 (31.25Mbps24.5/24.331.7/31.615~35/23.231.3/31.1

Table 2. UDP/TCP traffic measurements in MBytes per second (MBps)

In our experiment, we virtualized cluster blades with duahX.530 CPUs and 2GB
of RAM and one 1GE interface. The Linux kernel version thatused was 2.6.16, and
we used vServer 2.3.2. patch. The developed virtualizédiper allows up to ten virtual
nodes on a physical node. For this experiment, we initidliaed launched 5 virtual
nodes on a node named node0l1. We also launched 5 other \praedssing nodes
on five separate servers with same capabilities describvetbfite01. These nodes are
named node02 to node06. Each of the virtual nodes in noddOddseto an experiment
that includes one other virtual node running on one of themtiodes. The topology
and VLAN tags for experiments are shown in figure 12.

In this experiment, we measured the UDP and TCP traffic ratestich virtual node
in an experiment could send and receive in different cades fifst case is to find out
the maximum achievable rate when no limit is placed on thiidreate and only one
experiment is active. This rate is 122MB per second (MBps)fith UDP and TCP
traffic which is equal to 976Mbit per second (Mbps). Table @vglthe achievable rate
in different cases when all experiments are active and serdsa as they can. Since
all experiments running on node01 try to send and receivenerl&bps Ethernet link
concurrently, they get a different share of this availataéit in different cases.

In table 2, we show the maximum traffic rate in MBps betweenrtuai node on
nodeOl1 and its corresponding virtual node on node02 to réodete UDP and TCP
columns show the maximum rate when all virtual nodes in gllegixnents send and
receive UDP or TCP traffic, concurrently, without any rateitimechanism in place.
As it can be seen, because of the massive packet loss in #@s T&P cannot achieve
a stable rate, and its rate changes from 15 to 35 MBps. Theasuremnents prove the
need for a rate limiting mechanism when different experitm@rant to run on a shared
virtualized infrastructure.

The columns with (rl) show measurements when we limit thel ss1d receive rate
in experiments to (12.5), (18.75), (25), (31.25), and (3LMBps respectively, totaling
to 118.75 MBps (950 Mbps). As can be seen, using the ratefiimdtionality we could
achieve the bandwidth guarantee requirements (with maxirhi deviation from the
target rate) in a VANI node. Another case that we have studig¢de case where all
virtual nodes in one experiment start sending traffic to dnal node concurrently.
This would result in congestion on the shared link that isisgrthe destination virtual
node. To solve this problem, we have developed a novel tredficrol mechanism that
we will present in a separate paper in future.

Virtualized Application Networking Infrastructure 19
10 Conclusion and Future Work

Virtualized Application Networking Infrastructure (VANis a converged communi-
cations and computing network that facilitates the retibraof an open applications
marketplace using a service-oriented control and managgpiene capable of manag-
ing hardware-based and software-based resources.

The architecture of VANI is designed to allow rapid applioatcreation and exper-
iment setup using service-oriented approaches. VANIzaslivirtualized commaodity
physical resources such as processing, storage, and Retgoesources. It also in-
cludes reprogrammable hardware resources used for devefdgmnd deployment of
high scale and high throughput networking algorithms amdqmols.

VANI is designed to enable experimentation with architeestand applications that
provide responsiveness and quality of service by havinggssing, storage, and hard-
ware acceleration resources in all its nodes. Exampleegifans that are video stream-
ing applications, new content delivery networks, as wep@ser-aware and green net-
working architectures. In addition, applications thatuieg high performance comput-
ing and networking can benefit from VANI’'s reprogrammabledweaare resource. This
resource can be reprogrammed in a short time to run hardvaed networking algo-
rithms and protocols, and can send and receive traffic rag¢e 128Gbps. Currently,
we are working on development of a novel green networkederysin VANI. We are
also in the process of designing novel functionalities i VANI control and man-
agement plane to automate application creation and dejgioym

References

1. Steven M. Bellovin, David D. Clark, Adrian Perrig, and Dawn Song. A
Clean-Slate Design for the Next-Generation Secure Internet, 2005. ilaBlea
at http://sparrow. ece. cnu. edu/ group/ pub/ bel ovin_cl ark_perrig_
song_next Genl nt er net . pdf.

2. Stanford University Clean Slate Design For Internet: An InterdiscipliR@search Program.

http://cl eansl ate. stanf ord. edu.

. 100x100 projectht t p: / / 100x100net wor k. or g.

GENI System Overview, September 2008. Availablbetatp: / / www. geni . net .

. Peterson L. PlanetLab: A Blueprint for Introducing Disruptive Texthgy into the Internet.

htt p: //ww. pl anet - | ab. or g, January 2004.

6. PlanetLab GENI Control Framework Overview, January 2009ilévke atht t p: / / www.
geni . net.

7. Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashiuprasad, Tim Stack,
Kirk Webb, and Jay Lepreau. Large-scale Virtualization in the Emulab diétestbed. In
Proceedings of the 2008 USENIX Annual Technical Conference, pages 113-128, June 2008.

8. GENI Control Framework Requirements, January 2009. Availabletap: // wwv.
geni . net.

9. Marc E. Fiuczynski Herbert Ptzl. Linux-VServer, Resourcediffit OS-Level Virtualiza-
tion, June 2007. Available dtttp://ol s. 108. redhat . com 2007/ Repri nt s/
pot zl - Repri nt. pdf.

10. CANARIE Inc. CANARIE: Canadian Network for the AdvancemehResearch, Industry

and Educationht t p: / / ww. canari e. ca.

oA W

20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hadi Bannazadeh et al.

E. Grasa et al. UCLPv2: A Network Virtualization Framework Built oeWServices.
Communications Magazine, |IEEE, 46(3):126—34, March 2008.

P. Szegedi, S. Figuerola, M. Campanella, V. Maglaris, and C.e@eiWastor. With evo-
lution for revolution: managing FEDERICA for future Internet reséar€ommunications
Magazine, |IEEE, 47(7):34-39, July 2009.

Glen Gibb, John W. Lockwood, Jad Naous, Paul Hartke, and Nickedwn. NetFPGA:
An Open Platform for Teaching How to Build Gigabit-Rate Network SwitchesRouters.
Trans. on Education, 51(3):364—-369, August 2008.

Bannazadeh H. and Leon-Garcia A. On the Emergence of an ApptieOriented Network
Architecture. Inproc. of IEEE Int. Conf. on Service-Oriented Computing and Applications,
SOCA' 07, pages 47-54, Newport Beach, California, June 2007.

R. Farha and A. Leon-Garcia. Blueprint for an Autonomic Serdicghitecture. InAuto-
nomic and Autonomous Systems, 2006. ICAS '06. 2006 International Conference on, July
2006.

Redmond K., Bannazadeh H., Leon-Garcia A., and Chow Pelbpment of a Virtualized
Application Networking Infrastructure Node. RFroceedings of the 3rd IEEE Workshop on
Enabling the Future Service-Oriented Internet, Honolulu, Hawaii, December 2009.

C. Chang, J. Wawrzynek, and R.W. Brodersen. BEE2: a mglreconfigurable computing
system.Design and Test of Computers, IEEE, 22(2):114-125, March-April 2005.

Benny Mathew Poornachandra Sarang, Matjaz JBtisiness Process Execution Language
for Web Services BPEL and BPEL4AWS. Packt Publishing, Birmingham, UK, 2006.

Sun Microsystems Inc. OpenESB: The Open Enterprise Servie Binttp://
open- esbh. dev. j ava. net.

Sun Microsystems Inc.: Java Web Start Technologidsttp://j ava. sun. com

j avase/ t echnol ogi es/ deskt op/ j avawebst art.

IEEE 802.1ad-2005, Virtual Bridged Local Area Networks Adraent 4: Provider Bridges,
2006. Available ahtt p: / / st andar ds. i eee. or g.

James Murty. Programming Amazon Web Services: S3, EC2, SQS, FPS, and SmpleDB.
O’Reilly Media Inc, California, 2008.

Inc VMWare. VMware: A Virtual Computing Environmettitt t p: / / www. vimwar e. com
2001.

Padala P., Zhu X., Wang Z., Singhal S., and Shin K.G. Perfocen&valuation of Virtu-
alization Technologies for Server Consolidation, 2007. Availabletatp: / / wwww. hpl .
hp. cont t echr eport s/ 2007/ HPL- 2007- 59R1. ht mi .

